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Introduction

mpi-sppy provides support for scenario-based optimization under 
uncertainty with support for

– massive parallelism
– convergence based on multiple upper and lower bounds.

mpi-sppy:
– “mpi” – we utilize MPI functions through mpi4py
– “sp” – Stochastic Programming
– “py” – Implemented in Python

Basic requirements:
– Deterministic-equivalent Pyomo model 
– Function to create a scenario instance of said Pyomo model
– See David Woodruff’s talk in TD34 for a how-to
– mpi4py with an MPI implementation to utilize most functionality

Available: http://github.com/Pyomo/mpi-sppy

http://github.com/Pyomo/mpi-sppy
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The mpi-sppy architecture is 
divided into cylinders of compute 
units

– Typically synchronous 
communication within a 
cylinder

– Asynchronous communication 
between cylinders

The “Hub” cylinder carries out 
some iterative algorithm, and the 
“Spoke” cylinder(s) help the hub

– Bound computation
– Cutting planes

…… …

HubSpoke Spoke

Architecture
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One-to-one correspondence 
between a hub rank and its 
associated spoke rank(s), 
collectively called strata

– Within a strata, the hub and 
spoke ranks process the same 
scenarios

Two types of convergence:
– Traditional termination or 

convergence of Hub algorithm
– Inner and outer bounds as 

computed by Spokes is 
sufficiently small

…… …

HubSpoke Spoke

Architecture
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Intra-cylinder communication is done 
through MPI reductions

– mpi-sspy utilizes the combined 
functionality of mpi4py and 
numpy such that the reductions 
occur on C arrays for speed and 
efficiency

Intra-strata (inter-cylinder) 
communication utilizes MPI Window 
objects for one-sided communication

– Passing happens using C arrays
– Generally non-blocking
– Spokes can read new information 

from hub when ready
– Hub acts on new information from 

spokes when ready

…… …

HubSpoke Spoke

Architecture
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Algorithms & Cylinders

Hub Algorithms
– Progressive Hedging
– Asynchronous Projective 

Hedging
– L-Shaped Method1

Spoke Algorithms
– Frank-Wolfe Progressive 

Hedging1 (dual bound)

1Two-stage problems only

Spoke Helpers
– Lagrangian (dual bound)

• Uses subgradiants on non-anticipatory 
constraints computed by PH

– Lagranger (dual bound)
• Computes subgradiants separately from PH

– Xhatters (primal bound)
• Use non-anticipative decisions from Hub 

algorithms
• Xhat-Specific, Xhat-Shuffle1, Xhat L-Shaped1

– Slam Heuristics1 (primal bound, PH)
• Slam non-anticipative decisions to max/min of 

scenario solutions

– Cross-scenario Cuts1 (PH)
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Case Study

Stochastic Unit Commitment
– Schedule thermal generators (on/off) to meet uncertain load and supply 

from wind generators.
– Two-stage:

• Stage 1: determine on/off status of thermal generators
• Stage 2: dispatch thermal/wind generators for realized load and wind availability
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Case Study

Stochastic Unit Commitment
– Thermal fleet based on WECC-240

• 85 thermal generators 
• 48-hour time-horizon

– 1,000 aggregated wind scenarios based on CAISO data
• Created using mape_maker (https://github.com/mape-maker/mape-maker)
• Wind as percentage of load: 0-46%; maximal single-period difference: 45%

– Deterministic equivalent problem formulated using EGRET’s unit 
commitment models (https://github.com/grid-parity-exchange/Egret)

• 61833 constraints, 54805 variables (20533 binary), 226235 non-zeros
• 4080 binary first-stage (non-anticipative) variables

https://github.com/mape-maker/mape-maker
https://github.com/grid-parity-exchange/Egret
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Case Study

Stochastic Unit Commitment
– Full scenario decomposition using PH as Hub algorithm

• 1 subproblem : 1 scenario
• PH “Fixer” extension (fixed “converged” non-anticipative variables)
• custom rho setter

– XhatShuffleLooper Spoke: discover incumbent solutions
– Lagrangian Spoke: Dual bounds from PH-calculated subgradients (Gade et al. 

2016)
– FW-PH Spoke: Dual bounds using the method from Boland et al. (2018)
– 1000 subproblems with 4 cylinders: utilize up to 4000 MPI ranks
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Case Study

Stochastic Unit Commitment
– Tested on NREL’s HPC platform Eagle
– 36 cores per node; 223 nodes
– 4000 MPI ranks; 1000 per cylinder
– Subproblem solver Xpress (limited to 2 threads)

• Using 8000 cores of the 8028 available
– 100 PH iterations (fixed by negative convergence criterion)
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Case Study

…
…

Warm-up to warm-down 
computation time: 97 sec.

Post warm-up time: 133 sec.

Total time: 310 sec.

Final gap: 0.1258%
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Case Study

Stochastic Unit Commitment
– Same computation on LLNL’s Quartz cluster
– 36 cores per node; 256 nodes
– 4000 MPI ranks; 1000 per cylinder
– Subproblem solver Gurobi (limited to 2 threads)

• Using 8000 cores of the 9216 available
– 100 PH iterations (fixed by negative convergence criterion)
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Case Study

1000- vs. 3-scenario instance on Eagle

Very low additional inter-iteration overhead scaling from 3 scenarios on a single 
node to 1,000 scenarios on 200+ nodes 

|S| 
(Iter)

1000 
(0)

3
(0)

1000 
(25)

3 
(25)

1000 
(50)

3
(50)

1000 
(75)

3
(75)

Total iteration time 10.11 s 2.89 s 0.74 s 0.39 s 0.58 s 0.39 s 0.56 s 0.45 s

Pyomo & solver time 8.74 s 1.58 s 0.54 s 0.27 s 0.39 s 0.26 s 0.39 s 0.29 s

Difference 1.37 s 1.31 s 0.20 s 0.12 s 0.19 s 0.13 s 0.17 s 0.16 s 
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Conclusion

Available: http://github.com/Pyomo/mpi-sppy
Several examples (farmer, SSLP, unit commitment, network 
design, others) and documentation available:

– See David Woodruff’s talk (TD34)
– UC driver used in the computation section can optionally use most of 

the functionality of mpi-sppy with progressive hedging; only ~400 
lines of (unoptimized) Python over deterministic model.

– Easy to get started with existing two-stage PySP model

With enough compute power, mpi-sppy enables the solution 
of very large-scale stochastic optimization problems

http://github.com/Pyomo/mpi-sppy


www.nrel.gov

Q&A

NREL/PR-2C00-78043

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable 
Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided in 
part by the U.S. Department of Energy Advanced Research Projects Agency - Energy. A portion of this research was 
performed using computational resources sponsored by the Department of Energy's Office of Energy Efficiency and 
Renewable Energy and located at the National Renewable Energy Laboratory. The views expressed in the article do 
not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the 
publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, 
paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to 
do so, for U.S. Government purposes. 


	mpi-sppy: Optimization Under Uncertainty for Pyomo
	Introduction
	Overview
	Architecture
	Architecture
	Architecture

	Algorithms & Cylinders
	Case Study
	Case Study
	Case Study
	Case Study
	Case Study
	Case Study
	Case Study

	Conclusion

