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A B S T R A C T
Accurately quantifying the architecture of lithium ion electrode particles in 3D is critical to understandingsub-particle lithium transport, rate limitations, and degradation mechanisms within lithium ion batteries. Mostcommercial positive electrode materials consist of polycrystalline particles, where intra-particle grains have arange of morphologies and orientations. Here, focused ion beam slicing in sequence with electron backscatterdiffraction is used to accurately quantify intra-particle grain morphologies in 3D. The intra-particle grainsare identified using convolution neural network segmentation and distinctly labeled. Efficient morphologicalcharacterization of the grain architectures is achieved. Bivariate probability density maps are developed toshow correlative relationships between morphological grain descriptors. The implication of morphologicalfeatures on cell performance, as well as the extension of this dataset to guide artificial generation of realisticparticle architectures for 3D multi-physics models, is discussed.
1. Introduction

The demand for high-performance lithium (Li) ion batteries isgreater now than ever before. Within electric vehicles, Li-ion batteriesare expected to provide the user with more than 300 miles of rangeon a single charge, to charge quickly when needed, and to havea life-time commensurate with thousands of charge and dischargecycles. To achieve these performance metrics, in-depth understandingand control of Li transport and degradation mechanisms within theelectrodes is needed. Layered Li-ion positive electrode materials suchas LiNi𝑥Mn𝑦Co𝑧O2 (NMC) are common in commercial Li-ion batteriesused for electric vehicles. NMC particles are often polycrystalline withintra-particle grains that guide the intercalating Li along 2D planes withthe crystal structure of NMC [1]. When the grains lithiate they expandanisotropically in the direction of the crystal structure, which can leadto intergranular stresses and cause the particles to crack [2,3]. Thisstrain-induced cracking is considered to be one of the major causes ofcapacity fade within Li-ion cells, primarily from increasing the exposedsurface area to react with electrolyte and form interphase layers, aswell as degrading the connectivity between grains [4]. It has beenshown that electrodes with less cracking have better lifetimes [5], thusideally particle architectures that minimize strain without sacrificingperformance should be synthesized.
∗ Corresponding authors.

In-depth operando or multiphysics models are needed to understandthe spatial and temporal evolution of inter-particle strains and theformation of cracks. Yet, despite the importance of understandingthe grain properties of particles, experimental tools to characterizeelectrode particle architectures are not widely available or practiced.Some non-destructive X-ray techniques have recently shed light intothe influence of grain architectures on particle degradation, but studiesare still limited. Liu et al. [4] demonstrated a combination of X-raydiffraction with transmission X-ray microscopy (TXM) to follow theactivity of particles and visualize sub-particle cracks, and Xue et al. [1]also used TXM to follow local valence states of Ni in NMC creating amap of charge distribution. However, TXM cannot capture the grain ori-entations and thus is limited in its ability to create a link between grainproperties and the propensity of particles to degrade. X-ray diffractioncomputed tomography (XRDCT) may hold promise for mapping thedistinct grain orientations and responses during operation [6], butits resolution is currently limited to around 1 μm and access to thistechnique is constrained due to it only being available at a smallnumber of synchrotron facilities.EBSD can be applied to spatially resolve grain orientations fromsmooth cross-sections of materials [7] and the image quality (IQ) maps
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from the imaging are a useful means to visualize the grain architec-tures through changes in the contrast at grain boundaries [8,9]. EBSDsystems are typically incorporated into lab-based scanning electronmicroscope (SEM) instruments and are thus widely accessible to manyresearch laboratories. Sequential EBSD imaging followed by focusedion beam (FIB) milling of the analyzed sample produces a sequenceof EBSD images, i.e., a tomographic image dataset of the sample [10].The output images of EBSD can be segmented and distinct grains iden-tified. More precisely, using advanced image processing techniques itis possible to compute descriptors of the material’s microstructure. Formaterials which are composed of two or more phases, descriptors likethe porosity, tortuosity and constrictivity can efficiently characterizethe microstructure [11]. When the material is composed of grains orparticles it is possible to compute size and shape characteristics ofeach individual grain/particle which allows the fitting of parametricprobability distributions to the histograms of the considered character-istics [12–14]. For correlated grain or particle characteristics so-calledcopulas can be used to fit multivariate probability distributions whichare much more informative than marginal distributions [13]. Paramet-ric models of uni- and multivariate probability distributions providean efficient way for describing a material’s microstructure which, forexample, allows for an easy quantitative comparison of different ma-terials [15]. Furthermore, probability distributions of microstructurecharacteristics can be used to fit parametric stochastic models for theentire 3D microstructure which can generate virtual microstructures.For example, models based on mathematical tessellation models cangenerate random grain architectures [16,17]. From these microstruc-ture models a broad spectrum of virtual but realistic grain architecturescan be drawn which can be used in numerical simulations for investi-gating the influence of the microstructure’s geometry on macroscopicphysical properties [18–24].In the present paper, we investigate the inner 3D grain architectureof NMC particles by stochastically modeling the distribution of graincharacteristics using FIB-EBSD image data. Therefore, in a first step, wecompute a grain-wise segmentation of image data using a combinationof techniques from machine learning [25] and ‘‘conventional’’ imageprocessing [26]. Note that there are segmentation approaches for imagedata of polycrystalline materials which rely solely on ‘‘conventional’’image processing methods. They often require many preprocessingsteps, followed by a marker-based watershed segmentation with addi-tional postprocessing steps [27,28]. Moreover, these approaches oftenrequire careful and tedious calibration of image processing parameters.Therefore, in the present paper, we deploy a convolutional neuralnetwork, namely a 3D U-net [29,30], for enhancing grain boundariesdepicted in the FIB-EBSD data. This reduces the amount of preprocess-ing needed prior to the application of the segmentation algorithm. Fortraining the network, we modify the loss function such that trainingcan be performed with just a few labeled slices of the 3D FIB-EBSDdata [31]. This approach has the advantage of not requiring volumetriclabeled data which can be tedious to obtain, e.g., by manual labeling.After training, we apply the network to the entire 3D image data,resulting in a new 3D image with enhanced grain boundaries. Then,individual grains are extracted from the latter by using a marker-basedwatershed algorithm [28,32]. From the segmented image data, weextract individual grains and compute characteristics describing theirsize and shape like, for example, their volume-equivalent diameter andsphericity. For each considered grain characteristic, we fit parametricprobability distributions (e.g., log-normal, gamma, Weibull distribu-tion) to their histograms using maximum likelihood estimation [33].In this manner the univariate distribution of each individual graincharacteristic is efficiently described by just a few parameters. Sincegrain characteristics are, in general, correlated we also model jointdistributions of pairs of grain characteristics. More precisely, we useparametric copulas [34] for describing the bivariate probability distri-butions of pairs of grain characteristics, leading to a more informative
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description of the NMC particle’s grain characteristics than univariate
distributions can provide. In a forthcoming paper, these models forcharacteristics of individual grains will be used to construct parametricstochastic models for the holistic inner 3D grain architecture of NMCparticles, based on random tessellations.
2. Materials & methods

