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Background

Uncertainty and variability

Stochastics

Vulnerability 

Low inertia and weak grid

Traditional power grid  Future power grid
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Challenges

Key question: How do we solve the trade-off between computational accuracy and 
speed?

https://ilsr.org/solar-supporters-open-season-utilities-duck/

There is a need for real-time dynamic security assessment and situational awareness 
for the future power grid with high renewable energy penetrations.

https://ilsr.org/solar-supporters-open-season-utilities-duck/
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Building the Machine Learning Model 
for Security Assessment

Step 1: Representation:
– What to learn?
– What’s the input? What’s the output?

Pgen,
inertia,
…

Useful 
features

Stability margin

A

B

C

Step 2: Feature selection

NN Decision tree SVM Deep learning

Step3: Model selection Step 4: Interpretation and validation
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How Do We Define the Stability Margin?
• Transient stability 

(critical clearing time [CCT]):
– The ability to maintain synchronism when 

subjected to a severe disturbance, such as a 
short circuit on a transmission line.

• Frequency stability (frequency nadir):
– The ability of a power system to maintain 

steady frequency following a severe system 
upset, resulting in a significant imbalance 
between generation and load.

• Small-disturbance rotor angle stability 
(damping ratio):

– The ability of the power system to maintain 
synchronism under small disturbances.

Transient stability

Frequency stability

Frequency nadir

Generation trips
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Framework

Stability margins:
• Transient stability 

assessment (CCT <5 
cycles, 0.0833 s)

• Small-signal stability 
assessment (critical 
damping ratio <5%)

• Frequency stability 
assessment  
(frequency nadir 
<59.6 Hz).• Day A for validation* 

(70% training+ 30% validation)
• Day B for testing

Offline training

Online application

• Radom forest 
• Neutral network

* For preliminary testing, we use only 1-day dispatch data  (288 scenarios for 1 day). 

Stability Margins
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Small Test System
18-bus, 4-area test system 1-day generator dispatch

Training data set:
Scheduling model288 scenarios 
with 5-min step over 24 h.

Features:
• Generator dispatch (real power and 

reactive power)
• Inertia of units
• Unit commitment.
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Machine Learning 
for Transient Stability Assessment
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(Random forest)

• Machine learning tool can accurately predict CCT.
• Estimation error is less than 20 ms.

Neural network

Input Features Output Training Data
Real power of all 
generators

CCT Time domain simulation on three-
phase faults
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Inter-Day Testing: 
Predict Critical Clearing Time for the Other Day

• The validation and training error 
levels are very close and small, 
whereas the testing error levels 
are large. 

• This is most likely because the 
training data set might be 
insufficient and not diverse 
enough for the machine learning 
model to predict the transient 
stability in the dispatch scenarios 
in Day B. 
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Training Validation Testing

RMSE

Random forests Neural network

• Intraday validation: 70% of 288 dispatch scenarios in Day A were used for 
training, and the remaining 30% were used for validation. 

• Inter-day testing: The 288 scenarios in Day B were used in testing.
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Improvement of Inter-Day Testing 
for Critical Clearing Time

• To support this hypothesis, a percentage of scenarios were randomly selected from 
Day B and added to the training data set in Day A. 

0
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0% 10% 20%

RM
SE

Percentage of Day B data used in training 

RMSE values of training, validation, and 
testing

Training set Validation set Testing set

(Random forests)

• With limited additional data, the accuracy can be highly improved.
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Summary of Three Security Assessments

Stability Input Output
Data Set Estimation Accuracy

Training Data Set Testing Data Set
Random 
Forests

Neural 
Network

Frequency Generation 
dispatch results, 
inertia

Frequency 
nadir 

70% data of Day A The remaining 30% 
data of Day A

98.30% 99.72%

100% data of Day A + 20% 
data of Day B

80% data of Day B 94.91% 99.37%

Transient Generation 
dispatch results, 
transmission 
network

CCT 70% data of Day A The remaining 30% 
data of Day A

98.44% 99.29%

100% data of Day A + 20% 
data of Day B

80% data of Day B 93.39% 97.38%

Small-Signal Generation 
dispatch results, 
transmission 
network

Damping 
ratio

+Frequency

70% data of Day A The remaining 30% 
data of Day A

98.61% 98.59%

100% data of Day A + 20% 
data of Day B

80% data of Day B 91.81% 98.70%

• Test system: 18-bus system



NREL    |    13

Comparison of Assessment Time

Stabilities Time for Stability Assessment (86 Scenarios)

Simulation Machine Learning-Based

Transient stability ~16 h

~0.18 ms (with trained model)Frequency stability ~1 h

Small-signal stability ~1 h

• The machine learning-based tool can significantly reduce stability assessment time with 
minimal sacrifice on accuracy. 
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Frequency Control of Photovoltaic Inverter 

• Advanced inverter design can enable photovoltaics (PV) to provide frequency 
control.

• PV needs to be curtailed to provide upward response.
• Model-based approach to determine the optimal reserve requirement is 

computationally intense.

• More headroom leads to better frequency 
response but might not be economic. 

Frequency control block



NREL    |    15

Machine Learning Approach 
for Reserve Determination

• Offline simulation of different operation 
conditions (approx. 2,000 cases) of the 60% 
inverter-based resources Western Electricity 
Coordinating Council case (10,000 + buses).

• Inputs include system inertia, governor capacity, 
and targeted frequency nadir.

• Outputs the optimal PV reserve amount.

Histogram of features

Prediction errors: training vs. testing
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Validation on Unseen 1-Day Profile

00:00 06:00 12:00 18:00 00:00

Time

2

3

4

5

6

7

In
er

tia
 (M

VA
*s

)

10 5

0

10

20

30

40

50

60

70

IR
G

 G
en

er
at

io
n 

(G
W

)

Orignal System Inertia

New System Inertia

IRG Generation

• For each interval, the Hsyst and Ggov as well as the 59.55-
Hz target are input to the machine learning model to find 
the optimal headroom.

• For validation, the GE PSLF (positive-sequence load flow 
simulation) using the optimal headroom is performed, 
and the actual fnadir is found.

• 40% headroom is saved compared with flat requirement.
• The prediction error is within 0.01 Hz.

1-day profile

Optimal headroom reserve

Frequency nadir
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Conclusion

• The proposed machine learning tool is used to assess three stability 
metrics of the 18-bus test system using steady-state dispatch results.
– Transient stability: CCT
– Frequency stability: frequency nadir 
– Small-signal stability: damping ratio of oscillation mode.

• The proposed machine learning strategy can determine the optimal PV 
headroom reserve of an interconnection-level system for frequency 
control.

• It is demonstrated that machine learning-based tools can reduce the 
computational burden of dynamic simulations, making them suitable for 
online security assessment and stability control for systems with high 
penetrations of renewable generation.
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