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Introduction

Distributed energy resources (DERs) on the 
grid

– Increasing trend of behind-the-meter DERs 
integration on the distribution grid

– DERs accounted for 2% of total installed 
generation capacity in the U.S. in 2016

– Challenges : could cause grid issues
– Opportunities : could leverage DERs to 

provide grid services with proper 
management and control

– This work investigates impacts of DERs on 
a utility distribution grid in Colorado 
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BTM DERs Modeling

Distributed PV 
– PV array sized to generate 120% of total annual load 

consumption 
Distributed energy storage 

– Sized and controlled to maximize self-consumption 
of PV generation

Schedulable loads 
– Heating, ventilation and air-conditioning (HVAC)
– Electric water heater (EWH)
– Model implemented accounts detailed factors such 

as outdoor temperature, size of the house, size of 
water tank, flow rate, inlet water temperature, etc.

Electric Vehicle
– Depends on charging location, time, initial SOC, etc.
– Residential, work location and public charging 



Grid Impact Study
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Simulation study

Test system 
– A distribution feeder from Colorado

Simulation scenarios
– S1: no PV no energy storage (ES)
– S2: With PV no ES
– S3: With PV with ES
– S4: With PV, ES, and EV

Simulation parameters 
– January 27th (peak load day) and May 3rd (minimum load day)
– Standard values used for HVAC and EWH model parameters
– Actual outdoor temperature and solar radiation data adopted for this region in Colorado
– Standard time-of-use rate used for electricity cost calculation for all scenarios
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Simulation result : 
voltage profile

Feeder voltage profile during high PV generation time of day 
– Voltages within standard limits of [0.95, 1.05]

Voltage at one selected node 
– January 27: Voltage regulator operates to reduce the local voltage 

during high PV output without ES; with ES scenario -- ES charges to 
lower the voltage during high PV

– May 3: Due to minimum load and high PV, voltage regulator 
operates to reduce the local voltage

January 27

May 3

January 27 May 3
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Simulation result : 
Electricity cost

Electricity cost calculation for different scenarios (Jan 27)
– Electricity cost calculation considering 164 residential houses 
– Daily cost could be reduced with PV and energy storage
– With TOU effect: special case when the residential controllable loads (HVAC and 

EWH) responded to the TOU price – electricity cost could further be reduced
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Simulation result:
Scenario with PV, ES and EV

With EV charging load
– 100 simulations were conducted to 

capture the stochastic nature of EV load

– Uncoordinated EV charging could 
significantly increase the total power at 
the substation

January 27 May 3
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Simulation result:
Voltage distribution

Voltage distribution with EV charging load
– Different simulation runs present varying 

effect on the voltage 

– Voltage violations observed in this feeder 
with uncoordinated EV charging 

– Control strategies for coordinated EV 
charging required to fulfill the increasing  
EV charging demand

January 27 May 3
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Conclusions

– Analysis of the effect of deploying a mix of DERs in a utility 
distribution feeder is essential to enable resilient and reliable 
grid operation

– Electricity cost for a day could be reduced by 20.7% on an 
average with addition of PV and energy storage in the 
residential houses 

– Random EV charging most likely creates voltage issues in this 
feeder

– Distribution system monitoring and strategic controls are 
needed to adopt the increasing EV charging load  
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