2.1. Sample details and preparation

A calendared positive electrode was used, which consisted of TODALiNi0.5Mn0.2Co0.2O2 (NMC532) particles in a 70 μm thick electrodecoating of 90 wt% NMC532, 5 wt% C45 Timcal conductive carbon,and 5 wt% PVdF binder, on a 20 μm thick aluminum current collector.N-Methyl-2-pyrrolidone (NMP) solvent was applied on the electrode todissolve the binder, wiped from the electrode using a rubber spatula,smeared onto a fresh copper sheet, and allowed to dry. The smearedelectrode material facilitated identification of single particles connecteddirectly to the copper film in the SEM system, and thus created anideal condition for isolating particles that have excellent electricalconnection for FIB–EBSD. A small tab of the smeared copper sheet wascut and applied to an SEM stub with conductive carbon adhesive.
2.2. Imaging of NMC particles using FIB-EBSD

SEM and EBSD images were acquired with an FEI Helios NanoLab600i equipped with an EDAX-EBSD detector. A 30 kV 2.5 nA Ga focusedion beam was used to mill away 50 nm sections of material betweeneach EBSD scan. The EBSD scans were performed with 50 nm step sizesin 𝑥- and 𝑦-direction in a square array. EBSD data were processed withOIM Analysis v8 (EDAX, USA). Diffraction patterns were fit to a trigonalcrystal system (space group R-3m) with 𝑎 = 𝑏 = 2.87 Å, and 𝑐 =14.26 Å to obtain the orientation of the crystal at each pixel (𝑎, 𝑏, andare the edge lengths of the hexagonal unit cell which contains therigonal structure). The software produced text files containing spatiallyesolved confidence index, image quality, and Bunge-Euler angle data.
.3. Processing of image data

In order to characterize the 3D grain microstructure of NMC parti-les from FIB-EBSD image data, the latter has to be segmented. Morerecisely, we have to identify grains depicted in image data. This allowshe extraction of individual grains such that it becomes possible toompute their size and shape characteristics like, for example, theirolume-equivalent diameter and sphericity. For that purpose, we utilizehe IQ-channel of the EBSD image stack. The segmentation is achievedn three steps. First, we align the stack of EBSD image data. Then, therain boundaries in the aligned 3D image are enhanced using a con-olutional neural network [30]. Finally, the segmentation is completedy applying a marker-based watershed algorithm [28,32].
.3.1. Stack alignmentSince the stack of EBSD images was acquired by milling the NMCarticle under consideration using a focused ion beam followed by 2DBSD imaging, the stack of images can be misaligned, see Fig. 1a.herefore, in a first step, we use the IQ-channel of the EBSD data tolign the image stack, applying the pyStackReg package in Python [35].he resulting aligned image stack is visualized in Fig. 1b. From heren, we denote the aligned 3D image by the map 𝐼 ∶ 𝑊 → R where

= {1,… , 235} × {1,… , 221} × {1,… , 91} ⊂ Z3 is the discretizedsampling window, i.e., 𝐼(𝑥) denotes the image’s value at 𝑥 ∈ 𝑊 . We
also say that the image 𝐼 has a resolution of 235 × 221 × 91 voxels.
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Fig. 1. Volumetric cutout of the EBSD data prior to (a) and after stack alignment (b).

2.3.2. CNN-based grain boundary enhancementIn the next image processing step, similar to the method usedin [30], we enhance the grain boundaries of the 3D image 𝐼 using aCNN, namely a 3D U-net architecture, see [29]. More precisely, wewant to determine a CNN, denoted by 𝐷, which can predict, from thealigned EBSD data 𝐼 , three images 𝐺b, 𝐺i, 𝐵 corresponding to grainboundaries, grain interiors and the background of 𝐼 , respectively. Thegrain boundary image 𝐺b of 𝐼 is given by
𝐺b(𝑥) =

{

1, if 𝑥 corresponds to a grain boundary,
0, else, (1)

for each 𝑥 ∈ 𝑊 . Analogously, the grain interior image 𝐺i and thebackground image 𝐵 are defined, see Fig. 2. Using this notation theCNN 𝐷 has to be able to predict 𝐺b, 𝐺i, 𝐵 from 𝐼 , i.e., we considerthe regression problem 𝐷(𝐼) ≈
(

𝐺b, 𝐺i, 𝐵
). Moreover, this predictiveproperty of 𝐷 should hold for each cutout of 𝐼 and the correspondingcutouts of the images 𝐺b, 𝐺i, 𝐵. Now we describe how a CNN can bedetermined (i.e. trained) which can make these predictions reliably.First, we choose a suitable parametric family of functions {𝐷𝜉 ∶ 𝜉 ∈

