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1. Motivation and significance

Adequate access to the data sets used in scientific models leads
to more transparency and reproducibility [1], improves scientific
discovery and allows third parties to verify model results [2].
Specifically, there is a common concern that computational ex-
periments in energy systems need to define, document, and au-
tomate the processing and generating of data separate from the
modeling [1,3]. The data workflows need to distinguish between
the raw input data in a variety of formats and obtained from
many different sources, and the analytical data for the model.
PowerSystems. j1 enables a consistent data model that can
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be populated from diverse sources of information. PowerSys-
tems. jl is designed to address these challenges based on the
principles laid out in [4-6]; namely: software should always
return the same outputs when given the same inputs, function-
alities should be easy to use, extend, prototype, and integrate
into other packages, and code should be written for people to
understand, not just for efficient computer resource use.
Applying scientific computing principles to the data processes
used for energy sector models introduces several requirements:

o Intuitive data creation scripts: The syntax to create data
sets should be easy to interpret and maintain.

o Flexible interfaces for data intake: Data sources for electric
energy systems can be heterogeneous, requiring flexible
interfaces to manipulate the data.
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o Straightforward extension for new data layouts: With the
addition of new technologies and operational modes, the
software needs to be extensible in order to add new data
representations.

o Dedicated public interface for extension and integration:
User extensions and integration as a dependency should not
require modifications to the source code (also known as the
delegation pattern [7]).!

e Optimized memory use for large data sets: The imple-
mentation should not overwhelm system memory when
handling large data sets.

However, the traditional practice in energy modeling has been
to develop ad-hoc data structures, containers, and interfaces re-
lated to the underlying mathematical model [8]. However, by
virtue of relying on custom data structures and utilities, modeling
packages can discourage data sharing and create barriers to vali-
dation, comparison and introduction of models. As a consequence
model developers currently devote significant resources to pars-
ing and converting between data models. In most cases, these
efforts serve the specific scope of the analytical model and do not
result in reusable code. Supplemental Information S-1 discusses
in the data modeling characteristics of other software packages
in more detail.

New initiatives are currently under development that focus
on multi-sectorial energy system planning data management.
PowerGenome [9], and Open Energy Platform [10] are efforts that
focus on data curation, acquisition, and provenance for energy
system planning models. For example, PowerGenome is used to
generate inputs for the Gen-X model [11]. Spine-Toolbox [12] is
an application with a graphical user interface for multi-sector
energy system data and model workflow management. Efforts are
underway to develop linkages to PowerSystems. j1 from Pow-
erGenome and Spine-Toolbox. These integrations will comple-
ment existing PowerSystems. j1 capabilities and provide mech-
anisms to explore the operational impacts of long term planning
(years to decades) results, and enable a graphical interface for
editing data and managing model workflows.

To the authors’ knowledge, PowerSystems. j1 is the only tool
designed to provide model-agnostic data structures and model
development capabilities as an independent library. Although
other authors have advocated for a canonical data model in XML
format [13], PowerSystems. j1 also provides generic tools and
interfaces required for data processing, verification, and extend
the library of models. The principal use case for PowerSys-
tems. jl is to provide efficient intake and utilization of power
systems model input data.

The interfaces in PowerSystems. j1 are designed with three
types of users, and specific uses of a data modeling package in
mind.

e Modeler: Develop standard data sets, share data, or generate
reproducible computational experiments.

e Model Developer: Develop custom components, data sets,
and models. Use PowerSystems. jl as a dependency on a
modeling package.

e Code Developer: Contribute source code to PowerSys-—
tems. j1 to implement new features.

This paper focuses on the first two categories: Modelers and
Model Developers. PowerSystems.jl provides details for users in
all categories, contains links to examples application code and a
library section with all the supported models. Readers are en-
couraged to look through the tutorial sections as a starting point
and the developer section when looking into the requirements to
integrate custom data structures.

Ty computer science, a design pattern is a reoccurring solution that is
sufficiently general to warrant its own title and description.
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2. Software description

PowerSystems. jl is developed in Julia [14] due to the inher-
ent composability of the language and the extensive interoperabil-
ity capabilities with other programming languages. PowerSys-
tems. j1 exploits the type system and multiple dispatch of the
Julia programming language to promote the open development
of energy data sets across domains.

