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Abstract——This paper aims at developing a data-driven optimal
control strategy for virtual synchronous generator (VSG) in the
scenario where no expert knowledge or requirement for system
model is available. Firstly, the optimal and adaptive control prob‐
lem for VSG is transformed into a reinforcement learning task.
Specifically, the control variables, i. e., virtual inertia and damp‐
ing factor, are defined as the actions. Meanwhile, the active power
output, angular frequency and its derivative are considered as the
observations. Moreover, the reward mechanism is designed based
on three preset characteristic functions to quantify the control
targets: ① maintaining the deviation of angular frequency within
special limits; ② preserving well-damped oscillations for both the
angular frequency and active power output; ③ obtaining slow
frequency drop in the transient process. Next, to maximize the cu‐
mulative rewards, a decentralized deep policy gradient algo‐
rithm, which features model-free and faster convergence, is devel‐
oped and employed to find the optimal control policy. With this
effort, a data-driven adaptive VSG controller can be obtained. By
using the proposed controller, the inverter-based distributed gen‐
erator can adaptively adjust its control variables based on cur‐
rent observations to fulfill the expected targets in model-free fash‐
ion. Finally, simulation results validate the feasibility and effec‐
tiveness of the proposed approach.

Index Terms——Adaptive control, virtual synchronous genera‐
tor (VSG), reinforcement learning, deep learning.

I. INTRODUCTION

THE increasing pressure from environment protection
has made it urgent to conduct the research on accommo‐

dating high penetration level of renewable energy [1] - [4].
The renewable energy resources are converted to electricity
which is then injected into the power system via power elec‐
tronic inverters [5], [6]. Unlike the conventional synchro‐
nous generator (SG) with inherent rotating inertia, inverter-
based distributed generator (IBDG) does not provide inertia
support, which may make the system sensitive to network
disturbances and even jeopardize system stability [7], [8]. To
remedy the problem of system inertia, virtual synchronous
generator (VSG), as a promising solution, has been proposed
to control the grid-connected inverter to emulate the dynam‐
ic behavior of SGs [9], [10]. By designing the level of virtu‐
al inertia as well as damping, VSG can respond like the SG
with slow frequency drop, which is beneficial for the fre‐
quency stability of power system [11], [12]. Therefore, the
study of optimal control strategy of VSG becomes more sig‐
nificant to ensure high-quality power injection and maintain
the safe operation of power system.

It is notable that the control operation of VSG is executed
by software. As a result, the control parameters, i.e., virtual
inertia and damping factor, can be set arbitrarily without
physical limits. Up to now, a lot of control strategies for
VSG have been presented to achieve the desired dynamic
performance, which can be roughly classified into two cate‐
gories, i. e., rule-based approach and optimization-based ap‐
proach. The rule-based approach determines the control be‐
havior by using the predefined operation rule. For instance,
an adaptive-gain inertial control is proposed in [13], which
focuses on improving the frequency nadir and guaranteeing
the stable operation. By evaluating the change of rotor speed
as well as the change of its differential, some adjustment
strategies for a class of adaptive parameter(s) of VSG, i. e.,
inertia and/or damping factor, are proposed in [14] - [16].
Based on the preset operation table, the control parameters
can be adaptively increased or decreased within a range of
large and small parameters in different intervals, with final
objective to achieve small over-shoot and short settling time.
Based on small-signal modeling, a simple step-by-step pa‐
rameter design strategy is presented in [17], which can take
the double-line-frequency ripple into consideration. To
achieve the tradeoff between active power and frequency reg‐
ulations, a dual-adaptivity inertia control strategy is pro‐
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posed in [18], which is based on a preset operation principle
to get the range of adaptivity. Recently, [19] analyzes the
transient stability of VSG and proposes a novel mode-adap‐
tive power-angle control to enhance the transient stability ef‐
fectively. By using this approach, the positive-feedback
mode of power-angle control of the VSG can be adaptively
switched to the negative-feedback one after large disturbanc‐
es, which avoids the loss of synchronization. Although the
rule-based approaches are easy for implementation, the pre‐
defined rules depend on expert knowledge such as how to
choose large and small parameters in [14]-[16].

