
NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 
This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

 

 
Contract No. DE-AC36-08GO28308 

  

Conference Paper 
NREL/CP-2C00-78000 
April 2021 

Grid-Interactive Multi-Zone Building 
Control Using Reinforcement Learning 
with Global-Local Policy Search 
Preprint  
Xiangyu Zhang, Rohit Chintala, Andrey Bernstein,  
Peter Graf and Xin Jin 

National Renewable Energy Laboratory 

Presented at the 2021 American Control Conference 
May 25-28, 2021 



NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 
This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

 

 
Contract No. DE-AC36-08GO28308 

 

National Renewable Energy Laboratory 
15013 Denver West Parkway 
Golden, CO 80401 
303-275-3000 • www.nrel.gov 

Conference Paper  
NREL/CP-2C00-78000 
April 2021 

Grid-Interactive Multi-Zone Building 
Control Using Reinforcement Learning 
with Global-Local Policy Search 
Preprint  
Xiangyu Zhang, Rohit Chintala, Andrey Bernstein,  
Peter Graf and Xin Jin 

Suggested Citation 
Xiangyu Zhang, Rohit Chintala, Andrey Bernstein, Peter Graf and Xin Jin. 2021. Grid-
Interactive Multi-Zone Building Control Using Reinforcement Learning with Global-Local 
Policy Search: Preprint. Golden, CO: National Renewable Energy Laboratory.  
NREL/CP-2C00-78000. https://www.nrel.gov/docs/fy21osti/78000.pdf.  

https://www.nrel.gov/docs/fy21osti/78000.pdf


 

 

NOTICE 

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable 
Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding 
provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Building 
Technologies Office. The views expressed herein do not necessarily represent the views of the DOE or the U.S. 
Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges 
that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce 
the published form of this work, or allow others to do so, for U.S. Government purposes. 

This report is available at no cost from the National Renewable 
Energy Laboratory (NREL) at www.nrel.gov/publications. 

U.S. Department of Energy (DOE) reports produced after 1991 
and a growing number of pre-1991 documents are available  
free via www.OSTI.gov. 

Cover Photos by Dennis Schroeder: (clockwise, left to right) NREL 51934, NREL 45897, NREL 42160, NREL 45891, NREL 48097,  
NREL 46526. 

NREL prints on paper that contains recycled content. 

http://www.nrel.gov/publications
http://www.osti.gov/


Grid-Interactive Multi-Zone Building Control
Using Reinforcement Learning with Global-Local Policy Search

Xiangyu Zhang, Rohit Chintala, Andrey Bernstein, Peter Graf and Xin Jin

Abstract— In this paper, we develop a grid-interactive multi-
zone building controller based on a deep reinforcement learning
(RL) approach. The controller is designed to facilitate building
operation during normal conditions and demand response
events, while ensuring occupants comfort and energy efficiency.
We leverage a continuous action space RL formulation, and
devise a two-stage global-local RL training framework. In the
first stage, a global fast policy search is performed using
a gradient-free RL algorithm. In the second stage, a local
fine-tuning is conducted using a policy gradient method. In
contrast to the state-of-the-art model predictive control (MPC)
approach, the proposed RL controller does not require complex
computation during real-time operation and can adapt to non-
linear building models. We illustrate the controller performance
numerically using a five-zone commercial building.

I. INTRODUCTION

In the U.S., buildings consumed around 39% of the total
national energy usage in 2019 (21% for residential and 18%
for commercial) [1] and over 70% of the total electricity
usage [2]. Specifically, in the commercial sector, heating,
ventilation and air-conditioning (HVAC) systems account
for 32.7% of the total electricity consumption [3]. Due
to its strong coupling with the building thermal dynamics,
HVAC control is complicated and is of interest in this and
many other studies. Proper HVAC control will not only
improve thermal comfort and energy efficiency, but also
enable buildings to be grid-interactive, providing valuable
demand-side resources in the smart grid paradigm.

