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Background

Traditional power grid = Future power grid

Uncertainty and variability

Stochastics

Vulnerability

Low inertia and weak grid
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Challenges

There is a need for real-time dynamic security assessment and situational awareness
for the future power grid with high renewable energy penetrations.

28 thousand megawatts

26 California's electrical grid throughout the day
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https://ilsr.org/solar-supporters-open-season-utilities-duck/

Key question: How do we solve the trade-off between computational accuracy and
speed? NREL T
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Building the Machine Learning Model

for Security Assessment

Step 1: Representation:

— What to learn?
— What's the input? What’s the output?

ility margin

Step 2: Feature selection

Pgen, = I Useful

inertia, features

Step3: Model selection Step 4: Interpretation and validation
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How Do We Define the Stability Margin?

* Transient stability :| PN

Infinite bus
(critical clearing time [CCT]): | __§ 3Lama.-.m.ogm| siaifwop

— The ability to maintain synchronism when - W—
. . Active Power
subjected to a severe disturbance, such as a P (M) ff;?:;j— o
ess_ ranslen stablity
short circuit on a transmission line. TATATAVE

Time

ore . Fault ocwr_fefl”_‘(?leared (typical 4-5\!:ycles'|
* Frequency stability (frequency nadir): sotos o
— The ability of a power system to maintain Transient stability
steady frequency following a severe system S
upset, resulting in a significant imbalance - ‘“:n-.em.!’ Generation trips |
between generation and load. o A %3,
e[ L T \[ 1 | .
* Small-disturbance rotor angle stability e S m
. . g sos8 | .28, .
(damplng rat|0): e 22.86 1 Frequency nadir—
— The ability of the power system to maintain ssa2 ’
. . - nﬂegi;lmng of & 10 20 a0 40 50 60 70 20
synchronism under small disturbances. the event Time (¢

Frequency stability

NREL | 6



Framework
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* For preliminary testing, we use only 1-day dispatch data (288 scenarios for 1 day). NREL | 7



Small Test System

18-bus, 4-area test system 1-day generator dispatch

North Coal Hydro East
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Features:

Training data set:

Scheduling model->288 scenarios
with 5-min step over 24 h.

 Generator dispatch (real power and
reactive power)

* Inertia of units

e  Unit commitment. NREL | 8



Machine Learning
for Transient Stability Assessment

Input Features m Training Data
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* Machine learning tool can accurately predict CCT.

e Estimation error is less than 20 ms. NREL | 9



Inter-Day Testing:

Predict Critical Clearing Time for the Other Day

e Intraday validation: 70% of 288 dispatch scenarios in Day A were used for
training, and the remaining 30% were used for validation.
* Inter-day testing: The 288 scenarios in Day B were used in testing.

RMSE » The validation and training error
0.025 levels are very close and small,
whereas the testing error levels
are large.

0.02
0.015

0.01 * This is most likely because the

training data set might be

insufficient and not diverse

Training Validation Testing enough for the machine learning
B Random forests M Neural network mOdeI tO prediCt the tranSient

stability in the dispatch scenarios

in Day B.

0.005
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Improvement of Inter-Day Testing

for Critical Clearing Time

To support this hypothesis, a percentage of scenarios were randomly selected from

Day B and added to the training data set in Day A. (Random forests)
oo . . Actual vs Predicted CCT for Testing Set
RMSE values of training, validation, and 0.18 - - - ' - - :
testing
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01F ——— Predicted value under 10% moved data |
Percentage of Day B data used in training Predmted value under 20&; moved data
0.09
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With limited additional data, the accuracy can be highly improved.
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Summary of Three Security Assessments

Test system: 18-bus system

Stability

Frequency

Transient

Small-Signal

Generation
dispatch results,
inertia

Generation
dispatch results,
transmission
network

Generation
dispatch results,
transmission
network

Data Set

Training Data Set

Frequency 70% data of Day A

nadir
100% data of Day A + 20%
data of Day B

CCT 70% data of Day A

100% data of Day A + 20%
data of Day B

Damping 70% data of Day A
ratio

100% data of Day A + 20%
+Frequency data of Day B

Testing Data Set

The remaining 30%
data of Day A
80% data of Day B

The remaining 30%
data of Day A
80% data of Day B

The remaining 30%
data of Day A
80% data of Day B

Estimation Accuracy

Random
Forests
98.30%

94.91%

98.44%

93.39%

98.61%

91.81%

Neural

Network

99.72%

99.37%

99.29%

97.38%

98.59%

98.70%
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Comparison of Assessment Time

Simulation Machine Learning-Based

Time for Stability Assessment (86 Scenarios)

Transient stability ~16 h
Frequency stability ~1h ~0.18 ms (with trained model)
Small-signal stability ~1h

* The machine learning-based tool can significantly reduce stability assessment time with
minimal sacrifice on accuracy.
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Frequency Control of Photovoltaic Inverter

Advanced inverter design can enable photovoltaics (PV) to provide frequency

control.

PV needs to be curtailed to provide upward response.

Model-based approach to determine the optimal reserve requirement is

computationally intense.
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More headroom leads to better frequency

response but might not be economic.
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Machine Learning Approach

for Reserve Determination

Offline simulation of different operation Histogram of features
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Validation on Unseen 1-Day Profile

For each interval, the H , and G, as well as the 59.55-
Hz target are input to the machine learning model to find
the optimal headroom.

For validation, the GE PSLF (positive-sequence load flow
simulation) using the optimal headroom is performed,

and the actual f__,;, is found.

40% headroom is saved compared with flat requirement.
The prediction error is within 0.01 Hz.
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Conclusion

The proposed machine learning tool is used to assess three stability
metrics of the 18-bus test system using steady-state dispatch results.

— Transient stability: CCT
— Frequency stability: frequency nadir
— Small-signal stability: damping ratio of oscillation mode.
The proposed machine learning strategy can determine the optimal PV

headroom reserve of an interconnection-level system for frequency
control.

It is demonstrated that machine learning-based tools can reduce the
computational burden of dynamic simulations, making them suitable for
online security assessment and stability control for systems with high
penetrations of renewable generation.
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Questions?

www.nrel.gov
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