Recently, there is an increasing interest in investigating
the parameter setting for VSG by using optimization-based
approach, where the adjustment of parameters is driven by
optimal solutions. For example, the stability of a microgrid
with multi-VSGs is assessed based on the voltage angle devi‐
ations [20]. Therein, the particle swarm optimization is em‐
ployed to tune the control parameters of each VSG in real
time to achieve smooth transition after disturbances and lim‐
it the voltage angle deviations within a special range. The
small-signal angular stability of a power system composed
of the VSG subsystem and the other subsystems is investigat‐
ed in [21], where the modal proximity-based approach is pre‐
sented to guide the parameter design of the VSG. The con‐
cept of the linear-quadratic regulator-based control is pro‐
posed to find the optimal inertia constant for single VSG in
[22], which is further extended to multi-VSGs in [23]. By us‐
ing this approach, the trade-off between the critical frequen‐
cy limits and control cost can be achieved. The aforemen‐
tioned optimization-based approaches have made outstanding
contributions to the design of control parameters for VSGs
based on different requirements of power system stability.
Nevertheless, these approaches are built upon small-signal
modeling approach with linearization procedure and simpli‐
fied mathematical model. Note that the system stability is af‐
fected by not only VSG but also other components, e.g., SG,
line parameters, load conditions, etc. The interaction be‐
tween the VSG and its working environment (the whole sys‐
tem) is ignored in the existing research [13]-[18], [20]-[23].
To address this issue, one way is to establish the dynamics
of the whole system, analyze the interaction between the
VSG and the power system, and then design the correspond‐
ing control strategy for VSG. However, it is a very difficult
task to establish an exact model of the whole power system
under complex interconnected structure. Although such sys‐
tem model can be built in some special cases, it is featured
with high-order, nonlinear and strong coupling in general. As
a result, it is also difficult for engineers to analyze the im‐
pact of VSG on the power system stability and design the
corresponding optimal control strategy with a variety of un‐
certain system disturbances. In addition, different systems
may have different structures and components. This also
means that each VSG may work in different environments.
As a result, the control strategy for VSG by using exact sys‐
tem model may not be universal. Based on those above-men‐
tioned discussions, it is an open problem and challenge in
the field of adaptive control for VSG to design a universally
optimal control strategy for VSG, which can only use ob‐

served data without building the whole system model, i. e.,
the model-free fashion.

Thanks to the rapid evolvement of artificial intelligence
technology, the reinforcement learning approaches enable to
find the optimal control policy by only using data interaction
between agent and unknown environment, which can be con‐
sidered as a promising approach to deal with the aforemen‐
tioned challenge. Up to now, a lot of reinforcement learning
algorithms have been proposed [24] - [29]. Among them, the
most popular approaches include the deep Q-network (DQN)
algorithm [26] and deep policy gradient (DPG) algorithm
[28], which are obtained by successfully combining the deep
neural networks (DNN) with the typical Q-learning algo‐
rithm [24] and the policy gradient algorithm [25], respective‐
ly. Based on different application scenarios, DQN and DPG
are suitable for solving different reinforcement learning
tasks. Specifically, DQN can better handle the case with con‐
tinuous observation spaces and discrete action spaces, while
DPG fits well with both continuous observation and continu‐
ous action spaces. In this paper, we consider continuous
state observations, e.g., the variations of active power output
as well as angular frequency, to achieve continuous control
operations for VSG. Thus, the concept of DPG is more suit‐
able for our work.

Mainly with the aforementioned inspirations, the paper in‐
vestigates the optimal and adaptive control problem for VSG
in model-free scenario, where a decentralized deep policy
gradient (DDPG) algorithm is developed and employed to
solve this problem. The DDPG is obtained by using the de‐
centralized stochastic gradient descent approach [30] to re‐
place the stochastic gradient descent approach in classical
DPG algorithm for improving the convergence speed. The
major contributions of this paper are summarized as follows.

1) The optimal and adaptive control problem for VSG is
formulated and transformed into a reinforcement learning
task. Therein, the expected performance to achieve multiple
control targets for angular frequency and active power regu‐
lations are simultaneously considered in the designed optimi‐
zation target.

2) A data-driven optimal control policy is designed and
embedded into the VSG controller based on the DDPG algo‐
rithm. It enables the IBDG to adaptively respond to system
disturbances and obtain expected performance with the maxi‐
mum long-term return in model-free fashion.

