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Analyzing the effects of cyberattacks on distribution
system state estimation

Govind Saraswat, Rui Yang, Yajing Liu, and Yingchen Zhang
National Renewable Energy Laboratory (NREL), Golden, CO, USA.

Abstract—Key components of power systems—such as energy
management systems, automatic generation control, and state
estimation—are under serious vulnerability from cyberattacks.
Cyber threats in electric grids have increased significantly be-
cause of the increased interconnectivity of supervisory control
and data acquisition systems and public network infrastructure.
As the penetration level of distributed energy resources increases,
it is imperative to employ system-monitoring techniques such as
state estimation for the reliable operation of distribution systems.
Recently, multiple methods have been developed that exploit
the low rank property of distribution system state matrix and
are robust to bad data, such as matrix completion. This paper
analyzes the impact of various realistic cyberattack scenarios on
matrix completion. Realistic cyberattack scenarios are converted
into data corruption models that are used in an extensive
simulation of a custom IEEE 123-bus system.

Index Terms—cyberattacks, state estimation, distribution sys-
tems, electric grid, security

I. INTRODUCTION

An electric grid comprises transmission and distribution
networks that connect different sources of power generation
to consumers across a large geographic area. It is a com-
plex system that requires continuous monitoring to maintain
reliable operation. It is difficult to obtain reliable and fast
measurements of voltage from all nodes, so state estimation is
generally used to monitor the system by analyzing available
power measurements and the underlying system model; thus,
state estimation is critical for reliable electric grid operation.
State estimation enables energy management systems to per-
form crucial control and planning tasks such as optimizing
power flows, and bad data detection [1]. In transmission
networks, because ample measurements are available, the
system is generally fully observable; which roughly means
that is it has more observations than unknown variables. For
such observable systems, the weighted least-squares (WLS)
method is widely used for state estimation [2]. Distribution
systems consist of large number of connection points and even
with the widespread deployment of sensor units, the system is
generally unobservable, so WLS is not effective [3]. Psuedo-
measurements that consider past measurements are used with
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WLS for distribution system state estimation (DSSE), but they
can result in significant errors in the estimated state [4]; thus,
utilities rarely use state estimation for distribution systems
[5], [6]. For distribution system state matrix (see Section II
for the matrix structure), all but first few singular values are
zero [7]. This leads to the assumption that distribution system
state matrices are of low rank. Recently, multiple methods
have been developed that exploit this low rank property
of distribution system state matrix. These methods include
matrix completion [7]–[11] and tensor completion [12], [13].
These methods usually succeed when they augment standard
approaches with power flow constraints. Considering matrix
completion, it was shown in [14] that it is very accurate with
limited measurements as well as robust to bad data. Power flow
constraints depend on an underlying impedance model, which
is sometimes hard to come by because of aging infrastructure
or unrecorded changes in topology. Tensor completion [13]
that uses measurements from multiple instants to estimate the
unobserved states can be effective when reliable impedance
model is not available.

Similar to other systems in the modern grid, state estimation
is susceptible to various cyber intrusions [15]. Grid operators
rely on accurate information on the current status of the grid,
which is provided by state estimation algorithms, to take
appropriate control actions. Cyberattacks can cause unforeseen
errors in the estimated state [16] that can jeopardize a control
center’s situational awareness of the grid. This can lead to sub-
optimal or even harmful control actions. Analyses and impacts
of cyber intrusions on state estimation are limited to the WLS
algorithm [17]–[19]. Understanding the effects of cyberattacks
on new methods—such as matrix and tensor completion —
is scarce; thus, there is a great need to first understand the
impact of various cyberattacks on the latest state estimation
algorithms and then develop mitigation strategies to counter
those attacks.

Most cyberattack studies consider only false data injec-
tion (FDI) or random data corruption [20]. This manuscript
considers actual physical cyberattack scenarios (based on the
National Electric Sector Cybersecurity Organization Resource
(NESCOR) report [21]) and relates them to data corruption
models that are used to analyze cyber intrusions. We consider
strategic as well as local attacks, which could cause signifi-
cantly more damage than arbitrary random attacks. Analysis
reveals that certain corruption models as well as certain
locations are much more detrimental to state estimation when
used by cyberattackers. This information can be used by utility
companies to strengthen the security of critical locations as
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well as critical measurements to fight cyberattacks.

A. The main contributions of this paper are:

1) This is the first study to analyze the impacts of realistic
cyberattack scenarios on DSSE using matrix completion.