𝛯} from which 𝐷 has to be determined, where 𝛯 denotes the spaceof parameters. In our scenario we use as the parametric family theset of 3D U-nets [30,31] with three output channels and the Softmaxfunction [25] as the activation function of the output layer, see Fig. 3.Consequently, for any 3D input image the output of a U-net 𝐷𝜉 withparameter 𝜉 (i.e., the network’s weights) are three images 𝑌1, 𝑌2, 𝑌3.The Softmax function ensures that the voxel values of the outputimages are normalized and represent probabilities, i.e., we have 0 ≤
𝑌1(𝑥), 𝑌2(𝑥), 𝑌3(𝑥) ≤ 1 and 𝑌1(𝑥) + 𝑌2(𝑥) + 𝑌3(𝑥) = 1 for each voxel
𝑥 ∈ 𝑊 . Therefore, the chosen parametric family of functions is ableto reassemble the target images 𝐺b(𝑥), 𝐺i(𝑥), 𝐵(𝑥) which also fulfill theequation
𝐺b(𝑥) + 𝐺i(𝑥) + 𝐵(𝑥) = 1 (2)
for each voxel 𝑥 ∈ 𝑊 since it either belongs to the grain boundary,grain interior or the background.In order to measure how well a CNN with parameter 𝜉 performsin the task of predicting the grain boundaries, grain interiors andthe background from EBSD data, we use a loss function, namely thecategorical cross entropy 𝓁 given by
𝓁
(

(𝑌𝑘)𝑘=1,2,3, (𝑌𝑘)𝑘=1,2,3
)

= −
∑

𝑥∈𝑊 ′

3
∑

𝑘=1
𝑌𝑘(𝑥) log 𝑌𝑘(𝑥), (3)

where 𝑌1, 𝑌2, 𝑌3 denote cutouts from 𝐺b, 𝐺i, 𝐵 in a cuboidal samplingwindow 𝑊 ′ ⊂ 𝑊 . The predictions (𝑌𝑘)𝑘=1,2,3 in Eq. (3) are given by
(𝑌𝑘)𝑘=1,2,3 = 𝐷𝜉 (𝐽 ), (4)
where 𝐽 is a cutout of the aligned EBSD IQ image 𝐼 taken from the samesampling window 𝑊 ′. Then, an optimal parameter constellation 𝜉 forwhich the CNN makes reliable predictions is obtained by minimizingthe values of the loss function 𝓁 given in Eq. (3) for randomly chosencutout windows 𝑊 ′. The minimization of the loss function which, in
3

this context, is referred to as training of the CNN is often performedusing a stochastic gradient descent algorithm [25,36].However, in order to train a CNN we require labeled data, i.e., theimages 𝐺b, 𝐺i, 𝐵 depicting the grain boundaries, grain interiors andthe background, respectively. Sometimes, in the field of materialsscience, labeled data can be obtained by performing a different (moreexpensive) measurement of the same specimen, see [12,13,30]. As analternative, it is possible to manually label the image data. However,this can be tedious, especially when one has to label large 3D datasets.Therefore, in our scenario, we train the CNN with sparsely labeleddata [31]. More precisely, we manually label the data 𝐼 solely in fourslices located at the coordinates 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ 𝑊 with 𝑥3 ∈
{26, 37, 49, 60}. Thus, instead of having the full 3D grain boundaryinformation of 𝐺b we have a sparsely labeled grain boundary image
𝐺b given by
𝐺b(𝑥) =

⎧

⎪

⎨

⎪

⎩

1, if 𝑥3 ∈ {26, 37, 49, 60} and 𝑥corresponds to a grain boundary,
0, else, (5)

for each 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ 𝑊 . The sparsely labeled images 𝐺i and
𝐵 are defined analogously. Furthermore, when working with sparselylabeled data, we have to restrict the loss function’s evaluation of thediscrepancy between predictions (𝑌𝑘)𝑘=1,2,3 and target images (𝑌𝑘)𝑘=1,2,3to labeled voxels 𝑥 ∈ 𝑊 with 𝑥3 ∈ {26, 27, 49, 60}. Therefore, in thecontext of the present paper, we use the modified loss function 𝓁 givenby
𝓁
(

(𝑌𝑘)𝑘=1,2,3, (𝑌𝑘)𝑘=1,2,3
)

= − 1
∑

𝑥∈𝑊 ′ 𝑀(𝑥)

∑

𝑥∈𝑊 ′

3
∑

𝑘=1
𝑀(𝑥)𝑌𝑘(𝑥) log 𝑌𝑘(𝑥),

(6)
where 𝑌1, 𝑌2, 𝑌3 denote cutouts from 𝐺b, 𝐺i, 𝐵 in a cuboidal samplingwindow 𝑊 ′ ⊂ 𝑊 and the mask of labeled voxels 𝑀 ∶ 𝑊 → {0, 1} isgiven by
𝑀(𝑥1, 𝑥2, 𝑥3) =

{

1, if 𝑥3 ∈ {26, 37, 49, 60},
0, else. (7)

Using this modified loss-function, we trained the U-net, using the Adamalgorithm with a batchsize of 1 [36]. Hereby, the batches consistedof cutouts 𝐽 taken from the aligned EBSD image 𝐼 with a size of80 × 80 × 80 voxels and cutouts (𝑌𝑘)𝑘=1,2,3 taken from the sparselylabeled images at the same position as cutout 𝐽 . In order to increasethe amount of training data and the robustness of the trained networkwe used data augmentation by isometrically transforming the trainingdata. More precisely, we randomly rotated the images 𝐼, 𝐺b, 𝐺i, 𝐵,𝑀 inthe same manner prior to taking random cutouts as described above.After the training procedure, the trained network, denoted by 𝐷,was applied on the entire 3D image stack 𝐼 . The results (𝐺b, 𝐺i, 𝐵) =
𝐷(𝐼) are visualized in Figs. 2e and 2f for a planar 2D section for whichlabeled images (𝐺b, 𝐺i, 𝐵) were available for training. For the purposeof visual validation Fig. 4 shows the network’s prediction for a nonlabeled slice.
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Fig. 2. Cross section through the EBSD IQ image 𝐼 (a), the image 𝐺b depicting grain boundaries (b), the grain interior image 𝐺i (c) and the background image 𝐵 (d). Thecorresponding predictions 𝐺b (e), 𝐺i (f) for the grain boundaries and the grain interior, respectively, of the trained CNN.