The remainder of this paper is organized as follows. Sec‐
tion II introduces VSG control, identifies its control vari‐
ables as well as observation variables, and presents the un‐
known system dynamics. In Section III, multiple characteris‐
tic functions are defined to formulate the expected control
targets. Subsequently, the optimal control problem is trans‐
formed into a reinforcement leaning task, which is further
solved by introducing the DDPG algorithm. Several case
studies are provided to verify the effectiveness of the pro‐
posed approach in Section IV. Finally, Section V concludes
this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A simplified diagram of power system is shown in the up‐
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per-right corner of Fig. 1, where IBDG as well as other com‐
ponents are integrated into the system. There are multiple
configurations for power systems. Meanwhile, the IBDG
does not know the system structure as well as the system
model. The control diagram of the IBDG is shown in the up‐
per-left corner of Fig. 1. Therein, the concept of VSG con‐

trol is embedded into the active power control loop to im‐
prove the angular frequency stability. Meanwhile, the termi‐
nal voltage of IBDG is directly controlled through a propor‐
tional-integral (PI) controller to maintain the terminal volt‐
age at the nominal value [31], [32]. The variables in Fig. 1
will be defined in the following text.

The emulated swing equation of the VSG controller is ad‐
opted as:

Pin -Pout = 2H͂ωn

dω
dt

+ D͂(ω-ωg) (1)

where Pin is the emulated mechanical power; Pout is the out‐
put active power after low-pass filtering; ωn is the nominal
system angular frequency; ω is the virtual angular frequency
of the corresponding IBDG; ωg is the angular frequency
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measured by the phase-locked loop (PLL); and H͂ and D͂ are
the virtual inertia and damping factor, respectively.

According to the system frequency deviation, the gover‐
nor is implemented to adjust the input power command, i.e.,
Pin, which adopts the ω-P droop controller as follows:

Pin =Pref - k(ω-ωn) (2)

where Pref and k are the reference active power and droop co‐
efficient, respectively. The choice of k is determined by stan‐
dard approach [33], which reflects the change of Pin with re‐
spect to the angular frequency.

Unlike the droop coefficient, the choice of virtual inertia
and damping factor is more flexible without special restric‐
tions. Thus, we can adaptively adjust the two controllable pa‐
rameters over time to obtain the expected performance. Note
that increasing or decreasing the control parameters may re‐
sult in different influences on the dynamic characteristics of
the active power output and angular frequency in different
system environments.

As a grid-forming converter control, the inertial control
performance of a VSG depends on both the control parame‐
ter design and power system frequency response ωg. Hence,
in order to optimally design the VSG frequency control, the
frequency response model of a complex power system
should be considered. On one hand, accurate modeling of
power system frequency response requires global informa‐
tion on governor data and generator inertial constants from
multiple stations, which is difficult to obtain for local con‐
verter control design. On the other hand, the conventional
power system frequency response model can no longer de‐
scribe the frequency trajectory of a power system with high
penetration level of renewable energy, which suffers more
from deteriorated system frequency profile. Various energy
sources including wind turbine generators, PV generators,
and battery energy storage systems, have modified the elec‐
tromechanical behavior of the original power system. There‐
fore, considering these two aspects, the data-driven control
strategy is needed to be developed to optimally adjust VSG
control design with the absence of power system model.

For each IBDG, there are two control parameters consid‐
ered to be adjusted at time t, which is denoted by at:

at ={H͂tD͂t} (3)

To show the dynamic performance, each IBDG is
equipped with a VSG controller to observe its real-time
states of the output active power, angular frequency, and the
derivative of angular frequency, i. e., Poutt, ω t, and dω t /dt.
The set of all observations at time t is defined as st:

st ={Pouttω tdω t /dt} (4)

Note that the adaptive parameter adjustment at is based on
the control policy u(×) to be designed and the observed sys‐
tem states st. In this paper, a deterministic control policy u(×)
is defined as the following function, which maps st to at:

at = u(st) (5)

The nonlinear state-space equation of the whole system in
an implicit form can be written as:

ẋ t = f (x tatdt) (6)

where x t is the vector of all the state variables, e.g., Pout, ω t,
output current and voltage of each IBDG, output frequency,
active power of each SG, etc.; and dt is the uncertain distur‐
bance or variable such as the sudden change of active power
reference and load demand, etc. Equation (6) provides a
learning environment for the VSG controller. Note that (6) is
unknown, which is hard to be modeled with explicit expres‐
sion. In this paper, we do not need to know the explicit
mathematical model of (6). Driven by data, the VSG control‐
ler interacts with the environment to obtain the optimal con‐
trol policy u(×), which will be discussed in the next section
in details.