Currently, in the literature, model predictive control (MPC)
is the mainstream approach for optimal building control.
For instance, it has been used for the building cooling sys-
tem control and demonstrated cost reduction and efficiency
improvement in a real-world application [4]. Moreover, for
larger buildings with relatively complex HVAC systems, a
distributed version of MPC is proposed in [5] for better
scalability and more manageable computational burden. See

The authors are with the U.S. National Renewable Energy Laboratory,
Golden, CO 80401, USA. andrey.bernstein@nrel.gov

This work was authored by the National Renewable Energy Laboratory,
operated by Alliance for Sustainable Energy, LLC, for the U.S. Department
of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding
provided by the U.S. Department of Energy Office of Energy Efficiency
and Renewable Energy Building Technologies Office. The views expressed
in the article do not necessarily represent the views of the DOE or the
U.S. Government. The U.S. Government retains and the publisher, by
accepting the article for publication, acknowledges that the U.S. Government
retains a nonexclusive, paid-up, irrevocable, worldwide license to publish
or reproduce the published form of this work, or allow others to do so, for
U.S. Government purposes.

This research was performed using computational resources sponsored
by the Department of Energy’s Office of Energy Efficiency and Renewable
Energy and located at the National Renewable Energy Laboratory.

review paper [6] for more examples. Despite the fact that
MPC is popular in academic research, its applications are
not well-developed in the real world; this is due to two
major drawbacks associated with MPC: 1) high implemen-
tation cost: the on-demand computation of MPC requires
optimization problems to be solved repeatedly within each
prediction interval, which poses high requirements on the
computing hardware and the optimization software; 2) high
modeling cost: MPC requires building dynamics models,
which are building-specific and typically can only be devel-
oped by a professional team. The modeling efforts include
accurately modeling the building and properly simplifying
(e.g., linearizing) it so that the optimization problem can be
solved efficiently. As a result, building owners’ interest in
implementing optimal building control wanes due to these
high costs.

In recent years, with the development of artificial intelli-
gence, reinforcement learning (RL) stands out for its excel-
lent performance in optimal decision-making [7]. In building
control, RL is also being investigated as an alternative to
MPC due to the following merits: 1) The RL control policy
can be trained offline and only computationally-inexpensive
policy evaluation is conducted during real-time control. 2)
Compared with optimization, RL can handle non-linearity
and stochasticity more easily. 3) The RL controller can be
re-trained periodically to cope with model drift (i.e., change
of environment/season or occupants behavior). As a result,
many studies now investigate the feasibility of using RL
controllers for building control. Deep Q-network (DQN)
is applied to implement variable air-flow volume (VAV)
control and observe effective cost reduction when compared
with a rule-based controller [8]. Similarly, the asynchronous
advantage actor-critic (A3C) algorithm is utilized in [9] to
optimally control the supply water set point in a building’s
heating system. In contrast to prior works where a discrete
action space is used, an RL algorithm called Zap Q-learning
is applied in HVAC control considering a continuous control
space [10]. In addition to the building-centric control objec-
tives, using RL to coordinate multiple HVAC units to achieve
a load reduction goal during demand response (DR) events
while maintaining thermal comfort is investigated in [11].

Though existing RL-based methods have proven effective,
we have identified the following knowledge gaps/fields of
improvement that are not now addressed or are only partially
addressed:

1) Continuous action space should be considered for a
more accurate control and to avoid action discretiza-
tion, which may impact control performance.
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2) In addition to normal building-centric operation, grid-
interactive building control should be encouraged in
the future smart grid/smart city paradigm.

3) Zone control should be investigated to enable coor-
dination among zones, as most commercial buildings
have multiple thermal zones.

4) To facilitate practical implementation, the perfect fore-
cast of exogenous data, or other hard to acquire infor-
mation, should not be included as controller inputs.

In this paper, we study a practical RL controller for grid-
interactive multi-zone buildings, with the above-mentioned
knowledge gaps addressed. Compared to prior works, the
continuous policy search space, more complicated controlled
system/objective (i.e., multi-zone building and grid service),
and the absent of perfect forecast of exogenous information,
inevitably pose more difficulties for the RL controller’s
training. To overcome these challenges, we propose a two-
stage global-local RL policy search framework. In the first
stage, a gradient-free evolution strategy RL (ES-RL) algo-
rithm [12] is leveraged for fast global policy convergence.
In the second stage, the proximal policy optimization (PPO)
algorithm [13] is utilized for local policy fine-tuning. We
illustrate the controller performance numerically using a five-
zone commercial building. In particular, we demonstrate
that our two-stage approach outperforms the policies trained
using ES-RL or PPO alone, and we compare the control
performance with an equivalent baseline MPC in both linear
and non-linear implementations.