2.3.3. Watershed-based segmentation of the image dataThe trained network’s predictions 𝐺b, 𝐺i, 𝐵 of the grain boundaries,the grain interiors and the background do not yet provide a segmen-tation of the image data into individual grains. More precisely, thevalue 𝐺b(𝑥) can be interpreted as the probability of 𝑥 ∈ 𝑊 corre-sponding to the grain boundary network. Due to the ‘‘fuzzy’’ natureof these predictions the latter have to be further processed. Therefore,we utilize the so-called watershed algorithm to segment the grainboundary predictions 𝐺b into individual grains [32]. Starting fromeach local minimum in 𝐺b, the watershed algorithm performs regiongrowths, segmenting 𝐺b into multiple regions. In the grain boundarypredictions the local minima tend to be located in grain interiors.However, since the watershed algorithm assigns to each local minimumits own region, noise or small local fluctuations in 𝐺 can introduce
4

b

multiple local minima in a single grain’s interior which leads to thewatershed algorithm wrongly segmenting such a grain into multipleregions. Therefore, prior to the application of the watershed algorithm,we compute the h-minima transform of 𝐺b which is able to suppresssuch unnecessary local minima [32]. A planar 2D section through theresulting segmentation is depicted in Fig. 5a, where we can see thatsome regions of this segmentation belong to the background. Therefore,we remove the background in this initial segmentation by setting thelabels of voxels 𝑥 ∈ 𝑊 to 0 if these voxels belong to the backgroundwith a large probability, i.e., if 𝐵(𝑥) > ℎ with some manually chosenthreshold 0 < ℎ < 1, see Fig. 5b. Since this processing step doesnot remove all regions outside of the NMC particle entirely, we thenmanually remove the few remaining ‘‘background regions’’, see Fig. 5c.
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Fig. 3. Architecture of the 3D U-net considered in the present paper. The scheme is licensed under the creative commons attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) in [30].

(a) (b)

(c) (d)
Fig. 4. Visual validation of the neural network. Planar 2D section through the aligned EBSD IQ image 𝐼 for which no labeling of grain boundaries, grain interiors and backgroundis available (a). The corresponding predictions 𝐺b (b), 𝐺i (c) and 𝐵 (d) of the trained CNN.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Fig. 5. Segmentation result (a) of the watershed algorithm applied on the h-minima transformed grain boundary predictions 𝐺b. Each region is colored individually. Segmentation(b) after setting the background to 0. Final segmentation result (c) after removing regions outside of the considered NMC particle.

2.4. Computation of grain characteristics

The grain-wise segmentation of the NMC particle achieved in Sec-tion 2.3 allows us to compute various characteristics for each indi-vidual grain depicted in the segmented image, which we denote by
𝐺1,… , 𝐺𝑛 ⊂ 𝑊 from here on. The considered characteristics efficientlydescribe the size and shape of grains, i.e., the complex voxelized imagedata is reduced to vectors of grain characteristics which will then beused for modeling their (multivariate) distributions in Sections 2.5 and2.6. Now, we describe the characteristics of single grains consideredin the present paper, see Fig. 6 for an illustration. In order to reduceso-called edge effects we only compute the characteristics of thosegrains 𝐺 which are not cut off by the sampling window 𝑊 , i.e., 𝐺 ⊂
{2,… , 235 − 1} × {2,… , 221 − 1} × {2,… , 91 − 1}.The size of a grain 𝐺 is characterized by its volume-equivalentdiameter 𝑑(𝐺) given by
𝑑(𝐺) = 3

√

6𝑉 (𝐺)
𝜋

, (8)
where 𝑉 (𝐺) denotes the volume of 𝐺 which is estimated by multiplyingthe number of voxels associated with 𝐺 with a single voxel’s volume.For analyzing the shape of grains we consider several characteris-tics. First, for each grain 𝐺 we compute the sphericity factor 𝑠(𝐺) givenby
𝑠(𝐺) =

3
√

36𝜋𝑉 (𝐺)2

𝑎(𝐺)
, (9)

where 𝑎(𝐺) denotes the surface area of 𝐺 which is estimated using themethod presented in [37]. Note that the sphericity factor 𝑠(𝐺) ∈ [0, 1]of a grain 𝐺 describes how close its shape is to that of a perfect sphere,in which case we have 𝑠(𝐺) = 1.Another common shape characteristic of 𝐺 is the convexity 𝑐(𝐺)given by
𝑐(𝐺) =

𝑉 (𝐺)
𝑉 (𝑞(𝐺))

, (10)
where 𝑞(𝐺) is the discrete convex hull of 𝐺 on the lattice of 𝑊 . Theconvexity measures how much the shape of a grain deviates fromconvexity. This is of special interest for choosing appropriate stochasticmodels which can randomly generate virtual but statistically similargrain microstructures as observed in the data. For example, in materialsscience so-called Voronoi and Laguerre tessellations are widely used formodeling polycrystalline materials [16,38]. However, the microstruc-tures generated by these models solely consist of convex grains. Thus,if primarily non-convex grains are observed in the data, i.e., if typically
𝑐(𝐺) < 1, these models may not be appropriate.The elongation 𝑒(𝐺) of a grain 𝐺 is given by the fraction of thesmallest and largest half-axes lengths of the best fitting ellipsoid deter-mined by means of principle component analysis (PCA) [39]. In order
6

Fig. 6. Illustration of morphological characteristics. For simplicity, the geometricalobjects (grains, particles) are depicted in 2D. First row: The volume-equivalentdiameter 𝑑 of an object in 3D is the diameter of a sphere which has the same volume.Second row: The sphericity factor 𝑠 measures the deviation of the object’s shape from asphere, by comparing the volume and surface of the considered object. Third row: Theconvexity 𝑐 is computed by dividing the volume of the object (black) by the volume ofits convex hull (blue). Fourth row: For computing the elongation 𝑒 of an object and theangles describing its main orientation, the best fitting ellipsoid (blue) is determined.The elongation 𝑒 is the fraction between the smallest and largest half-axes (red) ofthe ellipsoid. By transforming the vector which points into the direction of the largesthalf-axis into spherical coordinates the azimuthal angle 𝜑 and the polar angle 𝜃 (only in3D) are computed. (For interpretation of the references to color in this figure legend,the reader is referred to the web version of this article.)
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to compute the PCA of 𝐺 we first compute its centroid 𝑥 = (𝑥1, 𝑥2, 𝑥3)given by
𝑥𝑖 =

1
𝑉 (𝐺)