III. TRANSFORMATION AND SOLUTION

It is worth noting that the studied problem in this paper
satisfies the Markov property [34]. It means that given the
current state and action, the next state is independent of all
the previous states. The deep reinforcement leaning algo‐
rithm can well tackle the Markov decision processes without
relying on a model of the probability distributions underly‐
ing the state transitions, which fits well with our work. To
get the data-driven adaptive VSG controller, we firstly trans‐
form the studied optimal control problem into a reinforce‐
ment leaning task. Then, the DDPG algorithm is employed
to find the optimal control policy. The overall decision pro‐
cess for the data-driven VSG controller and the leaning dia‐
gram for the DDPG algorithm are shown in Fig. 1(b) and
1(c), respectively.

A. Formulation of Reinforcement Learning Task

For a reinforcement learning task, three key elements need
to be defined, i. e., observation state, action, and reward. In
this paper, the observation state and action correspond to st

and at shown in (4) and (5), respectively. As shown in Fig.
1, the VSG controller interacts with the power system, i. e.,
learning environment, which is named as power system envi‐
ronment to avoid ambiguity. At each time t, the power sys‐
tem environment provides an observation of st to the VSG
controller. The VSG controller performs an action from the
action space based on policy u(×), and then observes the im‐
mediate reward r(t) to update the value of the state-action
pair. Next, the interactions of data-driven VSG controller
and power system environment via exploration and improve‐
ment during the learning process lead the data-driven VSG
controller to obtain the approximated optimal control policy.
In this paper, we mainly focus on the regulations of angular
frequency and active power output. The design of reward
r(t) is based on the immediate responses of ω t, Poutt, and
dω t /dt after disturbances.

With regard to the frequency regulation, the occurrence of
poorly damped oscillation is not designed. Define ψω = |ω t -
ωn| as the absolute value for angular frequency deviation and
ψmax
ω as the preset upper bound of ψω. There are two cases,

i.e., ψω £ψmax
ω and ψω >ψmax

ω , that need to be considered sepa‐
rately. For the case ψω £ψmax

ω , although the frequency devia‐
tion is within the allowable limits, we expect the frequency
deviation to be as small as possible and the corresponding
settling time to be as short as possible. To achieve this goal,
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we can set a small penalty item for ψω to assess the immedi‐
ate frequency deviation. Moreover, the larger ψω becomes,
the bigger the penalty is. For another case ψω >ψmax

ω , the sys‐
tem undergoes huge security risk. Thus, to reduce the occur‐
rence of this situation, we should add a very big penalty
once ψω >ψmax

ω . Based on the aforementioned discussion, the
characteristic function for the deviation of angular frequency
is defined as:

C(ωt)= {ϱωψω ψω £ψmax
ω

ρω ψω >ψmax
ω

(7)

where ϱω and ρω are the small and big penalty coefficients,
respectively.

Note that one major functionality of VSG control is to ob‐
tain slow electromechanical dynamics like the SG. In other
word, a better transient process should contribute to the re‐
duced rate of change of frequency (ROCOF). To this end,
the characteristic function for the change rate of angular fre‐
quency is defined as:

C(dω t /dt)= ϱdω|dω t /dt| (8)

where ϱdω is a small penalty coefficient.
For the characteristic of active power output, it is also ex‐

pected to obtain well-damped oscillation. Similar to the func‐
tionality of the first part of (7), the characteristic function
for the deviation of active power output is defined as:

C(Poutt)= ϱPψP (9)

where ϱP is the corresponding penalty coefficient; and ψP =
|Poutt -Pref| is the absolute value for the deviation of active
power output. Since Pref may change greatly due to the inter‐
mittent renewable energy resources, e. g., wind and solar, it
is not important to limit the upper bounder of ψP during the
transient process. Moreover, the capacity of the inverter is se‐
lected so that the headroom is available for necessary iner‐
tial support.

According to the expected performance and the character‐
istic function defined above, the reward at time t is denoted
by rt as:

rt =-bωC(ωt)- bdωC(dω t /dt)- bPC(Poutt) (10)

where bω > 0, bdω > 0, and bP > 0 are the weight coefficients.
By choosing different weight coefficients, different output
characteristics can be obtained.

Note that the dynamic performance of the active power
and angular frequency regulation is measured by a relatively
long time reward. For example, we consider a case where a
sudden change in load happens at t0, resulting in large fre‐
quency oscillation. The beginning to the end of the frequen‐
cy oscillation corresponds to a time interval. Whether the dy‐
namic performance gets better or not depends on cumulative
penalties for long time response but not for one moment on‐
ly. To this end, the return from state st is further defined as
the cumulative future rewards Rt, whose mathematical ex‐
pression is given by:

Rt =∑
k = t

T

γk - t rk (11)

where T is the total time; and γ is the discount factor.
Then, after making an observation st and executing an ac‐

tion at, the action value function under the control policy u(×)
is the expected return defined as Qu:

Qu (stat)= E[Rt|statu(×)] (12)

where E denotes the expected value of Rt. Our objective be‐
comes finding the optimal control policy u* (×) that maximiz‐
es the expected return from the start of the disturbance.