II. PROBLEM FORMULATION

Buildings are usually divided into several zones, and each
zone has its relatively independent thermal dynamics. In a
multi-zone commercial building (thermal zone i ∈ N =
{1, 2, ..., N}), which utilizes a centralized HVAC system for
cooling, the HVAC chiller discharge air temperature (T da)
and the cooling air flow rate to each zone (ṁi, i ∈ N ), can
be controlled to provide a comfortable indoor environment
for occupants. In this paper, we propose an RL controller
that can achieve multi-objective control over the control
horizon (t ∈ T ): 1) minimizing the HVAC system’s energy
consumption; 2) maintaining the indoor comfort; and 3)
limiting the maximum power consumption below a certain
time-variable threshold P t. These objectives are sometimes
mutually conflicting, and thus designing a good controller is
challenging.

A. HVAC Optimal Control Formulation
Mathematically, the multi-objective optimal HVAC control

can be formulated as follows.
First, the thermal discomfort cost measures the temper-

ature deviation from the predefined comfort band [T it, T
i

t],
which is assumed to increase first linearly and then quadrat-
ically:

D(T it ) :=

 max(T it − T
i

t, (T
i
t − T

i

t)
2), T it > T

i

t

max(T it − T it , (T
i
t − T it )2), T it < T it

0, otherwise
(1)

where T it is the indoor temperature of zone i at step t.
Second, the relationship between the HVAC power

consumption (Pt) and control variables (i.e., ṁt =
[ṁ1

t , ṁ
2
t , ..., ṁ

N
t ] and T dat ) is given by:

P (ṁt, T
da
t ) = a(T outt − T dat )

∑
i∈N

ṁi
t + b

(∑
i∈N

ṁi
t

)3

+ c

(2)
in which the first term describes the cooling chiller power
(T outt represents outdoor temperature) and the rest depict the
VAV fan power. For each control interval (∆t), the energy
consumption is given by:

Et = P (ṁt, T
da
t )∆t. (3)

Third, to account for DR events, a power limit violation
penalty term is given by:

Vt :=

{
(P (ṁt, T

da
t )− P t)2, P (ṁt, T

da
t ) ≥ P t

0, otherwise
. (4)

During a DR event (t ∈ TDR), P t is reduced dramatically
and the controller needs to reduce Pt accordingly in order
to participate in the DR event.

Combining all three objectives together, the optimal con-
trol problem is formulated as:

minimize
ṁt,Tda

t

∑
t∈T

wt[κ1
∑
i∈N
D(T it ), κ2Et, κ3Vt]>

subject to T da ≤ T dat ≤ T
da
, (∀t)

ṁi ≤ ṁi
t ≤ ṁ

i
, (∀t,∀i)

Tt+1 = F
(
Tt, ṁt, T

da
t ,Ψt

)
(∀t) .

(5)

In (5), κi are factors that monetize the three control ob-
jectives; wt = [w1

t , w
2
t , w

3
t ] is a weighting vector such that∑3

i=1 w
i
t = 1; and F is the building thermal dynamics model

represented by an equality constraint, in which Tt ∈ RN
is the temperature of all zones at step t and Ψt represents
all non-controllable exogenous inputs. The details of the
building model are discussed next.

B. Building Thermal Dynamics Model

In contrast to optimization-based approaches, RL does not
place constraints on the format of F , which can be the actual
building, a high-fidelity building simulator (i.e., EnergyPlus
[14]) or a reduced-order model (ROM). Considering the
low learning efficiency and potentially dangerous exploring
actions when learning on the actual building, and the high
modeling cost and poor scalability of using EnergyPlus, a
ROM, as a data-driven model that represents the middle
ground of model accuracy, modeling cost, and scalability,
is leveraged in this paper.