∑

(𝑥1 ,𝑥2 ,𝑥3)∈𝐺
𝑥𝑖 (11)

or 𝑖 = 1, 2, 3. Then, we compute the grain’s positive definite covarianceatrix 𝐴, where
=

(

1
𝑉 (𝐺)

∑

(𝑥1 ,𝑥2 ,𝑥3)∈𝐺
(𝑥𝑖 − 𝑥𝑖)(𝑥𝑗 − 𝑥𝑗 )

)

𝑖,𝑗=1,2,3

. (12)
ue to the positive definiteness of 𝐴 we can compute its eigenvalues
≤ 𝜆1 ≤ 𝜆2 ≤ 𝜆3 with their corresponding eigenvectors 𝑣1, 𝑣2, 𝑣3 ∈ R3.ithout loss of generality, we can assume that the third component ofhese eigenvectors is non-negative, since both 𝑣𝑖 and −𝑣𝑖 are eigenvec-ors of the eigenvalue 𝜆𝑖. Note that the square roots of the eigenvalues
𝑖 are proportional to the half axis lengths 𝑎𝑖 of the best fitting ellipsoid,.e., 𝑎𝑖 ∝ √

𝜆𝑖. Thus, the elongation 𝑒(𝐺) of 𝐺 is given by
𝑒(𝐺) =

𝑎1
𝑎3

=

√

𝜆1
𝜆3

. (13)
From the PCA we can also investigate the orientation of singlerains. Note that, in this context, the orientation of a grain does notefer to the orientation of its crystallographic lattice. But we call theirection of the eigenvector 𝑣3, i.e., the direction of the largest half-axisf the best fitting ellipsoid, the orientation of the grain. We describe theigenvector 𝑣3 by its azimuthal angle 𝜑 and polar angle 𝜃, i.e.,

3 =
⎛

⎜

⎜

⎝

sin 𝜃 cos𝜑
sin 𝜃 sin𝜑

cos 𝜃

⎞

⎟

⎟

⎠

, (14)
here 𝜑 ∈ [−𝜋, 𝜋) and 𝜃 ∈ [0, 𝜋∕2). Note that the polar angle 𝜃 cannotbe larger than 𝜋∕2 since the third component of 𝑣3 is non-negative.

2.5. Stochastic modeling of single grain characteristics

We computed the grain characteristics described in Section 2.4 foreach individual grain 𝐺1,… , 𝐺𝑛 which we extracted from EBSD data.Thus, for each grain 𝐺𝑖 we determined the vector (𝑑(𝐺𝑖), 𝑠(𝐺𝑖), 𝑐(𝐺𝑖),
𝑒(𝐺𝑖)) of size and shape characteristics and the vector (𝜃𝑖, 𝜑𝑖) of an-gles describing its orientation. In this section, we shortly explain theprocedure for parametrically modeling the probability distributionsof these grain characteristics. The stochastic description of (vectorsof) microstructure characteristics will serve as reference for fittingparametric models of the entire 3D grain network of NMC particles ina forthcoming study which can be used to generate virtual but realistic3D inner-particle microstructures.We start by shortly describing the procedure for modeling thedistribution of the volume-equivalent diameter 𝑑. For more details, werefer the reader to [13]. The histogram of the values 𝑑(𝐺1),… , 𝑑(𝐺𝑛) isdepicted in Fig. 7a. By means of maximum likelihood estimation [33]we are able to fit a distribution from various parametric families ofprobability distributions (e.g., log-normal, gamma, Weibull distribu-tion) to the histogram. Among these parametric fits the best candidateis chosen using the Akaike information criterion which considers thegoodness of fit while trying to reduce the number of parameters toavoid overfitting [33]. The resulting fit of the volume-equivalent di-ameter with the inverse Gaussian distribution is depicted in Fig. 7a(red curve). Analogously, the probability distributions of the sphericityfactor 𝑠, the convexity 𝑐 and elongation 𝑒 are fitted, see Figs. 7b–7d andTable 1.
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2.6. Stochastic modeling of pairs of grain characteristics

In the previous section we described the procedure for modelingthe distributions of single grain characteristics which, however, pro-vide no information on their correlation structure. For that purposemultivariate probability distributions are more informative since theycan describe the entire correlation structure of the considered charac-teristics. Thus, they are more suited than univariate distributions forfitting and validating stochastic microstructure models of the entiregrain architecture which will be considered in a forthcoming study.For correlated and normally distributed characteristics the multi-variate normal distribution provides easy access to modeling the jointdistribution of vectors of characteristics. However, as it can be seenin Fig. 7 the grain characteristics considered in the present paper arenot normally distributed, yet they are (partially) highly correlated, asseen in Table 3. Therefore, we use so-called copulas to model jointdistributions of pairs of grain characteristics [34]. In the following, weshortly describe this modeling approach. For more details we refer thereader to [13].Let (𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛) be 𝑛 pairs of grain characteristics. Further-more, let 𝑓1, 𝑓2 ∶ R → [0,∞) be probability densities fitted to thehistograms of the first and second characteristic, respectively. Recallthat Section 2.5 deals with the parametric modeling of such probabilitydensities. For technical reasons we require the cumulative distributionfunctions 𝐹𝑖 to be absolutely continuous, i.e., to be given by
𝐹𝑖(𝑥) = ∫

𝑥

−∞
𝑓𝑖(𝑦) d𝑦, (15)

or 𝑖 = 1, 2 and all 𝑥 ∈ R. Then, using a so-called copula density
∶ R2 → [0,∞) we can construct a bivariate probability density 𝑓 ∶

R2 → [0,∞) via
𝑓 (𝑥, 𝑦) = 𝑓1(𝑥)𝑓2(𝑦)𝑐(𝐹1(𝑥), 𝐹2(𝑦)), (16)
the marginal probability densities of which are 𝑓1 and 𝑓2. Simplyspeaking, a copula density 𝑐 is a ‘‘normalized’’ bivariate probabilitydensity, whose marginal probability densities are the probability den-sity of the uniform distribution on the interval [0, 1]. Note that, similarto there being families of univariate probability densities, such as thenormal, log-normal, gamma or beta distribution, there are various para-metric families of copula densities [40]. Consequently, by consideringdifferent parametric copula densities 𝑐 in Eq. (16) we have variousparametric families of bivariate probability densities whose marginaldensities coincide with 𝑓1 and 𝑓2. Then, analogously to Section 2.5,bivariate fits from these families of probability distributions can bedetermined using maximum likelihood estimation and among thesefits the best is chosen according to the Akaike information criterion.In the present paper, we considered the following parametric familiesof copulas: Ali–Mikhail–Haq, Clayton, Frank, Gumbel, Joe, Clayton–Gumbel, Joe–Frank, BB3, BB5 copula [40]. Furthermore, by rotatingcopulas from a parametric copula family in 90◦ steps we obtain furtherparametric families.
3. Results