B. DDPG Algorithm

As stated in Section II, both the system observation state
and action are continuous. To account for this attribute, the
concept of DPG algorithm based on actor-critic architecture
is adopted and further extended in this paper. More impor‐
tantly, we focus on adopting the decentralized stochastic gra‐
dient descent approach to replace the stochastic gradient de‐
scent approach in the learning process of traditional DPG al‐
gorithm, which is further referred to as DDPG algorithm. By
using the DDPG algorithm, the global computation process
can be divided into individual computation unit, resulting in
faster convergence process. It is assumed that there are κ
computation units. The information sharing among the com‐
putation units is described by a graph G = (VEW), where
V ={ j = 12κ} is the set of nodes representing the compu‐
tational units; V Ì E ´ E represents the available communica‐
tion links; W = {w

jj͂
}Î Rκ ´ κ is the associated adjacency ma‐

trix, and j͂ is the neighbor node of j. It is assumed that graph
G is undirected and connected. To achieve experience replay,
the experiences et = (statrtst + 1) at each time step t will be
stored in a data set D, which is accessible to every computa‐
tion unit.

The overall block diagram exhibiting the realization of the
policy updating based on the distributed DDGD algorithm is
presented in Fig. 1. The actor function is employed to esti‐
mate the policy, which maps the observation state of the cur‐
rent power system environment to a specific action determin‐
istically. The critic function is employed to estimate the ac‐
tion value function, in which the output of the actor is fed
as one of inputs of the critic. Two neural networks referred
to as actor network and critic network are used to approxi‐
mate the actor and critic functions with parameters θu and
θQ, respectively. In this scenario, the control policy u(st) pa‐
rameterized by θu in the actor network is rewritten as
u(st|θ

u). Meanwhile, the action value function Qu (stat) pa‐
rameterized by θQ in the critic network is represented by
Qu (stat|θ

Q). Additionally, similar to [26], the separate target
networks are used to stabilize the reinforcement leaning algo‐
rithm. The updating for the parameters in target networks
slowly tracks the actor and critic networks, denoted as θu′

and θQ′, respectively. It has been widely verified that learn‐
ing without target networks does not perform well in many
reinforcement learning tasks. For the reinforcement learning
task, the exploration in continuous action spaces is important
and necessary. In this paper, we employ the exploration poli‐
cy by adding a random Gaussian disturbance/noise δ t =
N (0σ 2

t I) to the actor policy [35], where σ 2
t is the variance,

and at = u(st|θ
u)+ δ t. Note that the random noise is persistent‐

ly exciting. To obtain effective learning, we often set a large
noise during the early learning stages, since no reliable
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knowledge has been learned by the VSG agent. Thus, more
explorations are needed. Later, the magnitude of the noise
should be gradually reduced so that the VSG agent can effec‐
tively use the accumulated experience to select the action
and obtain larger cumulative rewards. To capture this con‐
cept, the exponential damping is further employed for σ t,
whose mathematical expression is given by:

σ t = exp(-Át) (13)

where Á is the decay rate.
Define θQ

j and θ u
j as the estimated actor network parame‐

ters of the jth computation unit, and θQ′
j and θ u′

j as the corre‐

sponding parameters in target networks. The loss functions
used to update the critic and actor network parameters are
given by:

L(θQ)=
1
κ∑j = 1

κ

Lj (θ
Q
j ) (14)

Lj (θ
Q
j )=E(siairisi+1)D [(ri +γQu′ (si+1u′ (si+1|θ

u′
j ) |θQ′

j -Qu (siai|θ
Q
j )2]

(15)

In this paper, multiple computation units cooperate to
train θQ. At each step, to minimize (14), every computation
unit samples random mini-batch of experiences (siairisi + 1)
from the memory pool D to compute local stochastic gradi‐
ent denoted by Ñ

θQ
j
Lj (θ

Q
j ). θ u

j is updated by applying the

chain rule to maximize the expected return. Specifically, the
mathematical expression of the action gradient using sam‐
ples for approximating is given by:

