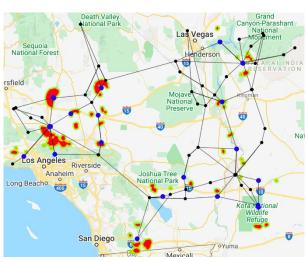
Paper No: 20PESGM1680

NREL/PR-2C00-77229

Scenario creation and powerconditioning strategies for operating power grids with two-stage stochastic economic dispatch

Matthew Reynolds¹, I. Satkauskas¹, J. Maack¹, D. Sigler¹, W. Jones¹ ¹National Renewable Energy Laboratory matthew.reynolds@nrel.gov



Background

- Two-stage stochastic economic dispatch, coupled with multiperiod high-fidelity scenarios, were used to simulate power grid operations.
- Wind farms simulated via collections of WIND Toolkit sites and analog scenarios are selected from high-fidelity data sets.
- We suggest that using data-driven scenarios is a viable alternative to generating scenarios via statistical means.

Power & Energy Society

(Left) 22 wind power timeseries, composing 1 scenario, from RTS-GMLC. (Right) RTS-GMLC with WIND Toolkit-simulated wind farms (heat map), lines and buses (black points and lines) and buses with wind farms (blue points).

 $\min_{\boldsymbol{x}} f(\boldsymbol{x}) + \mathbb{E}_{\boldsymbol{\xi}} \left[L(\boldsymbol{x}, \boldsymbol{\xi}) \right]$ s. t. $\boldsymbol{g}(\boldsymbol{x}) \leq \boldsymbol{0}$ $L(\boldsymbol{x}, \boldsymbol{\xi}) = \min_{\boldsymbol{y}} l(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\xi})$

s. t. $g_{\boldsymbol{\xi}}(x,y) \leq 0$

1st stage variables:

• generator set points

1st stage constraints:

- generation constraints
- ramping constraints

2nd stage variables:

- wind power dispatched
- wind power spilled
- overload and loss of load

2nd stage constraints:

- wind power balance
- power balance constraints
- DCOPF constraints

Results

Experiment:

We tested our economic dispatch approach on a modified RTS-GMLC over the course of a week.

Renewable generation replaced by data from the WIND Toolkit

WIND Toolkit data split into 2 sets: actuals and scenarios dictionary.

Results:

Our approach can be cheaper in terms of total cost.

1st stage costs are slightly more expensive, 2nd stage cheaper.

Strategic over-generation: our algorithm takes on some overload to prevent loss-of-load

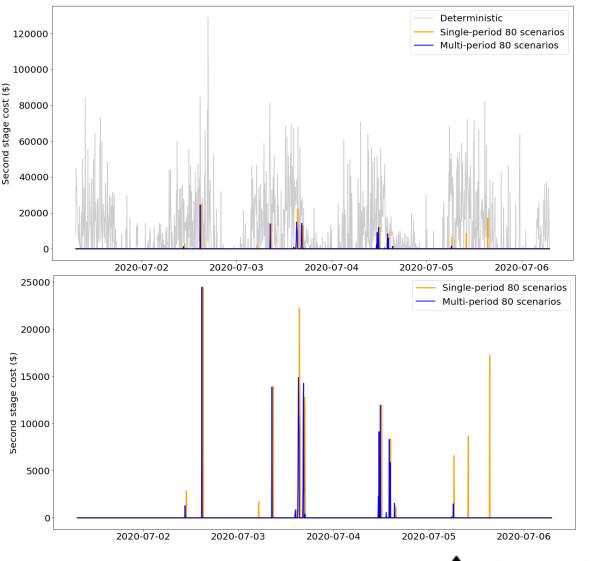
TABLE I: Single Period Economic Dispatch Costs

	Single Period Dispatch Costs (\$)		
# of Scenarios	1st stage	2nd stage	Total Costs
deterministic	3.138×10^{6}	1.455×10^{7}	1.769×10^{7}
20	$3.181 imes 10^6$	$8.813 imes10^5$	4.062×10^6
40	$3.190 imes 10^6$	$4.714 imes 10^5$	$3.661 imes 10^6$
80	3.201×10^6	1.976×10^5	3.399×10^6

TABLE II: Multi-Period Economic Dispatch Costs

	Multiple Period Dispatch Costs (\$)		
# of Scenarios	1st stage	2nd stage	Total Costs
deterministic	3.138×10^6	1.455×10^{7}	1.769×10^{7}
20	$3.180 imes 10^6$	$8.083 imes10^5$	$3.988 imes 10^6$
40	$3.189 imes 10^6$	$4.072 imes 10^5$	$3.596 imes 10^6$
80	3.198×10^6	1.543×10^5	3.3523×10^6

Results


Results (continued):

(Above) Comparing 2nd stage costs between deterministic operations (persistence forecast) and single- & multi-period SED.

SED approaches substantially reduce 2nd stage costs.

(Below) Comparing only single- & multi-period SED.

Multi-period SED yielded slightly cheaper second stage costs.

Conclusions/Recommendations

- We have demonstrated that coupling stochastic programming with scenarios drawn from high-fidelity synthetic data sets yields an effective approach to computing 5-minute economic dispatch solutions.
- Further research is required on conditioning the population of scenarios and using variance reduction techniques with data-driven scenario creation.

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the DOE's Grid Modernization Lab Consortium and the Exascale Computing Project. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