A linear parametric modeling approach [15] is used to
develop a temperature-predicting model for Zone i using an
Auto-Regressive models with eXogenous variables (ARX),
which is given by:
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TABLE I
LIST OF INPUTS CONSIDERED TO PREDICT TEMPERATURE OF ZONE i

Variable Symbol
Outdoor air temperature T out

t

Delivered cooling QHV AC,i
t

Solar heat gain Qsolar,i
t

Internal heat gain (reflects occupancy level) Qint,i
t

Other zone’s temperature T j
t−1, j ∈ N , j 6= i

T it =

na∑
j=1

aijT it−j +

nb∑
j=1

bij
>

uit−j (6)

where uit is the input vector, and aij , j ∈ {1, ..., na} and
bij , j ∈ {1, ..., nb} are model parameters to be determined.
Features to be considered to formulate uit are shown in Table
I, where Qsolar,it and Qint,it are given as exogenous inputs
and QHVAC,it is given by:

QHVAC,it = Cpṁ
i
t(−T dat + T it ), (7)

in which Cp = 1.0 kWh/(kg ·K) representing the specific
heat capacity of air. These features are down-selected via
feature selection and then the final components of uit is
determined. Note by considering temperatures from other
zones, the interactions between different zones are taken into
account. Different hyper-parameters are also tested, and in
this paper, we use na = 1 and nb = 1, which can already
predict temperature accurately, according to a comparison
between outputs of this model and EnergyPlus. In addi-
tion, though (6) is linear, the ṁi

t · T dat term in (7) makes
the model non-linear with respect to the control variables.
Finally, all zone-specific temperature prediction models (6)
are combined to form the multi-zone building model F in
(5). Model parameters aij and bij are derived from system
identification (i.e., learned from building historical data).

III. CONTROLLER DESIGN

In this section, we present the design of the proposed
RL controller and an MPC baseline. Basics of RL are not
discussed here, and interested readers should refer to [16].

A. Reinforcement Learning Controller (RLC)

To be solved by RL, the optimal control problem (5) is
first transformed into a Markov decision process (MDP),
which is typically represented by a quintuple (S,A,R,P, γ).
Except the state transition probability P , which is implicitly
determined by the controlled system and the environment,
other elements (S,A,R, γ) are defined as follow.

First, the RL state and its complete set (st ∈ S) rep-
resent the information that the RL agent requires to make
a decision. The state typically contains information regard-
ing the current system status and some other information
related to its future evolving trajectory. In this study, st =
[Tt,T

out
t ,Et,Pt, t,wt] is used:

1) Tt ∈ RN are the zone temperatures at t.
2) Tout

t = [T outt−K+1, ..., T
out
t ] ∈ RK is the T outt trajectory

of the previous K steps. In contrast to some prior works,

where a forecast of T outt is used, we use past data and let the
RL agent learn to predict future T outt implicitly, which avoids
developing a forecasting module that adds extra complexity.

3) Et = [ft, sint, cost] approximates the solar radiation
and occupancy level to avoid deploying a sophisticated
sensor network within the building. The binary ft ∈ {0, 1}
indicates if the day is a weekday and sint, cost are the sine
and cosine representations for time of the day (e.g., 12:00
PM is represented by [sin(2π · 12/24), cos(2π · 12/24)]).
This coarse approximation, inevitably, introduces error; but
we will demonstrate it is adequate in a building with a regular
schedule in Section V.

4) Pt = [P t, ..., P t+K ] ∈ RK is the power limit for the
next K steps. This means DR events, if called, are notified K
steps before their start, which is realistic (e.g., the capacity
bidding program from San Diego Gas & Electric “Day-of”
option will notify customers hours before the event starts
[17]).

5) Finally, the current step t and multi-objective weights
wt are included in st as well.

Second, the definition of action and its complete set are
straight-forward: at = [ṁ1

t , ṁ
2
t , ..., ṁ

N
t , T

da
t ] ∈ A ⊆ RN+1,

corresponding to control variables in (5). Similarly, the
immediate reward is defined according to (5) as well: rt =
−wt[κ1

∑
i∈N D(T it ), κ2Et, κ3Vt]> ∈ R to be maximized.

Finally, a discount factor γ = 0.99 is used.
To sum up, based on the MDP formulation above, an RL

agent will learn from experience a control strategy (formally
introduced in Section IV-A as the policy) that maximizes the
expected episodic discounted reward: E(

∑
t∈T γ

trt). Note
that although this MDP problem is different from the optimal
control problem (5), it approximates it well as will be shown
in Section V.

