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TES System: Nominal salt composition
Hot salt tank (720 °C) NaCl:KCIl:MgCl,
Cold salt tank (500 °C) 20:40:40 mol.%

» The ternary-chloride salt is stable to temperatures well above the proposed
operating point of 720°C, which enables the use of more efficient supercritical CO,
(sCO,) closed-loop Brayton cycles, with predicted net-cycle efficiencies of 2 50%.
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Molten Chloride Salt Thermal Energy Storage Tanks

Overview

« Temperature and corrosivity of chloride salt requires use of internal tank liners
— Salt is not compatible common steels

— Internal lining is only economic choice ]
Refractory-Ceramics

Cracks

« Refractory-ceramic liners selected
— Thermal, chemical, mechanical stability
— Proven efficacy in similar industries
— Cost

Tank Project Research

« Materials compatibility and down selection
— Material immersion in molten salt

Aggregates

Intergranular
Porosity

« Commercial scale tank design and analysis Class of ceramics, considered
— Drafting tank and refractory engineering drawings complex composites consisting of
— Finite element analysis of thermal and mechanical multiple ceramic phases, bonding

profile of tank in operation matrixes, and/or defects

— Cost analysis and estimating $/kWh;,
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Tank Liner Model and Method Development

+ Developed a 1-D heat transfer modelling tool in conjunction with industry partners
* NREL modelled the effective thermal conductivity of refractories wetted by molten salt

— Validated data by comparing to known dry vs. wetted insulation thermal conductivity values
*  Modelled various liner configurations and liner failure modes for target heat flux of < 276 W/m?

— Analysis led to choosing “cold walls” (<100 °C) as the final design over initially proposed “hot walls” (500 °C) design

__ 800
O 700 B ———geco__ o
< 600 Nohsel Tl Possible designs
aQ ~ el e mm———. “ ”
5 500 el “* ---- A Red: “hot walls” (wet)
‘E AOQ  terreeeeemrreee——— Bgeesearramaresrnarrsrrarrsrsrssrersrssrsrssrerssssrezess 1'1 ..... Blue: “cold walls” (dry)
3 300 | \ Green: “cold walls” (wet)
= 200 A
3 100 .
0 > Only “cold walls”
0 0-2 0L4 th'o.l? 0.8 1 1.2 design that is kept
Salt (720°C) iner thickness (m) dry meets heat
1. Hot Face “Cold Walls”, Dry: carbon steel shell with <0.5 m liner (276 W/m2) ’;’”" at"d cost
2. nsulating Firebrick .., 14 walls”, Wetted: risk of tank failure (436 Wim e
3. Microporous Insulation ° alls”, Wetted: risk of tank failure ( m’)
Carbon Steel Shell “Hot Walls”, Wetted: stainless steel shell with >1 m liner (260 W/m2) NREL | 4



Hot Face Materials Testing and Down Selection

Salt penetration arrested

Hot Face A at surface
Connected porosity

Hot Face B transports surface salt to
material bulk

Hot Face C Extensive salt

penetration

Three hot face candidates were tested for compatibility with molten chloride salt

—  Selection based on similarity with a reference refractory currently used in magnesium
chloride electrolysis cells

Cups testing was performed in accordance with industry standard (Alcoa Modified Aluminum Cup
Penetration)

—  50-hour isothermal exposure to molten chloride salt at 720 °C
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X-ray computed tomography (X-ray
CT) used to probe the porosity of the
hot face brick material

* Hot Face A exhibits less surface-
connected porosity connected
porosity than Hot Face B

* Hot Face A selected for further
analysis
— Long-duration chemical
compatibility
— Mechanical durability

Volume (mm3) Volume (mm3)

Hot Face A Hot Face B
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Long Duration Exposure Tests on Hot Face A
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Salt permeation into Hot Face A as a function of time. Energy dispersive X-ray spectroscopy
(EDS) maps of cross-sectioned brick sample immersed in molten chloride salt up to 3000

hours. Each is a different sample. Salt permeation is measured as the depth of Cl into the
bulk of the material.
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Surface Secondary Phase Formation

Forsterite (Mg,SiO,)

* Native Hot Face A and Hot Face A
immersed in salt for 3000 hours: X-ray
diffractograms (a) and (b) respectively,
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Sample1Number CC1S1 gNngPa) Sample1number CC1S1 éM5Pa) » Table shows the cold crush strength (CCS)
> 109'9 > 103'0 of native and immersed Hot Face A
3 119.9 3 115.3 — Formation of secondary phase does
4 101.2 4 120.4 not adversely affect mechanical
5 123.2 strength
Mean 113.2 Mean 113.8 'Wang et al., Int. J. Appl. Ceram. Technol., 2017
StDev 8.7 StDev 7.5 2Sun et al., J. Am. Ceram. Soc., 2009 NREL | 8




Major Project Risks

Mortar Joint Expansion Joint

* Mortar Joints
— High porosity regions of the hot face layer
— Low viscosity molten salt can readily slip through joint and wet backup insulation

* Expansion Joints
— Engineered gaps in the liner, designed to accommodate thermal expansion during startup
— Should the expansion joint not fully close, molten salt will immediately permeate through gap
— Should the expansion joint not be wide enough, high mechanical stress could crack liner

> NREL has developed novel mortar using Hot Face A material

> Mechanical property data is needed on the mortar to mitigate risk NRELT 9



Strain/Strain Analysis of Brick/Mortar Composites

Elasticity of Mortar Joint

Stress (MPa)

» Modulus of elasticity decreases 97% at high temperature
» High mortar compressibility will reduce expansion joints
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in-situ X-ray CT Studies of Mortar Joint
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Use X-ray CT to
measure the porosity of
mortar

in-situ compression X-
ray CT
— ldentify crack
formation

Coupled with
heating (up to
350° C), high
temperature
behavior of pores
under
compression may
be examined
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