3.1. Fitted univariate probability densities

In Section 2.5 we described the procedure for fitting univariateprobability densities to histograms of grain characteristics. Recall thatfor the volume-equivalent diameter the inverse Gaussian distributionprovided the best fit, the probability density of which is given by
𝑓 (𝑥) =

{√

𝜆
2𝜋𝑥3 exp

(

− 𝜆(𝑥−𝜇)2

2𝜇2𝑥

)

, if 𝑥 > 0, (17)

0, else,
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Fig. 7. Histograms (blue) of the volume-equivalent diameter (a), sphericity factor (b), convexity (c), elongation (d) and of the orientation angles (e, f) with bin widths of 36 nm,.01, 0.015, 0.014, 0.21, 0.1, respectively. Parametrically fitted probability densities are visualized in red. Note that the probability densities 𝑓 are normalized, i.e., ∫ ∞
−∞ 𝑓 (𝑥) d𝑥 = 1.
here 𝜇, 𝜆 > 0 are model parameters. Furthermore, we fitted theistribution of the sphericity factor using the beta distribution whichas the probability density
(𝑥) =

{

1
𝐵(𝑎,𝑏)𝑥

𝑎−1(1 − 𝑥)𝑏−1, if 𝑥 ∈ [0, 1],
0, else, (18)

here 𝑎, 𝑏 > 0 are model parameters and 𝐵 denotes the Beta function.he probability density of the generalized extreme value distribu-ion which was used to fit the distributions of the convexity and thelongation is given by
(𝑥) =

⎧

⎪

⎨

⎪

⎩

1
𝜎
exp(−(1 + 𝑘 𝑥−𝜇

𝜎
)−

1
𝑘 )(1 + 𝑘 𝑥−𝜇

𝜎
)−1−

1
𝑘 , if 𝑘 ≠ 0 and 1 + 𝑘 𝑥−𝜇

𝜎
> 0

1
𝜎
exp

(

−exp(− 𝑥−𝜇
𝜎

) − 𝑥−𝜇
𝜎

)

, if 𝑘 = 0,
0, else,
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(19)
where 𝑘, 𝜇 ∈ R and 𝜎 > 0 are model parameters. The parametric fits forthe probability densities of 𝑑, 𝑠, 𝑐, 𝑒 are depicted in Figs. 7a–7d. Theircorresponding parameters are listed in Table 1.For modeling the distribution of the azimuthal orientation angle 𝜑we chose a special parametric family of distributions. More precisely,the shape of the histogram of the angles 𝜑1,… , 𝜑𝑛 indicates that abimodal probability density might provide a good fit, see Fig. 7e.Furthermore, due to the fact that the angles belong to the interval
[−𝜋, 𝜋), the support of the fitted density should be equal to or a subsetof [−𝜋, 𝜋). Therefore, we chose a mixture of two normal distributionstruncated on the interval [−𝜋, 𝜋) as a parametric family of distributionswhose probability density is given by the proportionality
𝑓 (𝜑) ∝

{

𝜆𝑓(𝜇1 ,𝜎21 )
(𝜑) + (1 − 𝜆)𝑓(𝜇2 ,𝜎22 )

(𝜑), if 𝜑 ∈ [−𝜋, 𝜋),
0, else, (20)

where 𝜆 ∈ [0, 1] and 𝑓(𝜇1 ,𝜎21 )
, 𝑓(𝜇2 ,𝜎22 )

are the probability densities of
2 2
normal distributions with mean values 𝜇1, 𝜇2 and variances 𝜎1 , 𝜎2 ,
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Table 1Parameters of fitted univariate probability densities depicted in Fig. 7. Formulas for the probability densities of the parametricfamilies of distributions are given in Eqs. (17), (18), (19), (20) and (21).Characteristic Family of distributions Parameter values
Volume-equivalent diameter 𝑑 Inverse Gaussian 𝜇 = 513.8, 𝜆 = 4600Sphericity factor 𝑠 Beta 𝑎 = 40.1, 𝑏 = 7.2Convexity 𝑐 Generalized extreme valuea 𝑘 = 0, 𝜇 = 0.82, 𝜎 = 0.048Elongation 𝑒 Generalized extreme valuea 𝑘 = −0.42, 𝜇 = 0.72, 𝜎 = 0.086Azimuthal angle 𝜑 Gaussian mixture according to (20) 𝜇1 = −1.7, 𝜇2 = 1.6, 𝜎1 = 1, 𝜎2 = 0.8, 𝜆 = 0.4Polar angle 𝜃 sin(⋅) –

aDistribution was truncated on the interval [0, 1].

Table 2Comparison of aggregated quantities (mean values, standard deviations) computed for samples of grain characteristics extracted from tomographic imagedata, and for the fitted parametric probability densities, respectively.Characteristic Empiricalmean value Mean value fittedof the distribution Empirical std Std of the fitteddistribution
Volume-equivalent diameter 𝑑 513.81 513.81 172.56 171.99Sphericity factor 𝑠 0.85 0.85 0.053 0.052Convexity 𝑐 0.79 0.79 0.062 0.062Elongation 𝑒 0.75 0.75 0.081 0.081Azimuthal angle 𝜑 0.39 0.43 1.70 1.30Polar angle 𝜃 1.03 1 0.382 0.376
TCfa

fwb
𝑐

f
dticpaec
𝜌

w

Table 3Correlation coefficients for pairs of the considered grain characteristics computed forsamples of grain characteristics extracted from tomographic image data, and for thefitted bivariate probability densities, respectively.Pairs ofcharacteristics Empirical correlationcoefficient Correlation coefficientof the parametric fit
(𝑑, 𝑠) −0.4680 −0.4612
(𝑑, 𝑐) −0.3418 −0.3632
(𝑠, 𝑐) 0.9209 0.9115
(𝑠, 𝑒) 0.6757 0.6570
(𝑐, 𝑒) 0.5100 0.4827
(𝜃, 𝜑) −0.0473 −0.0525

respectively. Then, we determined an optimal fit from this model withfive parameters using a maximum likelihood approach, see Fig. 7f andTable 1.Finally, note that in the case of the orientation vectors 𝑣3 beinguniformly distributed on the upper hemi-sphere their polar angle’sdistribution has the probability density
𝑓 (𝜃) =