B. Model Predictive Controllers (MPC)

Two versions of MPC, MPC-ROM and MPC-LIN, are de-
veloped to solve (5) based on the ROM developed in Section
II-B. The two versions serve as a reference against which the
performance of the RLC is compared to. Specifically, MPC-
ROM uses the exact ARX model (6), meaning the model
used to compute the optimal control actions is the same as
the simulation model. In contrast, MPC-LIN is based on a
linear approximation of (6), which is obtained by performing
a Taylor series expansion at every time-step. Since MPC-
ROM requires solving a non-convex optimization, the com-
putational requirements make it less feasible for real-world
applications as the number of control variables increases.
Therefore, in this paper, MPC-ROM serves as a best possible
reference for the control performance; in contrast, MPC-LIN
shows the performance of a more attainable implementation.

It is also worth noting that MPC requires exogenous inputs
for the planning horizon. In this paper, perfect forecasts (PF)
of T outt , Qsolar,it and Qint,it are provided to MPC-ROM
and MPC-LIN, albeit unrealistic. In contrast, RLC only uses
historical data of T outt and coarse approximation (CA) of
Qsolar,it and Qint,it for decision making; recall the definition
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TABLE II
COMPARISON BETWEEN RLC AND MPC

RL MPC-LIN MPC-ROM
Exogenous Data CA PF PF

System Model Knowledge None Approximate Exact

of RL state st in Section III-A. Table II summarizes the
comparison between the RLC and MPC settings.

IV. GLOBAL-LOCAL POLICY SEARCH SCHEME

In this section, a global-local policy search scheme is
developed, which marries merits from two different types
of RL algorithm.

A. RL Algorithm Preliminaries

RL algorithms are generally categorized as value-based
or policy-based. Policy gradient methods, as policy-based
approaches, directly learn a parameterized control policy
(πθ(a|s), in which θ is a parameter vector) that maximizes
a performance measure J(θ) [16], which is typically repre-
sented by Eπθ

(
∑
t∈T γ

trt). At each learning iteration, the
RL algorithm will generate a stochastic estimation of the
gradient (i.e., ∇̂J(θ)) from experience and then update θ
using gradient ascent as in:

θt+1 = θt + α∇̂θJ(θ) (8)

Two state-of-the-art policy-based model-free RL algo-
rithms, which have proved to have outstanding performance
in many benchmark problems, are used in this study. Evo-
lution strategies RL (ES-RL) [12], which uses a zero-order
gradient approximation to estimate ∇̂J(θ), can achieve fast
global policy learning due to its gradient-free nature and the
ability to escape local optima. Proximal Policy Optimization
(PPO) [13] considers KL divergence during learning to avoid
destructive large policy updates and thus provides reliable
local learning.

B. Two-stage Global-Local Policy Searching

Despite the good performance of ES-RL and PPO, using
either of them individually might suffer from some draw-
backs. Specifically, training an optimal policy using PPO can
be slow due to the back-propagation gradient computation,
conservative policy update and poor scalability. On the
other hand, due to the adoption of the zero-order gradient
approximation, ES-RL is likely to converge to the vicinity
of the global optimum [18]. In summary, the strength and
weakness of these two algorithms are summarized in Table
III. Considering that ES-RL and PPO have complemen-
tary advantages, we propose a two-stage global-local policy
searching scheme to marry the merits from both algorithms.
In the first stage, taking advantage of its gradient-free feature
and excellent scalability, ES-RL is utilized for fast policy
convergence to the vicinity of the global optimum. In the
second stage, πθ(a|s) is transferred to a PPO learner, which
locally fine-tunes it using computed gradient information and
pushes the policy closer to the global optimum. By utilizing
this two-stage framework, the goal is to train an optimal

Fig. 1. Weights of the ES policy network are directly copied to the
corresponding portion of the PPO policy network (i.e., red dashed box)
to warm-start the PPO learner. Similar weight copying is conducted for the
PPO value network (i.e., blue dashed box).

RL controller in a shorter amount of time and with less
computational resources when compared with using these
algorithms individually. Next, knowledge transfer between
two stages is discussed.