Ñ
θ u

j
J(θ u

j )»Esi
[ÑaQ

u (sia|θQ
j )|

a= u(si|θ
u
j )
Ñ

θ u
j
u(si|θ

u
j )] (16)

where J is the approximate value function. The parameters
θQ

j and θ u
j are further updated via local computation based

on the information of its own and that of the neighbors:

θQ
j ¬∑

j͂ = 1

κ

w
jj͂
θQ

j͂
- ζQÑθQ

j
Lj (θ

Q
j ) (17)

θ u
j ¬∑

j͂ = 1

κ

w
jj͂
θ u

j͂
- ζuÑθ u

j
J(θ u

j ) (18)

where ζQ and ζu are the learning rates. Finally, we can obtain
θu and θQ by using the averaged value of θQ

j and θ u
j for

all jÎV.
Based on the current action, the VSG controller will

change its control parameters. Then, new transition
(statrtst + 1) will be generated, which is used to update the
parameters θQ and θu. Correspondingly, the control policy
u(st|θ

u) is updated. After that, the one-step learning process
is finished. The detailed learning process based on DDPG al‐
gorithm to find the optimal control strategy is presented in
Algorithm 1. Note that the DDPG algorithm is employed to
train the data-driven VSG controller offline. After that, the
well-trained controller can be used in online applications.

θQ′
j ¬ τθQ

j + (1- τ)θQ′
j (19)

θ u′
j ¬ τθ u

j + (1- τ)θ u′
j (20)

θQ =
1
κ∑j = 1

κ

θ u
j (21)

θu =
1
κ∑j = 1

κ

θ u
j (22)

Remark: Compared with the DPG algorithm, the decentral‐
ized stochastic gradient descent approach is embedded into
the DDPG algorithm. With this effort, the DDPG algorithm
can simultaneously employ multiple computation units to
train the neural network parameters as shown in (19) - (22),
resulting in faster convergence speed than the traditional
DPG algorithm. In this paper, the reinforcement learning
task is designed for the VSG controller of individual IBDG.
It also means that all those parallel computation units are co‐
operative to train one VSG controller as shown in Fig. 1. To
reduce the training time, this paper employs the DDPG algo‐
rithm.

IV. SIMULATION RESULTS

In this section, we focus on verifying the effectiveness
and feasibility of the DDPG algorithm with simulations in a
modified IEEE 14-bus test system [32]. The topology of the
modified test system is shown in Fig. 2. It is composed of
two synchronous generators, one 2.5 MW IBDG installed at
bus 14, twelve loads, and one load disturbance. Therein, the
load disturbance is located at bus 4 with green arrow for the
sake of distinction. One of the initiatives of integrating VSG
into the power system is to mitigate the deteriorated system
frequency regulation resulting from high penetration level of
renewable energy. Hence, the system frequency transients af‐
ter load disturbances are considered to train the VSG control‐
ler. To simulate the disturbances, we let the load disturbance

Algorithm 1: DDPG algorithm

Input: Adjacency matrix W; learning rates ζQ, ζu; mini-batch size C; num‐
ber of episodes M; probability ε; smoothing factor τ
Output: Optimal control policy u(st|θ

u)
Initialize: Randomly initialize weights θQ

j and θ u
j for critic network and

actor network "jÎV; initialize weights θQ′
j ¬ θQ

j and θ u′
j ¬ θ u

j for target
network "jÎV; initialize replay buffer D

1 for episode= 12M do
2 Initialize a random disturbance for control behavior exploration
3 Receive initial initial observation state s1

4 for t = 12T do
5 Select action at = u(st|θ

u)+ δt based on current policy and exploration
noise δt

6 Calculate reward using (10)
7 Observe the new state st + 1

8 Store transition (statrtst + 1) into D
9 for j = 12κ do
10 Randomly sample mini-batch of M transitions (siairisi+ 1) from D
11 Calculate stochastic gradient ÑLj (θ

Q
j ) by minimizing function (15)

12 Calculate sampled policy gradient according to (16)
13 Update the estimated critic network parameter θQ

j by the jth computa‐
tion unit according to (17)

14 Update the estimated actor network parameter θ u
j by the jth computa‐

tion unit according to (18)
15 Update target networks using (19) and (20)
16 end for
17 Update critic network parameter using (21)
18 Update actor network parameter using (22)
19 end for
20 end for
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randomly change within interval [0.2, 1.4]MW. Meanwhile,
the active power reference is randomly chosen within inter‐
val [0.5, 1.8]MW. We consider four computation units inter‐
connected with each other to form a ring communication net‐
work. In order to maintain sufficient rotor-angle stability
margin, as a grid-forming control approach, the line imped‐
ance should be considered for the design of VSG system. As
a result, the imitated rotor angle of VSG should be sufficient‐
ly small at rated power, such that the proposed VSG is able
to ride through certain system faults during operation [19].
The simulations are conducted in MATLAB/Simulink soft‐
ware. Next, the first case study focuses on training the actor
and critic neural networks to obtain the optimal control poli‐
cy. The performance evaluation of the well-trained VSG con‐
troller will be tested after load disturbance and active power
change in the second and third case studies, respectively.