The main features of PowerSystems. j1 include:

e Comprehensive and extensible library of data structures for
modeling electrical systems.

e Large scale data set development tools based on common
text based data formats (PSS/e .raw and .dyr, and MAT-
POWER .m) and configurable tabular data (e.g. CSV) parsing
capabilities.

e An optimized container for component data and time se-
ries supporting serialization to portable file formats and
configurable validation routines

In PowerSystems. j1, a device is defined using a Julia struc-
ture embedded in a type hierarchy. Each device is discussed
in detail in Section 3.1. This implementation enables categoriz-
ing the devices by their abstract operational characteristics. In
principle, the generalization of each component is done at the
categorical level, preventing the shortcomings of prescriptive data
models. Representing all potential devices in energy modeling
is not possible; neither is it desirable, as new technologies be-
come available and make parts of the library obsolete. Thus, it is
necessary to provide an extensible data model with simple rules
such that different users can store custom data in an organized
ontology and still use core other functionalities of the package.

The implementation of the data structures is “method for-
ward”, which implies that the information stored in each ob-
ject is accessible through the implementation of methods (e.g.,
get_parameter_value(::DataStruct) )and not by accessing

specific fields (e.g., datastruct.parameter_value ), Similarly,
the requirements for extensions are described as interface im-
plementations, not data fields, providing modelers with more
flexibility. This design prevents known fragilities with classic
implementations of inheritance [7].

Implementing data structures through interfaces is especially
valuable for long-term code maintenance and for reproducible
experiments. The use of accessor functions enables the modeler to
manipulate the parameters without concerns about the underly-
ing implementation. On the other hand, if the model accesses the
data by field, subsequent implementation changes can generate
unsustainable maintenance costs. The accessor interface also re-
duces the cost of integrating PowerSystems. j1 into modeling
applications. The model developer can re-use the data manage-
ment methods already implemented and thereby minimize the
development of custom code to handle data input.

In data sets for energy systems simulation, the largest demand
on memory often comes from time series data. Given the size of
this data, it can overwhelm system memory and must remain on
persistent media (e.g., disk). However, it is also critical to main-
tain low read/write latency. PowerSystems. j1 data container’s
implementation solves these issues by leveraging HDF5 storage
to execute fast data loads into memory on demand.

Time series data is implemented using different formats and
types depending on the modeling needs and originating process.
For instance, data storage is optimized for forecast data depen-
dent on the structure. PowerSystems. j1 supports forecast data
formatted as overlapping time windows (e.g. 4-h ahead forecasts
created every 15-min) and contiguous time series of observations.
The flexible representation of time series data allows for multiple
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Fig. 1. Abstract tree hierarchy.

uses including Day-Ahead market models or slice selections to
model limited operation periods. Also, PowerSystems. j1 pro-
vides a mechanism to share time series data across components;
this can greatly reduce primary storage requirements. Additional
details about time series data management and implementation
are included in Supplemental Information S-4.

3. Software architecture

PowerSystems. j1 is structured to enable the requirements
discussed in Section 2 through the implementation of the follow-
ing features:

1. Abstract type hierarchy,
2. Optimized read/write data container (named System ),
3. Utilities to facilitate modeling, extensions, and integration

The optimized container and generic extension interfaces in
PowerSystems. j1 are implemented through the utility library
InfrastructureSystems. jl [15]. PowerSystems. jl
contains the code, methods, and utilities specific to the elec-
tricity sector’s physical representation and relationships. In-
frastructureSystems. j1 provides generic methods to handle
components and manage data. This design follows from the
recognition that several of the general features and requirements
in PowerSystems. j1 apply to any networked infrastructure data
handling software, and in the future, an extension to water, gas,
and similar infrastructure systems is possible.

3.1. Type hierarchy

The use of type trees (or taxononomies) to organize data
classes or types is commonly used in libraries that implement an
object oriented approach. For instance, the Common Information
Model (CIM) [16] uses a taxonomy to represents all the major
components in electric utility operations. However, the CIM is

meant to facilitate the integration controls developed indepen-
dently by different vendors and is not suitable for modeling. Also,
initiatives like the Open Energy Ontology [17], which is currently
under development, focus on organizing terms and relationships
within energy system modeling.