C. PPO Learner Warm-Starting

Since ES-RL and PPO both employ neural networks to
represent the parameterized policies πθ(a|s), as long as
networks share the same/similar structure, the parameters
from a trained ES-RL policy can be directly copied to a
PPO network (θPPO0 = θES,∗), which enables the PPO
learner to start with nearly as good performance as the
well-trained ES learner (though not exactly, as we will
explain later). After the weight copying warm start, the PPO
learner will further improve πθ(a|s) using a gradient-based
approach. Fig. 1 illustrates the warm-start procedure. It is
worth noting that one additional output of the PPO policy
network outputs is the standard deviation for each action
(denoted as σa). The PPO learner then samples the actual
action at each step by a Gaussian distribution at = N (a,Σ),
where Σ is a diagonal covariance matrix with vector σa as
diagonal elements. Because neural network weights relate
to this additional outputs do not exist in the ES network
(i.e., the red arrow in the PPO policy network in Fig. 1),
we manually initialize the corresponding weights and biases
properly to encourage adequate exploration instead of being
satisfied with the existing ES policy. Additionally, PPO, as an
actor-critic algorithm, uses a value network. We initialize this
network using the ES network except for the last layer, due
to the different outputs dimension (V (s) is a scalar while a
is a vector). Weights in the last layer are randomly initialized
(i.e., red arrow in PPO value network in Fig. 1).

V. CASE STUDY

A. Experiment Setup

A standard EnergyPlus five-zone small office model is
used in this paper, see Fig. 2. Parameters of the ROM are
obtained by system identification using simulated building
operation data. The HVAC power consumption model (2)
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TABLE III
STRENGTHS AND WEAKNESS OF ES-RL AND PPO

ES-RL PPO

Pros
- Scalable
- Gradient-free (no back-propagation, fast)
- More likely to escape from local optimum

- Policy update with KL divergence considered (stable)
- Gradient-based (better local search ability)

Cons - Likely to converge only to the vicinity of global optimum [18]
- Slower learning (back-propagation, conservative update)
- Not scalable (O(N2) communication complexity of full gradient info)
- Gradient-based methods are prone to be trapped in local optimum

Fig. 2. A five-zone building widely used in building control studies.

has parameters of a = 1.0, b = 0.0076 and c = 4.8865.
Control variables ranges are: T dat ∈ [10.0, 16.0] (◦C), and
ṁi
t ∈ [0.22, 2.2] if i 6= 5, otherwise, ṁ5

t ∈ [0.32, 3.2] (kg/s).
We use monetizing factor κi = 1.0 for all three objectives.
Exogenous data from EnergyPlus (Austin, TX), including
T outt , Qsolar,it and Qint,it (i ∈ N ), from July and the first
ten days of August are used for training and controller testing
respectively. We formulate the building control problem as a
episodic MDP with control horizon length of 24 hours and 5-
minute control interval (T = {1, 2, ..., 288}). The dimension
of Tout

t and Pt is 48 (i.e., K = 48), which means 1) T outt

for the past 4 hours are used in the state; and 2) a DR event,
if called, will be notified 4 hours ahead.

During training, for each episode, we assume the chance a
DR event occurs is 50% (50% is higher than reality now, but
provided with affordable smart controllers, it is assumed that
more frequent DR events will be acceptable in the future).
DR events happen anytime between 11:00 and 18:00 with
a duration of d minutes and a power limit PDR kW. The
relationship between d and PDR is given by:

d = 120× (χ+ 1), PDR = 30 + 20χ, (9)

where χ follows uniform distribution U(0, 1). In real-life
applications, this relationship can be changed appropriately.
Given the DR starting time and duration, TDR ⊆ T is
determined; for episodes without DR events, TDR = ∅.
In an episode, for t /∈ TDR (normal operation), we use
wt = [0.7, 0.2, 0.1] and P t = 80kW; and when t ∈ TDR,
we use wt = [0.5, 0.0, 0.5] and P t = PDR.

The policy network πθ(a|s) employs the following struc-
ture: [108, 256, 128, 128, 64, 64, 32, 16, 6 (ES-RL) /
12 (PPO)] (The first and last items are input and output
layers, and the rest show the number of neurons in each
hidden layer). Activation functions used in the input and
hidden layers are ‘tanh’ and no activation function is used

Fig. 3. Learning curves showing the relationship between average episodic
cost and training steps: first stage ES curve (red), second stage PPO fine-
tuning curve (blue) and three ES fine-tuning curves with different learning
step sizes (green: 5 × 10−6, yellow: 10−5 and black: 10−6). All curves
are averaged from five individual runs and shaded areas show the standard
deviation. Red dashed box highlights the PPO fine-tuning, and is zoomed
in and shown at the upper right corner. Black horizontal dashed line shows
the converged value after PPO fine-tuning.

for the output layer. The RL policy training in this study are
conducted on a high-performance computing (HPC) system
at the U.S. Department of Energy’s National Renewable
Energy Laboratory (NREL). Choosing an HPC system as the
computing hardware is to help evaluate the training cost for
future real-world applications, when controllers are trained
on commercial cloud computing platforms.