{

sin(𝜃), if 𝜃 ∈ [0, 𝜋∕2),
0, else. (21)

Fig. 7f indicates that the probability density given in (21) fits thehistogram of the angles 𝜃1,… , 𝜃𝑛 computed from the image data quiteell.Looking at Fig. 7 we get an impression of the goodness of fit byisual inspection. A more quantitative analysis of the goodness of fits given in Table 2, where we compare empirical mean values andmpirical standard deviations computed for samples of grain character-stics extracted from tomographic image data, with the mean values andtandard deviations (std) of the fitted parametric probability densities.
.2. Fitted bivariate probability densities

In Section 2.6 the procedure for modeling bivariate probabilityistributions of two-dimensional vectors of grain characteristics usingopulas has been described. For pairs of the grain characteristics 𝑑, 𝑠, 𝑐, 𝑒hich have an empirical correlation coefficient with an absolute valuearger than 0.1 (see Table 3) we have applied this method to fit theorresponding bivariate probability densities, which are visualized inig. 8a–f.The family of parametric copulas which provided the best fit andheir corresponding parameters are listed in Table 4. Note that theopula density 𝑐 of the parametric family of Joe–Frank copulas, which

9

m

able 4opula parameters of the bivariate probability densities depicted in Fig. 8. Formulasor the copula densities of the parametric families of copulas are given in Eqs. (22)nd (23).Pairs of characteristics Copula family Parameter values Copula rotation
(𝑑, 𝑠) Joe–Frank 𝜅 = 4.24, 𝛿 = 0.6 270◦

(𝑑, 𝑐) Joe–Frank 𝜅 = 2.7, 𝛿 = 0.7 270◦

(𝑠, 𝑐) Clayton–Gumbel 𝜅 = 0.36, 𝛿 = 3.13 180◦

(𝑠, 𝑒) Clayton–Gumbel 𝜅 = 0.47, 𝛿 = 1.47 0◦

(𝑐, 𝑒) Joe–Frank 𝜅 = 5.6, 𝛿 = 0.52 180◦

(𝜃, 𝜑) Joe–Frank 𝜅 = 1.1, 𝛿 = 0.82 270◦

was used for fitting the bivariate distribution of the volume-equivalentdiameter and the sphericity factor, is given by
𝑐(𝑢, 𝑣) = 𝜕2

𝜕𝑢𝜕𝑣
1
𝜅

⎛

⎜

⎜

⎝

1 −
[

1 − 1
1 − (1 − 𝛿)𝜅

(1 − (1 − 𝛿𝑢)𝜅 )(1 − 𝛿𝑣)𝜅
]

1
𝛿 ⎞
⎟

⎟

⎠

(22)
for each 𝑢, 𝑣 ∈ [0, 1] with model parameters 𝜅 ≥ 1 and 𝛿 ∈ (0, 1]. Foritting the bivariate distribution of the sphericity factor and convexitye used a Clayton–Gumbel copula, the copula density of which is giveny
(𝑢, 𝑣) =

(

(

(𝑢−𝜅 − 1)𝛿 + (𝑣−𝜅 − 1)𝛿
)1∕𝛿

+ 1
)−1∕𝜅 (23)

or each 𝑢, 𝑣 ∈ [0, 1], where 𝜅 > 0 and 𝛿 > 1 are model parameters.Furthermore, we used the method for fitting bivariate probabilityensities described above to fit the bivariate probability density ofhe orientation angles of grains, see Fig. 8f and Table 4. Recall thatn Table 2 we quantitatively compared quantities (mean value, std)omputed empirically from data and derived from the fitted univariaterobability densities. Similarly, we validate the fitted bivariate prob-bility densities by comparing their correlation coefficient with thempirically computed correlation coefficient, see Table 3. Note that theorrelation coefficient 𝜌 of a bivariate probability density 𝑓 is given by
= 1

𝜎1𝜎2 ∫

∞

−∞ ∫

∞

−∞
(𝑥𝑦 − 𝜇1𝜇2)𝑓 (𝑥, 𝑦) d𝑥d𝑦, (24)

here 𝜇1, 𝜇2 denote the mean values and 𝜎1, 𝜎2 the stds of thearginals.
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Fig. 8. Bivariate probability densities of the pairs (𝑑, 𝑠), (𝑑, 𝑐), (𝑠, 𝑐), (𝑠, 𝑒), (𝑐, 𝑒), (𝜃, 𝜑) (a–f, respectively) of grain characteristics fitted using parametric copulas. Note that bivariateprobability densities 𝑓 are normalized, i.e., ∫ ∞
−∞ ∫ ∞

−∞ 𝑓 (𝑥, 𝑦) d𝑦d𝑥 = 1.