The abstract hierarchy implemented PowerSystems. jl in
enables categorization of the devices by their operational char-
acteristics and modeling requirements. Fig. 1 shows the abstract
hierarchy of components?. For instance, generation is classified
by the distinctive data requirements for modeling in three cat-
egories: Thermal, Renewable, and Hydropower. As a result of
this design, developers can define model logic entirely based on
abstract types and create generic code to support modeling tech-
nologies that are not yet implemented in the package. Power-
Systems. j1 has a category of topological components (e.g., Bus,
Arc), separate from the physical components [8]. The hierarchy
also includes components absent in standard data models, such
as services. The services category includes reserves,transfers and
Automatic Generation Control (AGC) (see, Supplemental Informa-
tion S-2). The power of PowerSystems. j1 lies in providing the
abstraction without an implicit mathematical representation of
the component in question.

Other abstractions provide flexible specification of parame-
ters with distinct representations. An example is the represen-
tation of costs (see, Supplemental Information S-2). PowerSys-—
tems.jl implements several DeviceParameters to support
composition patterns.

A comprehensive example of using methods and composition
is the implementation of the ThermalStandard, an implemen-
tation a of thermal generator using common data fields, shown
in Fig. 2. ThermalStandard implements several methods to
retrieve device parameters such as the active power limits. It

2 Due to the size of the library, it is not possible to depict all potential
concrete components. Supplemental information S-2 contains more examples
of concrete components
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Fig. 2. Implementation of ThermalStandard.

is composed of the bus, operational cost, services, and the pos-
sibility to include a DynamicInjection to represent dynamic
models for the same device. Supplemental Information S-5 con-
tains details about the extensions of existing components and the
addition of custom components.

Classically, data models have been separated dynamics and
quasi-static analyses in different data sets. However, composition
enables a joint representation of the components and eliminates
the requirement to maintain two discrete databases. Detailed
examples of building data sets for dynamic simulations is shown
in the supplementary information S-3.

3.2. Data container

The System js the main container of components and the
time series data references. PowerSystems. j1 uses a hybrid
approach to data storage, as shown in Fig. 3, where metadata (for
describing package version compatibility, unique identifiers, and
other system level meta-information), component data, and time
series references are stored in volatile memory while the actual
time series data is stored in an HDF5 file. This design loads into
memory the portions of the data that are relevant at time of the
query, and so avoids overwhelming the memory resources.

PowerSystems. j1 implements a wide variety of methods
to search for components to aid in the development of models.
Listing 1 shows an example of retrieving components through
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the type hierarchy with the get_components function and ex-
ploiting the type hierarchy for modeling purposes.® The default
implementation of the function get_components takes the de-
sired device type (concrete or abstract) and the system and it
also accepts filter functions for a more refined search. The most
common filtering requirement is by component name and for
this case the method get_component returns a single com-
ponent taking the device type, system and name as arguments.
The container is optimized for iteration over abstract or con-
crete component types as described by the type hierarchy. Given
the potential size of the return, PowerSystems. j1 returns Julia
iterators in order to avoid unnecessary memory allocations.

An essential workflow in energy systems modeling is develop-
ing data sets that combine existing data sources with new com-
ponents and time series data. Listing 2 shows the code process to
execute the following workflow:

1. Load component data from a power flow file,

2. Add a new component. The example creates and adds a
single wind power plant. The component constructors use
keyword arguments making data entries very explicit,

3. Load time series data from a pointers file and add it to the
system components,

4, Load time series data specific to newly added component
and attach it to a single component,

5. Serialize system for future use.

The data is serialized to a JSON file and the time series data
to an HDF5 file. This feature has been developed to enable re-
producible data workflows. Modelers can develop data sets as a
separate exercise from the modeling and later use PowerSys-
tems. j1 to load the final data in a fraction of the time that takes
to re-create and load using the raw data. This feature has proven
to be particularly useful when the raw data has been generated
from free form tables stored as CSV files [18,19].

Examples of data cases already available in PowerSystems. j1
format include the data from the RTS-96 data set https://github.
com/GridMod/RTS-GMLC [19] and we have made available some

3 See Julia’s punctuation to facilitate reading the listing https://docs.julialang.
org/en/v1/base/punctuation/.
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using PowerSystems

AW N e

o

system_data = System('"case_ACTIVSg70k.m")

6 function installed_capacity(system: :System; technology::Type{T} =

— Generator) where T <: Generator

7 installed_capacity = 0.0

8 for g in get_components(T, system)

9 installed_capacity += get_max_active_power(g)
10 end

11 return installed_capacity

12 end

14 installed_capacity(system_data)

15 installed_capacity(system_data; technology = RenewableGen)
16 installed_capacity(system_data; technology = ThermalStandard)

Listing 1:

This example implements a function where the modeler can

choose the technology by its type and use the different implementations of
get_max_active_power . Note that in line 15 the function takes an abstract
type and in line 16 a concrete type. This listing exemplifies the flexibility
of the container interface to facilitate the development of models consistent

with the ontology defined in Fig. 1.

simpler example data sets in a separate repository https://github.
com/NREL-SIIP/PowerSystemCaseBuilder.jl that allows users to
automatically build systems from a standard specification.

