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Generation 3 Concentrating Solar Power (Gen3 CSP)
Liquid Pathway

TES System:
Hot salt tank (720 °C)
Cold salt tank (500 °C)

Zhao and Vidal, Sol. Energy Mater. Sol. Cells, 2020

Nominal salt composition
NaCl:KCl:MgCl2
20:40:40 mol.%

 The ternary-chloride salt is stable to temperatures well above the proposed
operating point of 720°C, which enables the use of more efficient supercritical CO2
(sCO2) closed-loop Brayton cycles, with predicted net-cycle efficiencies of ≥ 50%.

Freeze temperature 
~ 400°C
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Molten Chloride Salt Thermal Energy Storage Tanks 
Overview

– Salt is not compatible common steels
– Internal lining is only economic choice

• Refractory-ceramic liners selected
– Thermal, chemical, mechanical stability
– Proven efficacy in similar industries
– Cost

• Materials compatibility and down selection
– Material immersion in molten salt

• Commercial scale tank design and analysis
– Drafting tank and refractory engineering drawings
– Finite element analysis of thermal and mechanical 

profile of tank in operation
– Cost analysis and estimating $/kWhth

Class of ceramics, considered 
complex composites consisting of 
multiple ceramic phases, bonding 
matrixes, and/or defects

Refractory-Ceramics

• Temperature and corrosivity of chloride salt requires use of internal tank liners

Tank Project Research
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Tank Liner Model and Method Development

Salt (720°C)
1. Hot Face
2. Insulating Firebrick
3. Microporous Insulation
Carbon Steel Shell

• Developed a 1-D heat transfer modelling tool in conjunction with industry partners
• NREL modelled the effective thermal conductivity of refractories wetted by molten salt

̶ Validated data by comparing to known dry vs. wetted insulation thermal conductivity values
• Modelled various liner configurations and liner failure modes for target heat flux of ≤ 276 W/m2

̶ Analysis led to choosing “cold walls” (<100 °C) as the final design over initially proposed “hot walls” (500 °C) design

Possible designs
Red: “hot walls” (wet)
Blue: “cold walls” (dry)
Green: “cold walls” (wet)

 Only “cold walls” 
design that is kept 
dry meets heat 
flux and cost 
targets
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Hot Face Materials Testing and Down Selection

Extensive salt 
penetration

Connected porosity 
transports surface salt to 
material bulk

Salt penetration arrested 
at surface

• Three hot face candidates were tested for compatibility with molten chloride salt
̶ Selection based on similarity with a reference refractory currently used in magnesium 

chloride electrolysis cells
• Cups testing was performed in accordance with industry standard (Alcoa Modified Aluminum Cup 

Penetration)
̶ 50-hour isothermal exposure to molten chloride salt at 720 °C 

Hot Face A

Hot Face B

Hot Face C
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Hot Face Porosity via X-ray CT X
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• X-ray computed tomography (X-ray 
CT) used to probe the porosity of the 
hot face brick material 

• Hot Face A exhibits less surface-
connected porosity connected 
porosity than Hot Face B

• Hot Face A selected for further 
analysis

– Long-duration chemical 
compatibility

– Mechanical durability
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Long Duration Exposure Tests on Hot Face A

Salt permeation into Hot Face A as a function of time. Energy dispersive X-ray spectroscopy 
(EDS) maps of cross-sectioned brick sample immersed in molten chloride salt up to 3000 
hours. Each is a different sample. Salt permeation is measured as the depth of Cl into the 
bulk of the material.
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Surface Secondary Phase Formation
Forsterite (Mg2SiO4)

Hot Face A- Native Hot Face A- 3000 h
Sample Number CCS (MPa) Sample number CCS (MPa)

1 111.8 1 116.5
2 109.9 2 103.0
3 119.9 3 115.3
4 101.2 4 120.4
5 123.2

Mean 113.2 Mean 113.8
StDev 8.7 StDev 7.5

• Native Hot Face A and Hot Face A
immersed in salt for 3000 hours: X-ray
diffractograms (a) and (b) respectively,

̶ The † symbols in the X-ray
diffractogram of the 3000-hour
immersed hot face A coupon highlight
peaks that belong to the secondary
phase that is formed on the material
surface due to reaction with molten
salt (forsterite, Mg2SiO4).1,2

• Scanning acoustic microscopy of coupon
surfaces (c) and (d) respectively, and EDS
Mg maps (e) and (f).

• Table shows the cold crush strength (CCS)
of native and immersed Hot Face A

̶ Formation of secondary phase does
not adversely affect mechanical
strength

1Wang et al., Int. J. Appl. Ceram. Technol., 2017
2Sun et al., J. Am. Ceram. Soc., 2009
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Major Project Risks

Mortar Joint Expansion Joint

• Mortar Joints 
̶ High porosity regions of the hot face layer
̶ Low viscosity molten salt can readily slip through joint and wet backup insulation

• Expansion Joints
̶ Engineered gaps in the liner, designed to accommodate thermal expansion during startup
̶ Should the expansion joint not fully close, molten salt will immediately permeate through gap
̶ Should the expansion joint not be wide enough, high mechanical stress could crack liner

 NREL has developed novel mortar using Hot Face A material
 Mechanical property data is needed on the mortar to mitigate risk 
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Strain/Strain Analysis of Brick/Mortar Composites
Elasticity of Mortar Joint
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 Modulus of elasticity decreases 97% at high temperature
 High mortar compressibility will reduce expansion joints
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in-situ X-ray CT Studies of Mortar Joint

• Use X-ray CT to 
measure the porosity of 
mortar 

• in-situ compression X-
ray CT 
̶ Identify crack 

formation

̶ Coupled with 
heating (up to 
350° C), high 
temperature 
behavior of pores 
under 
compression may 
be examined
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