3.3. Specific surface area of the grain boundary network

Recall that in Tables 2 and 3 we investigated aggregated quantitiescomputed for samples of (univariate and bivariate) grain characteristicsextracted from tomographic image data. Similarly, in the present sec-tion we estimate the specific surface area of the entire grain boundarynetwork within a NMC particle which is another kind of an aggregatedquantity. Therefore, for each pair (𝐺𝑖, 𝐺𝑗 ) of grains in the segmentedimage data we compute the quantity
𝑎𝐺𝑖 ,𝐺𝑗

= 1
2
(

𝑎(𝐺𝑖) + 𝑎(𝐺𝑗 ) − 𝑎(𝐺𝑖 ∪ 𝐺𝑗 )
)

, (25)
which can be considered as an estimate of the surface area of the sharedinterface between 𝐺𝑖 and 𝐺𝑗 .By summing up the surface areas 𝑎𝐺𝑖 ,𝐺𝑗

for all pairs 𝐺𝑖, 𝐺𝑗 of grainswe determine the surface area of the grain boundary network in thesampling window 𝑊 to be 491.5 μm2. Dividing this quantity by thevolume of the observed part of the particle in the sampling window
𝑊 we obtain the specific surface area of 4.98 μm−1.
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4. Discussion

The 3D reconstruction and segmentation of grains within an NMCparticle facilitated quantification of the microstructural features of sub-particle grains. Grain properties, including the distribution of theirvolume-equivalent diameters, as well as morphological descriptors liketheir sphericity, convexity, and elongation, were quantified. Until now,much focus has been on quantifying particle size distributions via X-ray CT [41] which empowers researchers and manufactures to quantifyparticle size distributions for quality control, for example by deter-mining how narrow a particle size distribution they can achieve fora batch of electrode. Here, we demonstrate how the distributions ofsub-particle grain properties can be quantified. The distributions ofvolume-equivalent diameters and sphericity factors show that mostgrains are around 400 nm in diameter and have a sphericity factor ofabout 0.85. These properties are likely to influence the rate capabilityand propensity of the particle to crack as grains expand and propagatemechanical stress throughout the particle during lithiation. Synthesis
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methods could be tuned to selectively change the size, shape, and orien-tation of grains for higher rate and reduced degradation, for example bydesigning more radially oriented grains [42]. With the benchmark char-acterized particle presented here, this architecture could be used formultiphysics modeling, elucidating strain and lithiation heterogeneitiesduring operation. The characterization using multivariate probabilitydensities, see Fig. 8, has the advantage of capturing the correlationstructure between the considered grain characteristics. Moreover, itis possible to derive even further distributions of grain characteristicsfrom these multivariate fits if the characteristic under considerationis in a deterministic functional relationship with the grain character-istics for which the multivariate distribution is given. For example,the specific surface area of grains can be directly computed from thevolume-equivalent diameter 𝑑 and the sphericity factor 𝑠—thus, theprobability density of the specific surface area can be computed fromtheir bivariate probability density depicted in Fig. 8a. Furthermore,the probability densities presented in Figs. 7 and 8 could be used toartificially generate particles with realistic architectures; in a forthcom-ing study, we will use a parametric stochastic model for the entire 3Dgrain microstructure of NMC particles based on random tessellations togenerate virtual grain architectures. First, we will determine parameterconstellations for the stochastic microstructure model for which thedistributions of the considered grain characteristics reassemble thedistributions derived from the experimental image data consideredin the present paper. Then, by systematical variation of the modelparameters, we will generate a broad spectrum of different virtualmicrostructures which will serve as input for numerical simulations,allowing us to correlate geometry descriptors of the microstructurewith its macroscopic properties [20–24]. This is expected to enable fastanalysis of different single particle architectures and provide a roadmapfor synthesizing optimal architectures for specific operating conditions.Furthermore, the characteristics considered in the present paper fordescribing NMC particles could be extended to describe even furtheraspects of their architecture. More precisely, in this work, the uncycledNMC532 particles consisted of solid structures without any signs ofsub-particle voids or evidence of cracks. However, cathode particlescome in a variety of designs including some with hollow cores [41]and sub-particle voids between grains [6]. Furthermore, NMC particlesare known to crack along grain boundaries upon being exposed tocertain cycling conditions [3] creating further sub-particle features thatare important to segment and distinctly label. Distinctly labeling sub-particle features like cracks and estimating the additional surface areaof the cathode that becomes exposed to the electrolyte was recentlyachieved in [43] for X-ray CT images. This technique of identifyingand labeling sub-particle features, like cracks and voids, could also beapplied to this data to facilitate linking added exposed surface areaupon mechanical degradation of the particles.
5. Conclusion

A fast method to conduct FIB–EBSD of single Li-ion electrode parti-cles for achieving a full 3D reconstruction of particle grain architecturesis presented. The experimental technique of FIB–EBSD can be appliedto cathode particles with layered structures including all types of NMCmaterials irrespective of stoichiometry and morphology of grains. Themain challenge that may arise is if the particle of interest has grainsizes that are close to the effective resolution of the FIB–EBSD imagingtechnique, in which case it may not be possible to accurately segmentgrain boundaries and distinctly label grains. However, if the grainsizes are suitable for the resolution of the used imaging technique, themethodology for processing and quantifying features from the data canbe applied. In the present paper, the image quality map from EBSDgave excellent contrast of grain boundaries throughout consecutive FIBslices of an NMC532 particle. Between EBSD imaging and FIB slicing,the sample stage was rotated and tilted and sometimes did not perfectly
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re-center, necessitating postprocessing image realignment. Following r
image alignment, machine learning segmentation facilitated identifi-cation and labeling of distinct grains in 3D within the particle. The3D segmented image was used for quantification of sub-particle grainarchitectures. For example, the grain size distribution within a singleparticle was quantified, as well as the distributions of morphologicaldescriptors like sphericity, convexity, elongation, and orientations. Inthis case, the grains were found to be close to spherical and have a dis-tribution of volume-equivalent diameters with a mean around 400 nm,but as observed from other works in literature, these grain propertiesare expected to vary between differently synthesized electrode blends.This technique is expected to equip researchers with a tool to quantifythe sub-particle architectures of their synthesized electrode blends,provided that the electrode particles are crystalline. There is substantialscope for building on this work to understand through further advancedmicrostructural characterization and image-based multiscale modeling.Future work will utilize the derived bivariate probability densitiesof pairs of grain characteristics for fitting and validating parametricstochastic geometry models for the holistic 3D grain architecture ofNMC particles. In particular, these models will be used to generaterandom grain architectures for which the bivariate probability den-sities of pairs of grain characteristics will be computed analogously,and fitted/compared to the bivariate probability densities reported inthe present paper. Then, a broad spectrum of statistically differentgrain architectures, i.e., with different specifications for the distributionof vectors of grain characteristics, will be generated. Even thoughit might not always be possible to synthesize NMC particles withstatistically similar grain architectures as the virtual ones, they stillallow for a systematic quantitative investigation of structure–propertyrelationships.
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