3.3. Additional utilities

Besides the core features discussed in previous sections, Pow-
erSystems. j1 provides additional utilities to aid in model de-
velopment, data set analysis and integration. All these additional
utilities exploit the type hierarchy and the data containers to
reduce development overhead. The following additional features
are detailed in the package documentation.

1. Network Matrices: Utilities to calculate the bus admit-
tance (Ybus), power transfer and line outage distribution
factor (PTDF, LODF) matrices. All the matrices implement
custom array containers to facilitate the indexing of com-
ponent names.

2. Power flow solution: This utility is used to serialize ini-
tialized systems or to check if the operating point of the
components is valid in AC.

3. Extended container printing methods: Several print-to-
REPL* methods are included to improve the visualization
of the data.

4. Illustrative example

PowerSystems. j1 is accompanied by an extensive repository
SIIPExamples.jl> with common usage examples, several of which
are included in the Supplemental Information.

Listing 3 shows a minimal example of PowerSystems. jl
used to develop an Economic Dispatch (ED) model. The listing
shows the stages explicitly:

4 A REPL or read-evaluate-print loop is a simple programming environment
that takes and executes inputs then returns them to the user.

5 https://github.com/NREL-SIIP/SIIPExamples.jl.

1. Make the data set from power flow and time series data,
2. Serialize the data,
3. Pass the data and algorithm to the model.

One of the main uses of PowerSystems. j1 is not having re-
run lines 4-5 for every model execution. The model code shows
an example of populating the constraints and cost functions using
accessor functions inside the model function (lines 9-37). The
example concludes by reading the data created earlier in line 40
and passing the algorithm with the data in line 41.

5. Impact

PowerSystems. j1l is designed to account for the common
workflows that analysts and engineers use to manipulate data
sets, and develop new models and packages for the changing
landscape of energy systems. The two main contributions are as
follows:

1. Decouples data processing from the computations in the
models.

2. Provides an inherently extensible data modeling frame-
work to develop new models and software packages that
can be shared across a variety of modeling objectives.

Existing power systems software packages have addressed a
subset of the principles established in Section 1 but with the
specific focus of providing a data model for the analytic objective
of the underlying mathematical model. As a result, developers of
new models are faced with the choice of either adapting their
data model needs to the existing structures or develop custom
ones. Often the underlying data is formatted in MATPOWER [20]
developed in Matlab, and industrial tools like PSS/e. Both formats
are based on fixed order, fixed position text files that require code
development for data input. PowerSystems. j1 goes beyond the
implementation of the canonical data model and also provides
manipulation methods and utilities for its integration into other
packages.
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using PowerSystems, CSV, TimeSeries, Dates

1

2

3

4 system = System('src/case5.m")

5

6

7 new_renewable = RenewableDispatch(

8 name = "WindBusA",

9 available = true,

10 bus = get_component (Bus, system, "3"),
11 active_power = 2.0,

12 reactive_power = 1.0,

13 rating = 1.2,

14 prime_mover = PrimeMovers.WT,

15 reactive_power_limits = (min = 0.0, max = 0.0),
16 base_power = 100.0,

17 operation_cost = TwoPartCost(22.0, 0.0),
18 power_factor = 1.0

19 )

22 add_component! (system, new_renewable)

25 time_series_data_raw = TimeArray(CSV.read("wind_data.csv'"),

— timestamp=:timestamp)

26 ts_data = SingleTimeSeries(label = "active_power", data =

— time_series_data_raw)
27
28

29 add_time_series! (system, new_renewable, ts_data)

30
31

32 add_time_series! (system, "timeseries_pointers_load.json")

34  to_json(system, "serialized_system.json')

Listing 2: Example of data set composition workflow

PowerSystems. j1 data-handling improves the scientific in-
tegrity of power systems research and analysis and enables the
implementation of scientific computing principles for several re-
search communities that rely on electric power systems data. One
recent example of its application in the analysis of the Cambodian
grid [21], where the authors separated data manipulation from
modeling, making transparent both processes individually.