2) We present data corruption models that capture cyber-
attack scenarios that include (i) Measurement loss, (ii)
Strategic false data injection, (iii) Neighborhood attack,
and (iv) Replay attack.

The rest of this paper is organized as follows. Section II
provides a brief background on matrix completion and gives
details on the cyber scenarios as well as the data corruption
models. Section III presents the results of a cyberattack
simulation on a custom IEEE 123-bus system. Section IV
concludes the paper and provides some future directions.

II. APPROACH

A. Matrix Completion

In our recent work, we propose a low-observability state
estimation algorithm based on matrix completion, which is
a tool for estimating missing values in low-rank matrices.
This tool is used to estimate state for a given time step
by forming a structured data matrix; whose one axis corre-
spond to measurement types and other correspond to mea-
surement locations. We showed that the matrix completion
model augmented with noise-resilient power flow constraints
is an effective technique for DSSE under low-observability
conditions [7]. Two formulations of the state matrix were
proposed in [7]: branch formulation and bus formulation. In
this manuscript, we evaluate the effects of cyberattacks on the
matrix completion method with bus formulation, which applies
to general three-phase distribution systems. For the matrix built
using bus formulation, each row represents a bus, and each
column represents a quantity relevant to the bus. The quantities
we consider for each bus include the real voltage, imaginary
voltage, voltage magnitude, active power, and reactive power.
The real voltage and imaginary voltage at non-slack buses
are considered as variables; and the voltage magnitude, active
power, and reactive power are considered as potentially known
measurements. The matrix completion model was formulated
as a semidefinite program (SDP) and solved using an SDP
solver; see [7] for more details.

B. Cyber Scenarios

Here, we analyze the effects of cyberattacks on matrix
completion-based state estimation. We consider a custom IEEE
123-bus network as a test system with simulations for 1
week with data sampled each minute. Each phase at a bus
has three potential measurements available: voltage magnitude
(V), active power (P) and reactive power (Q). Four broad
categories of cyberattacks as detailed in the NESCOR report
[21] are considered:

1) Measurement loss: The accuracy of matrix completion—
and similar algorithms that exploit the structure of the
measurement data—relies on the amount of data avail-
able. For DSSE, because the available data are already
scarce, any further loss of data can have a detrimental

effect on the algorithm’s estimation accuracy. Related
scenarios from the NESCOR report include AMI.19,
AMI.28, WAMPAC.6, etc.

2) FDI: We analyze the effects of randomly corrupting a
certain percentage of the measurement data. Along with
randomly adding a small corruption value to the measure-
ment, we consider the case when corruption is only in
one direction (the corrupted measurements are either all
increased or all decreased). Related scenarios from the
NESCOR report include AMI.4, AMI.30, WAMPAC.2,
WAMPAC.4, DGM.6, etc.

3) Neighborhood attack: Under this attack model, all the
measurements from a physical neighborhood get compro-
mised. Analysis of this attack leads to the identification
of critical locations in the network that are more sus-
ceptible to the disruption of the state estimation under a
cyberattack. Related scenarios from the NESCOR report
include WAMPAC.1, DGM.16, etc.

4) Replay attack: Under a replay attack, measurements of
previous time steps are passed on as current measure-
ments. We consider time steps with maximum variability
in voltage and power to simulate the maximum corrup-
tion. Related scenarios from the NESCOR report include
AMI.27, WAMPAC.3, etc.

These scenarios are used to create detailed data corruption
models. Two aspects of corrupting measurements are ‘which
measurements get corrupted’ and ‘how much do they get
corrupted’; we call them ‘which’ and ‘how’. For the FDI
attack, these aspects are given as:

a) Which: Corrupt a certain percentage of all available or
either V, P, or Q measurements. Here, the effect of the
corruption in different measurement channels will be
quantified.

b) How: Let the true value of a measurement i be defined
as xi and the corrupted value as x̂i. The extent of the
corruption is defined as r which is chosen from a uniform
probability distribution between 0 and 1. Then for all
available measurements i, the corruption is chosen to be
either multiplicative:

x̂i = (1 ± 0.1r)xi (1)

or additive:
x̂i = xi ± 0.1rx̄ (2)

where x̄ is the mean of all the similar measurements—
that is, if xi is a voltage measurement, then x̄ is the mean
of all available voltage measurements, and so on. When
the corruption is only in one direction, two cases are con-
sidered. First is an over attack, where x̂i = (1 + 0.1r)xi

(multiplicative) or x̂i = xi + 0.1rx̄ (additive). Second is
an under attack, where x̂i = (1−0.1r)xi (multiplicative)
or x̂i = xi−0.1rx̄ (additive). With the model of equations
(1) or (2) and choosing r between 0 and 1 implies a
corruption of up to ±10%.