A. Training Neural Networks and Comparison

In this case study, the adopted structures of the actor and
critic neural networks are shown in Fig. 3. The critic net‐
work consists of the state path, action path, and common
path. Therein, the observations and the actions are the inputs
for state path and action path. The outputs of the state path
and action path will be combined into one layer which are
also the inputs of the common path. The output of the com‐
mon path is the estimated action value function. For the ac‐
tor network, the corresponding inputs and outputs are the ob‐
servations and actions, respectively. The terms ReLU and
tanh mentioned in Fig. 3 are the standard activation func‐
tions for neurons, which are widely used in the design of
deep neutral network. Specifically, ReLU and tanh are the
rectified linear unit function and hyperbolic tangent function,
respectively, whose explicit formulations are given by:

{ReLU(x)=max(0x)

tanh(x)=
ex - e-x

ex + e-x

(23)

Moreover, the fully connected layer multiplies the input
by a weight matrix and then adds a bias vector. The scaling
layer is used for scaling the input variables. The rest of simu‐
lation parameters are listed in Table I. The DDPG algorithm

is trained over M = 350 episodes by using 31 h 23 min and
32 s. The cumulative reward for each episode, named as epi‐
sode reward, is shown in Fig. 4(a). It can be observed that
there is no obvious improvement for the episode reward
from the episode numbers 250 to 350. This implies that the
DDPG becomes stable. Thus, the training can be stopped af‐
ter 350 episodes. Meanwhile, the parameters for the actor
and critic neural networks are saved, and then the optimal
control policy is obtained. In addition, during the learning
process, there are no requirements for any expert experience
or the whole system model. We can obtain the optimal con‐
trol policy based on numerous explorations and improve‐
ments driven by observation data only. Finally, the optimal
control policy is embedded into the VSG controller resulting
in well-trained VSG controller.

Next, the traditional DPG algorithm is employed to solve
the same problem, which can be seen as a special case of
the DDPG algorithm with one computation unit, i. e., κ = 1.
Meanwhile, the decentralized stochastic gradient descent ap‐
proach is changed into the stochastic gradient descent ap‐
proach during back propagation. With the same neural net‐
work structures and parameters, the episode reward obtained
by using the DPG algorithm is shown Fig. 4(b). The total
training time is 68 h 17 min and 25 s, which is longer than
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Fig. 2. Modified IEEE 14-bus test system.
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TABLE I
TRAINING PARAMETERS

Parameter

ϱω
ϱdω

ϱP

ρω

bω
bdω

bP

Value

10

2

2

1000

1/3

1/3

1/3

Parameter

γ

ζQ

ζu

τ

ψmax
ω

Á

Value

0.9

0.001

0.0005

0.001

2π´ 0.8 Hz

0.001
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that using DDPG algorithm. In addition, it can been ob‐
served from Fig. 3(a) and 3(b) that the DDPG algorithm re‐
quires fewer episodes than the DPG algorithm to achieve the
similar episode reward. These results exhibit the faster con‐
vergence feature of the DDPG algorithm. This is because the
DDPG is able to use multiple computation units simultane‐
ously to accelerate the training process.

B. Load Disturbance

In this case study, we aim at verifying the effectiveness of
the well-trained VSG controller under load disturbance. At
t = 20 s, a 0.7 MW load disturbance is added in the test sys‐
tem. The simulation results are shown in Figs. 5 and 6. It
can be observed that the IBDG can respond to the load dis‐
turbance adaptively and automatically. Specifically, the maxi‐
mum angular frequency deviation is 2π´ 0.42 Hz, which is
within the preset upper bound of ψmax

ω = 2π´ 0.8 Hz. Mean‐
while, the frequency changes relatively slow, i.e., with small
ROCOF. As a result, the IBDG possesses slow frequency
drop, which meets the major functionality of VSG control.
Moreover, the oscillation of active power output is also well
damped. Note that by implementing the well-trained VSG
controller, the tradeoff between the frequency response and
active power output can be achieved and maintained as de‐
sired, which fulfills the expected performance discussed in
Section III-A. This is because the design of immediate re‐
ward provides the penalty for bad performance. Then, driven
by the stimulation of long-term return, satisfactory results
can be obtained. In addition, the secondary frequency con‐
trol is not included and the frequency deviation at system
steady state relates to predefined droop parameters of indi‐

vidual generation unit. Based on the above-mentioned discus‐
sions, it can be concluded that the well-trained VSG control‐
ler possesses good adaptability and performs well after load
disturbance.