High impact research in energy systems requires analysis of
large amounts of data, PowerSystems. j1 has several key fea-
tures for modelers and analysts to handle and extend large data
sets. PowerSystems . j1 enables easy data creation with parsers
for standard file formats, optimizes in-memory data access by
creating methods for efficient parameter and time series access
and iteration. The fast data access and efficient model instantia-
tion features of PowerSystems. j1 were leveraged to enumerate
large contingency sets in numerous power system test cases [22,
23].

For model developers, PowerSystems. j1 provides a generic,
reusable, and customizable data model applicable to multiple
modeling objectives. Not only does it provide the computational
improvement to handle data at large scales, but it also provides
extension capabilities by design that make it easier to integrate
into modeling packages.

PowerSystems. j1 implementation in the Julia programming
language allows for fast development and prototyping, as well
as fast compilation and runtime performance [14]. In contrast

to other object-oriented-programming, where inheritance is the
only way to develop extensions or custom methods, it provides
user flexibility and extensibility by providing type abstractions on
which to implement methods using multiple dispatch.

The type-based and method-forward paradigm in PowerSys-
tems. j1 incentivizes the adoption of best practices in scientific
computing [4] by creating accessible interfaces to enable code
reuse in modeling and to create modular and reproducible scien-
tific computing applications. Listing 3 summarizes the breakdown
between data, model, and algorithm. PowerSystems. j1 is used
in [3] to implement a more comprehensive pipeline for scientific
computing applied to operational simulations in power systems.

Recent publications [24] used PowerSystems. j1 for the de-
velopment of AGC simulation models following scientific comput-
ing practices to develop the experiment. Two recent contributions
in low inertia power systems [25,26] exploited the flexibility
of the dynamic models specification in PowerSystems. jl to
implement the data manipulation code in the simulation experi-
ments.

6. Conclusions

This paper introduces the release of PowerSystems. j1, the
first tool dedicated exclusively to providing data management
tools for electricity system modeling across research domains.
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using PowerSystems, JuMP, Ipopt

1
2
3 ########## Data Process ######H###H#H#
4 system = System('src/5bhus_ts/case5_re.m")
5 add_forecasts! (system, "timeseries_pointers.json')
6 to_json(system, "system_data.json")
7
8 ######## Nodel Process #########
9 function ed_model(system::System, optimizer)
10 m = Model (optimizer)
11 time_periods = get_time_series_horizon(system)
12 thermal_gens_names = get_name. (get_components(ThermalStandard,
< system))
13 @variable(m, pg[g in thermal_gens_names, t in time_periods] >= 0)
14
15 for g in get_components(ThermalStandard, system), t in time_periods
16 name = get_name(g)
17 @constraint(m, pg[name, t] >= get_active_power_limits(g).min)
18 @constraint(m, pg[name, t] <= get_active_power_limits(g).max)
19 end
20
21 net_load = zeros(time_periods)
22 for g in get_components(RenewableGen, system)
23 net_load -= get_time_series_values(SingleTimeSeries, g,
— "max_active_power")
24 end
25
26 for g in get_components(StaticLoad, system)
27 net_load += get_time_series_values(SingleTimeSeries, g,
— "max_active_power")
28 end
29
30 for t in time_periods
31 @constraint(m, sum(pg[g, t] for g in thermal_gens_names) ==
— net_load[t])
32 end
33
34 @objective(m, Min, sum(pg[get_name(g), t]"2 *
— get_cost(get_variable(get_operation_cost(g)))[1] +
— pglget_name(g), t] *
< get_cost(get_variable(get_operation_cost(g)))[2] for g in
— get_components(ThermalGen, system), t in time_periods))
35
36 return optimize! (m)
37 end

38
39 #### Execution ####

40  system_data = System("system_data.json")
41 results = ed_model(system_data, Ipopt.Optimizer)

Listing 3: Example usage of PowerSystems. j1 to the development of a multi-
time step Economic Dispatch (ED) formulation

The focus of PowerSystems. j1 is to provide a structured data-
scheme, efficient in-memory data handling, and parsing capabil-
ities from popular file formats. The primary motivation is to pro-
vide model agnostic data structures that incentivize separation
between the data processing code and the modeling code.