Over/under attacks provide strategic ways to spoof sensor
data. For the measurement loss scenario, a certain percentage
of available data is randomly removed from the available mea-
surement data. Determining which measurements to remove is
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similar to the FDI scenario—all available or either V, P, or Q
measurements are assumed to be lost. For the neighborhood
attack, all available measurements corresponding to a single
neighborhood are assumed to be corrupt using equations (1)
or (2). Neighborhoods are chosen based on different switches
in the IEEE 123-bus system and are shown in Fig. 1. Here,
Neighborhood 1 is the smallest in terms of total number of
node phases, and 5 is the biggest, in that order. For the replay
attack, measured values from one of the previous time steps are
used as the corruption. Determining which measurements to
corrupt is similar to the FDI and measurement loss scenarios.
The next section presents representative results of simulations
based on these models.

Fig. 1: Chosen neighborhoods. Neighborhood 1 (in red) is the
smallest in terms of total number of node phases and 5 (in
yellow) is the largest (in that order).

III. RESULTS

Realistic cyberattack scenarios described in Section II are
simulated in detail here. We plot mean average percentage
error (MAPE) of the voltage magnitude and mean angle
error (MAE) of the voltage angle for each scenario. Matrix
completion based SE usually have the acceptable accuracy
of MAPE ≤ 1% and MAE ≤ 1◦ [14]. Measurement data
for this study are taken from a week long simulation of a
custom IEEE 123-bus model with high photovoltaic (PV)
penetration. Number of node phases in the model is 260
(excluding the slack bus), with 3 measurements on each node;
voltage magnitude, active and reactive power. Thus, the total
number of measurements at each time instant is 780. Matrix
completion is used for state estimation. For all simulations,
the total available measurements for matrix completion are
fixed to be 20% of all possible measurements in the system
(= 0.2 ∗ 780 = 156), which are randomly selected for each
scenario.

We first present the results of Scenario 1, measurement loss.
Here, out of 20% available data, from 10% to 95% of available
data is removed. For each percentage removal, 10 different
simulation runs are performed while randomly removing that
percentage of data in each run. MAPE for the case when the
voltage measurements are lost is plotted in Fig. 2(a). Similarly
for the cases when the P or Q measurements are lost, MAPEs
are plotted in Fig. 2(b) and Fig. 2(c), respectively. As the
percentage of measurement loss increases, initially it has a
negligible effect on state estimation, which points to good

robustness of the matrix completion to the measurement loss.
As the measurement loss increases up to 80 and higher, matrix
completion suffers (with average MAPE> 5 and MAE> 2)
when the voltage measurements are lost. The loss of the P
measurements does not have any effect on the state estimation,
with average MAPE≤ 1% and average MAE ≤ 1◦. Angle
error for the same two cases is plotted in Fig. 3(a) and Fig. 3(b)
respectively. As in the case of MAPE, results clearly show
that the effect of the P measurement loss has a negligible
effect on voltage angle estimation, whereas the loss of the
V measurement has a significant effect when the loss is
80% or more. The effects of loss of the Q measurements is
similar to the P measurements and is omitted because of space
constraints.

(a)

(b)
Fig. 2: MAPE of voltage magnitude estimation when (a)
voltage and (b) P measurements are lost.

(a)

(b)

Fig. 3: MAE of voltage angle estimation when (a) voltage and
(b) P measurements are lost.

Next, we present the results of Scenario 2, FDI. Here, out
of 20% available data, from 10% to 95% of available data is
randomly corrupted. As discussed earlier, for each percentage,
10 different runs are simulated with randomly corrupting data
in each run for both multiplicative and additive corruption.
MAPE for the case when the voltage and P measurements
are corrupted is plotted in Fig. 4(a) and Fig. 4(b) respec-
tively. As in Scenario 1, corruption in the V measurements
has a significant effect on MAPE (with average MAPE> 2
and MAE> 1), whereas corruption in the P measurements
has a negligible effect. The effects of corruption on the Q
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measurements is similar to the P measurements and is omitted
because of space constraints. Note that the matrix completion
formulation used in this paper employs the linearized power
flow constraints [22]. We chose the appropriate tolerance that
the optimization problem has to satisfy, thus, voltage estimates
are less sensitive to the small changes in power injections
as their effect may be within the tolerance, whereas voltage
magnitude measurements directly impact how the voltages will
be estimated and thus leading to a larger impact. Angle errors
for the same two cases are plotted in Fig. 5(a) and Fig. 5(b)
respectively, and the results are similar.