B. Two-stage Policy Searching

In the first stage, twenty computing nodes with 683
parallel workers (this number is determined by the available
processors on computing nodes) are leveraged for the ES-RL
global policy search. In Fig. 3, the red curve shows effective
learning since it reveals a cost-reducing general trend as the
training progresses. The minimized cost converged within
one-hour of run time (in fact, the convergence occurred
within half an hour), implying a converged control policy
parameterized by θES,∗. With the trained ES policy network
in hand, in the second stage the PPO learner is warm-
started as described in Section IV-C for policy fine-tuning,
and the training is conducted by 35 parallel workers on one
computing node. The learning curve is shown in blue in Fig.
3. It is worth noting that though θES,∗ is copied exactly, the
PPO learner starts the average episodic cost from point ‘C’
instead of point ‘A’ in Fig. 3, showing a slightly deteriorated
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Fig. 4. Learning curves of learning a control policy using PPO without the
first stage ES-RL training. Four learning curves showing the PPO learning
process using 1 HPC computing node, 5 nodes, 10 nodes and 20 nodes. All
experiments are limited with 20 node-hour of computation resource and the
learning rate is equal to the one used in ES-RL (i.e., α1). Again, all curves
are averages from five individual runs.

performance at the beginning. Two reasons for this are:
1) the σa part of the PPO policy network is initialized to
encourage adequate exploration instead of being satisfied
with the existing ES policy; thus the PPO learner might
explore bad actions as well, which leads to higher cost. 2) the
last layer of the PPO value network is randomly initialized,
which provides incorrect state evaluation during the first few
training iterations. This also leads the PPO learner to have
poorer behavior. Despite a start with higher cost, the PPO
learner eventually learns a policy with an average episodic
cost lower than that achieved by the ES policy, demonstrating
an effective policy fine-tuning. When searching the policy
globally and locally, learning rates used are α1 = 10−2 and
α2 = 5× 10−6 respectively.

In this experiment, the two-stage policy search consumes
24 node-hours computational resources (20 nodes for one
hour for ES-RL and one node for four hours for PPO) and
5 hours wall time for training the RL controller. Note the
first stage convergence happens within the first half hour, it
is possible to further reduce the node-hour resources needed.

C. Necessity of the Two-Stage Framework

In this section, considering reasons presented in Section
IV-B, we provide empirical evidence that the policy trained
by the two-stage learning framework cannot be achieved by
using either algorithm alone.

First, gradient-free ES-RL is not effective for fine-tuning.
We tested ES-RL with learning rates similar to α2. However,
the three ES fine-tuning curves in Fig. 3 show that even
with a reasonable learning rate, using ES-RL for fine-tuning
does not yield desirable results. Second, directly using PPO
for global policy search can be slow and might be trapped
in local optima. Given the same computational resources
for the first stage learning in the previous example (i.e.,
20 node-hours), Fig. 4 shows the learning curves of using
PPO for global policy search with different node numbers.

Two observations are made: a) scaling PPO to have more
parallel workers is not beneficial: more parallel workers do
not lead to more accurate policy gradient computation and
faster convergence; in contrast, the increase communication
burden (i.e., O(N2)) might slow the learning down. b) even
for the best performing case (i.e., 1 node), PPO converges to
a local minimum and is trapped there for the latter 90% of
the training time (purple shaded area, note x-axis is in log).

D. RLC Control Performance

To show the effectiveness of the proposed RLC for build-
ing control during normal operation and DR events, we
simulate two cases where there is/isn’t a DR event for a
same testing day. Fig. 5 shows the control performance over
the 24-hour control horizon for both cases. In the DR case,
the building HVAC system is required to limit its power
consumption below 36 kW (χ = 0.3) between 14:00 and
16:36. The RLC examined is the PPO fine-tuned one (‘B’ in
Fig. 3).