Ongoing work focuses on expanding input data formats and
expand potential data sources to include available databases like
OpenGenome, Spine and OpenEnergyPlatform. Improving inter-
operability with open data sources will facilitate the adoption
by other fields interested in using electric power systems data
models.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was authored by the National Renewable Energy
Laboratory (NREL), operated by Alliance for Sustainable Energy,
LLC, for the U.S. Department of Energy (DOE) under Contract No.
DE-AC36-08G028308. This work was supported by the Labora-
tory Directed Research and Development (LDRD), United States



José Daniel Lara, Clayton Barrows, Daniel Thom et al.

of America Program at NREL. The views expressed in the article
do not necessarily represent the views of the DOE or the U.S.
Government. The U.S. Government retains and the publisher, by
accepting the article for publication, acknowledges that the U.S.
Government retains a nonexclusive, paid-up, irrevocable, world-
wide license to publish or reproduce the published form of this
work, or allow others to do so, for U.S. Government purposes.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.s0ftx.2021.100747.

References

[1] Pfenninger S, Hirth L, Schlecht I, Schmid E, Wiese F, Brown T, et al. Opening
the black box of energy modelling: Strategies and lessons learned. Energy
Strategy Rev 2018;19:63-71.

DecCarolis JF, Hunter K, Sreepathi S. The case for repeatable analysis with

energy economy optimization models. Energy Econ 2012;34(6):1845-53.

[3] Lara ]JD, Lee ]JT, Callaway DS, Hodge B-M. Computational exper-

iment design for operations model simulation. Electr Power Syst

Res 2020;189:106680. http://dx.doi.org/10.1016/j.epsr.2020.106680, http:

//www.sciencedirect.com/science/article/pii/S0378779620304831.

Wilson G, Aruliah DA, Brown CT, Hong NPC, Davis M, Guy RT, et al. Best

practices for scientific computing. PLoS Biol 2014;12(1):e1001745.

Wilson G, Bryan ], Cranston K, Kitzes ], Nederbragt L, Teal TK. Good enough

practices in scientific computing. PLoS Comput Biol 2017;13(6):e1005510.

Sandve GK, Nekrutenko A, Taylor |, Hovig E. Ten simple rules for repro-

ducible computational research. PLoS Comput Biol 2013;9(10):e1003285.

Kwong T. Hands-on design patterns and best practices with julia. Packt

Publishing; 2020.

[8] Milano F. Power system modelling and scripting. Springer Science &

Business Media; 2010.

Schivley G, Welty E, Patankar N. PowerGenome/PowerGenome: v0.4.1.

Zenodo; 2021, http://dx.doi.org/10.5281/zenodo.4552835.

[10] OpenEnergyPlatform/oeplatform. Open Energy Family; 2021, original-
date: 2015-11-20T14:21:02Z, https://github.com/OpenEnergyPlatform/
oeplatform.

[11] Jenkins ]D, Sepulveda NA. Enhanced decision support for a changing
electricity landscape: The genx configurable electricity resource capacity
expansion model. p. 67.

2

[4

[5

6

17

[9

[12]

[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

SoftwareX 15 (2021) 100747

Marin M, PekkaSavolainen, Vennstrom P, Rinne E, jkiviluo, sundelld, et
al. Spine-project/Spine-Toolbox: v0.5.0-final.1. Zenodo; 2021, http://dx.doi.
org/10.5281/zenodo0.4501197.

Milano F, Zhou M, Hou G. Open model for exchanging power system data.
In: 2009 IEEE power & energy society general meeting. IEEE; 2009, p. 1-7.
Bezanson ], Edelman A, Karpinski S, Shah VB. Julia: A fresh approach to
numerical computing. SIAM Rev 2017;59(1):65-98.

Thom D, Lara JD, Barrows CP. NREL-SIIP/InfrastructureSystems.jl: v1.7.4.
Zenodo; 2021, http://dx.doi.org/10.5281/zenodo0.4780333.

Uslar M, Specht M, Rohjans S, Trefke J, Gonzalez JM. The common infor-
mation model CIM: IEC 61968/61970 and 62325-A practical introduction
to the CIM. Springer Science & Business Media; 2012.

Glauer M, Booshehri M, Emele L, Fluegel S, Forster H, Frey ], et al. The
open energy ontology. 2020.