C. Change of Power Reference

In this case study, the focus is on testing the effectiveness
of the well-trained VSG controller after the change of active
power reference. At t = 20 s, there is a step change for active
power reference from 0.7 p.u. to 0.5 p.u.. The simulation re‐
sults for the frequency response and active power output of
the IBDG are shown in Figs. 7 and 8, respectively.

As observed, both the frequency and active power output
gradually converge to a new stable equilibrium with well-
damped oscillations, and the system ROCOF is mitigated.
Thus, the expected performance targets are fulfilled. This im‐
plies that the well-trained VSG controller exhibits better
adaptability and works well after the change of power refer‐
ence.
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D. Performance Test in a New Test System

In this case study, the performance of the well-trained
VSG controller obtained from the first case study is further
tested in a new IEEE 14-bus test system, which is different
from that used in offline training. Specifically, the SG at bus
2 is replaced with an IBDG and the IBDG at bus 14 is dis‐
connected. Referring to the structure of IEEE 14-bus test sys‐
tem, three synchronous condensers are commissioned at bus
3, bus 8, and bus 6, respectively. By replacing the system
SG with IBDG and integrating synchronous condensers, the
equivalent inertial constant and frequency response model of
the system are inevitably changed. At time t = 20 s, a 0.4
MW load disturbance at bus 4 is added in the test system.
The comparative system frequency responses and active pow‐
er outputs with different converter controls after load distur‐
bance are shown in Figs. 9 and 10, respectively.

Typically, the grid-following converter control approach
does not participate in power system frequency regulation,
where it simply follows the system frequency through PLL.
Both droop converter control and VSG are able to partici‐
pate in the power system frequency regulation and enhance
the system small-signal stability due to their grid-forming na‐
ture. Furthermore, the proposed data-driven VSG control is
able to better arrest the ROCOF of power system and pro‐
vide necessary inertial control. Meanwhile, the oscillation of
active power output is also well damped. Note that it is im‐
possible for the data-driven VSG controller to be trained in
all transient scenarios.

Next, we further test the performance of the proposed
VSG controller after fault transient. The system dispatching
scenario is the same as that presented in Figs. 9 and 10. At
t = 20 s of the simulation time, a fault is introduced at the
transmission line that connects bus 2 and bus 3. The fault
lasts for 10 cycles and trips the transmission line. The simu‐
lation results with different converter controls are shown in
Fig. 11. Note that the well-trained VSG controller is not
trained in the fault transient scenario or in the new test sys‐
tem. Thus, the optimality of the convergence results cannot
be guaranteed. However, taking advantage of the introduced
virtual inertia from VSG, the power system stability can be
enhanced, where the frequency deviation of the power sys‐
tem integrated with VSG is less than the other two cases in
Fig. 11, and the synchronism [19] is better preserved.

The simulation results show that the VSG controller also
works well in the new test system. However, the better per‐
formance cannot always be ensured in any kind of new sys‐
tems, since it is not trained in the new environment. In prac‐
tical application, the VSG controller requires re-training if
used in different systems.

V. CONCLUSION

This paper investigates the adaptive and optimal control
problem for VSG. To achieve the expected control perfor‐
mance target for frequency regulation and active power regu‐
lation, multiple characteristic functions are defined and fur‐
ther used to form the immediate reward. With this effort, the
optimal control problem is finally formulated as a reinforce‐
ment learning task. To handle this task, the DDPG algorithm
is employed to learn the optimal control policy with the ob‐
jective of maximum long-term return. The implementation of
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the DDPG algorithm does not need any expert knowledge
and does not rely on the system model. Thus, we can obtain
the optimal control policy in a model-free fashion, which is
the major advantage compared with the existing optimal con‐
trol approaches used in VSG. In the future, the voltage sta‐
bility and further application of the DDPG algorithm will be
considered.
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