In Fig. 5, for the non-DR case (dashed lines), T it (∀i,∀t)
are kept within the comfort band, and Pt is maintained below
P t, with a peak demand of 56.40 kW. On the other hand, in
the DR case, upon receiving the DR notification (four hours
prior to the event starts), it can be seen that there are pre-
cooling activities: first, Tda is reduced to accelerate cooling;
second, regarding the control of ṁi

t, we observed a clever
learned behavior: the RLC does not mindlessly increase all
ṁi
t since the fan power will increase drastically due to the

cubic term in (2); instead, it categorizes zones into three
groups and treats them differently:

1) Zone 4: it faces west and receives great solar heat gain
during the DR event. Thus, cooling it during a DR event is
essential and it is not pre-cooled.

2) Zone 2 and 5: east-facing and the core zone are usually
not impacted by the afternoon solar heat gain. The RL
agent learned from experience that even without pre-cooling,
reducing airflow rates in these zones to minimum during DR
events will not jeopardize thermal comfort.

3) Zone 1 and 3: they usually require certain amount of
cooling in the afternoon. But they will be the focus of pre-
cooling in order to shift the cooling load prior to the event.

During the DR event, Tda is increased to reduce chiller
power consumption and most of the cooling air flow goes to
the west-facing Zone 4, while T it (∀i,∀t) are mostly within
the comfort band and the load reduction requirement is
successfully achieved.

E. Comparison with Model Predictive Controllers

The ES-RL trained controller (extracted from ‘A’ in Fig.
3, denoted as ‘RLC-ES’), PPO fine-tuned RLC (extracted
from ‘B’ in Fig. 3, denoted as ‘RLC-PPO’) and the two
MPCs introduced in Section III-B are compared using all
ten testing days, and the results are shown in Fig. 6 and
Table IV. Both MPCs are implemented using the fmincon
solver in MATLAB with the interior-point algorithm.

The following observations are made:
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Fig. 5. Top five plots show the indoor temperature profiles (black) and the
air flow rate (ṁi) profiles (blue) for five zones. Shaded green areas show
the temperature comfort band (The band spans [23, 25] and [22, 28] during
occupied and unoccupied period, respectively). The sixth plot shows Tda
and the last plot shows Pt (red) and P t (black). In all plots, dashed lines
represent the non-DR day profiles and solid ones show those of the DR
day’s.

TABLE IV
COMPARISON OF AVERAGE COST FOR TEST DAYS

Average Cost RLC-PPO RLC-ES MPC-LIN MPC-ROM
DR 16.31 18.79 18.50 13.75

Non-DR 16.50 17.28 17.70 15.26

1) Both RLCs can achieve performance similar to or
better than that of the MPC-LIN.

2) The second stage PPO fine-tuning is effective as it
reduces the RLC-ES’s cost by 13.2% and 4.5% for
DR scenarios and non-DR scenarios respectively.

It is worth reemphasizing that both MPC-LIN and MPC-
ROM use perfect forecasts for exogenous data (i.e., T outt ,
Qsolar,it and Qint,it ) and have either approximate or exact
prior knowledge on the building being controlled; in contrast,
RLC relies only on easily-accessible historical data for con-
trol and has zero knowledge on the building model. Overall,
this comparison shows that RLC can be a practical and
powerful alternative to MPC in real-world building control
applications.

VI. CONCLUSIONS

We demonstrated training an RL controller for a grid-
interactive multi-zone office building using the proposed
global-local policy search scheme. We showed that the RL
controller can optimally control a multi-zone building, under
both normal operation and more complicated scenarios such

(a) DR Scenarios

(b) Non-DR Scenarios

Fig. 6. Comparing RLCs with MPCs.

as when providing grid services. Additionally, continuous
action space is considered and only easy-to-measure inputs
are used for decision making to avoid prohibitive sensor
deployment. The experiments reveal that by chaining two
different state-of-the-art policy searching paradigms, a con-
trol policy can be efficiently trained in the two-stage process.
The trained policy, when tested on unseen scenarios, shows
proper intelligent control behavior that is entirely learned
from the RL agent’s trial-and-error experience collection.
Moreover, we showed that the RL controller can achieve
a similar performance metrics when compared with two
different MPC controllers, whose inputs are perfect forecast
information.

In this study, different exogenous data are used in con-
troller training and its performance evaluation (i.e., testing
using unseen scenarios), however, we assume the building
model is accurate (i.e., perfect system identification). In the
future, we will consider the discrepancy between the model
used in building simulator and the actual building model, and
discuss how to train an effective controller using inaccurate
building model.
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