Xu Y, Myhrvold N, Sivam D, Mueller K, Olsen DJ, Xia B, et al. US test
system with high spatial and temporal resolution for renewable integration
studies. 2020, ArXiv Preprint arXiv:2002.06155.

Barrows C, Bloom A, Ehlen A, Ikdheimo J, Jorgenson ], Krishnamurthy D,
et al. The IEEE reliability test system: A proposed 2019 update. IEEE Trans
Power Syst 2019;35(1):119-27.

Zimmerman RD, Murillo-Sanchez CE, Thomas RJ], et al. MATPOWER:
Steady-state operations, planning, and analysis tools for power systems
research and education. IEEE Trans Power Syst 2011;26(1):12-9.

Barrows CP, Chernyakhovskiy 1. PSI-Cambodia: Analysis Release:1.0.0.
Zenodo; 2020, http://dx.doi.org/10.5281/zenod0.4009566.

Bush B, Chen Y, Ofori-Boateng D, Gei Y. Topological machine learning
methods for power system responses to contingencies. In: The thirty-
third annual conference on innovative applications of artificial intelligence,
association for the advancement of artificial intelligence; 2020.

Bush B. Topology-based machine-learning for modeling power-system
responses to contingencies. In: American statistical association 2020 joint
statistical meetings; 2020.

Lara JD, Henriquez-Auba R, Callaway DS, Hodge B-M. AGC Simulation
model for large renewable energy penetration studies. In: 2020 52nd North
American Power Symposium (NAPS). 2021, p. 1-6. http://dx.doi.org/10.
1109/NAPS50074.2021.9449687.

Roberts C, Lara JD, Henriquez-Auba R, Poolla BK, Callaway DS. Grid-coupled
dynamic response of battery-driven voltage source converters. In: 2020
IEEE international conference on communications, control, and computing
technologies for smart grids (SmartGridComm). IEEE; 2020, p. 1-6.
Henriquez-Auba R, Lara JD, Roberts C, Callaway DS. Grid forming inverter
small signal stability: Examining role of line and voltage dynamics. In:
IECON 2020 the 46th annual conference of the IEEE industrial electron-
ics society. 2020, p. 4063-8. http://dx.doi.org/10.1109/IECON43393.2020.
9255030.


https://doi.org/10.1016/j.softx.2021.100747
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb1
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb1
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb1
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb1
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb1
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb2
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb2
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb2
http://dx.doi.org/10.1016/j.epsr.2020.106680
http://www.sciencedirect.com/science/article/pii/S0378779620304831
http://www.sciencedirect.com/science/article/pii/S0378779620304831
http://www.sciencedirect.com/science/article/pii/S0378779620304831
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb4
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb4
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb4
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb5
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb5
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb5
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb6
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb6
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb6
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb7
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb7
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb7
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb8
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb8
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb8
http://dx.doi.org/10.5281/zenodo.4552835
https://github.com/OpenEnergyPlatform/oeplatform
https://github.com/OpenEnergyPlatform/oeplatform
https://github.com/OpenEnergyPlatform/oeplatform
http://dx.doi.org/10.5281/zenodo.4501197
http://dx.doi.org/10.5281/zenodo.4501197
http://dx.doi.org/10.5281/zenodo.4501197
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb13
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb13
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb13
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb14
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb14
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb14
http://dx.doi.org/10.5281/zenodo.4780333
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb16
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb16
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb16
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb16
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb16
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb17
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb17
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb17
http://arxiv.org/abs/2002.06155
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb19
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb19
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb19
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb19
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb19
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb20
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb20
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb20
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb20
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb20
http://dx.doi.org/10.5281/zenodo.4009566
http://dx.doi.org/10.1109/NAPS50074.2021.9449687
http://dx.doi.org/10.1109/NAPS50074.2021.9449687
http://dx.doi.org/10.1109/NAPS50074.2021.9449687
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb25
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb25
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb25
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb25
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb25
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb25
http://refhub.elsevier.com/S2352-7110(21)00076-5/sb25
http://dx.doi.org/10.1109/IECON43393.2020.9255030
http://dx.doi.org/10.1109/IECON43393.2020.9255030
http://dx.doi.org/10.1109/IECON43393.2020.9255030

	PowerSystems.jl — A power system data management package for large scale modeling
	Motivation and significance
	Software description
	Software architecture
	Type hierarchy
	Data container
	Additional utilities

	Illustrative example
	Impact
	Conclusions
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References