(a)

(b)
Fig. 4: MAPE of voltage magnitude estimation when (a)
voltage and (b) P measurements are randomly corrupted.
Results from both multiplicative and additive corruptions are
shown.

(a)

(b)
Fig. 5: MAE of Voltage angle estimation when (a) voltage and
(b) P measurements are randomly corrupted. Results from both
multiplicative and additive corruptions are shown.

For the over/under attacks, MAPE and MAE when the
voltage measurements are corrupted are plotted in Fig. 6(a)
and Fig. 6(b), respectively. Here, only the case of multi-
plicative corruption is presented; additive corruption showed
similar results, but it is omitted. Compared to the random
corruption results shown in Fig. 4 and Fig. 5, for the same
percentage of corruption in the voltage measurements, the
error in estimation is almost twice when the corruption is in
one direction (average MAPE> 4). The effects of corruption
on the P and Q measurements are negligible (similar to the
random corruption), and they are omitted because of space

constraints. Even when only 30% of the measurements are
corrupted in this attack, MAPE is more than double (≈ 1.0)
the baseline (≈ 0.5). Clearly, when corruption is strategic, as
in the over/under attacks, the effect on state estimation is much
more detrimental than random corruption.

(a)

(b)

Fig. 6: (a) MAPE of voltage magnitude and (b) MAE of
voltage angle estimation when the voltage measurements are
corrupted in one direction with multiplicative corruption. Re-
sults from both over and under attacks are shown.

Next, we present the results with neighborhood attacks in
Fig. 7. As mentioned in the previous section, neighborhoods
are selected based on switches, and the size of a neighborhood
is determined in terms of the available measurements. Here,
Neighborhood 1 is the smallest, and 5 is the biggest (in that
order). For each subplot, all measurements corresponding to
one of the neighborhoods are corrupted, and MAPE/MAE
corresponding to the measurements from each neighborhood
are plotted. For example, the orange plot corresponds to
when the second neighborhood is attacked; each point on
the plot is the MAPE/MAE of the measurements from the
specific neighborhood. As evident from the plots, even though
Neighborhood 2 is second smallest in size, it has the second

(a)

(b)

Fig. 7: (a) MAPE of voltage magnitude and (b) MAE of volt-
age angle estimation when a single neighborhood is attacked.
The x-axis shows the effect on the specific neighborhood.
Each subplot shows the effects of attacks on five different
neighborhoods. Points are the mean, and error bars are the
standard deviation.
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highest impact on the state estimation accuracy. Clearly, it
is the critical neighborhood, and it should be given extra
preference in security.

Next, we present the replay attack when measurements from
previous time steps are camouflaged as current measurements.
For this result, we used measurements from two time steps that
are the most different, and we plot the voltage magnitude and
angle estimation accuracy in Fig. 8(a) and Fig. 8(b), respec-
tively. For this simulation, even with a high PV penetration,
variations in voltage and power are not enough to have any
detrimental effects on DSSE using matrix completion. This
might not be the case for other distribution systems; thus, this
attack scenario needs to be explored further.

(a)

(b)

Fig. 8: (a) MAPE of voltage magnitude and (b) MAE of
voltage angle estimation during a replay attack.

IV. CONCLUSIONS AND FUTURE WORK

Simulations reveal that corruption in voltage measurements
has a much greater impact on state estimation than corruption
in active or reactive power measurements. Further, strategic
attacks, such as over/under attacks, cause higher errors in
voltage estimation than random attacks with similar corrup-
tions. Simulations on the neighborhood attack reveal a critical
neighborhood that when attacked has a much greater impact
on state estimation accuracy. In normal operations, voltage
magnitude does not vary much between measurements, and
a replay attack is not very effective to cause any significant
errors in state estimation using matrix completion. Thus, the
state estimation algorithm using matrix completion is more
susceptible to cyberattacks when:

1) Corruption happens in the voltage measurements
2) Values are changed toward one direction (over/under

attack)
3) Critical neighborhoods are attacked.
In future work, we will consider the effects of the cyber

scenarios presented here on utility-scale distribution systems.
We will analyze the effects of these cyberattack scenarios on
other DSSE algorithms, such as Tensor completion and 1D/2D
compressive sensing [23]. We will also develop intrusion
detection strategies for these algorithms to make them robust
to such cyberattacks. Initial idea is to take traditional residue-
based mitigation strategies used for WLS algorithms and adapt
them for matrix and tensor completion based DSSE.
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