
mpi-sppy: Optimization
Under Uncertainty for Pyomo

Bernard Knueven
David Mildebrath, Christopher Muir, John Siirola,
David Woodruff, Jean-Paul Watson
INFORMS Annual Meeting 2020
November 13, 2020

NREL | 2

Introduction

mpi-sppy provides support for scenario-based optimization under
uncertainty with support for

– massive parallelism
– convergence based on multiple upper and lower bounds.

mpi-sppy:
– “mpi” – we utilize MPI functions through mpi4py
– “sp” – Stochastic Programming
– “py” – Implemented in Python

Basic requirements:
– Deterministic-equivalent Pyomo model
– Function to create a scenario instance of said Pyomo model
– See David Woodruff’s talk in TD34 for a how-to
– mpi4py with an MPI implementation to utilize most functionality

Available: http://github.com/Pyomo/mpi-sppy

http://github.com/Pyomo/mpi-sppy

NREL | 3

1
2
3
4

5

6
7

Overview

Architecture

Algorithms & Cylinders

Case Study

Conclusion

NREL | 4

The mpi-sppy architecture is
divided into cylinders of compute
units

– Typically synchronous
communication within a
cylinder

– Asynchronous communication
between cylinders

The “Hub” cylinder carries out
some iterative algorithm, and the
“Spoke” cylinder(s) help the hub

– Bound computation
– Cutting planes

…… …

HubSpoke Spoke

Architecture

NREL | 5

One-to-one correspondence
between a hub rank and its
associated spoke rank(s),
collectively called strata

– Within a strata, the hub and
spoke ranks process the same
scenarios

Two types of convergence:
– Traditional termination or

convergence of Hub algorithm
– Inner and outer bounds as

computed by Spokes is
sufficiently small

…… …

HubSpoke Spoke

Architecture

NREL | 6

Intra-cylinder communication is done
through MPI reductions

– mpi-sspy utilizes the combined
functionality of mpi4py and
numpy such that the reductions
occur on C arrays for speed and
efficiency

Intra-strata (inter-cylinder)
communication utilizes MPI Window
objects for one-sided communication

– Passing happens using C arrays
– Generally non-blocking
– Spokes can read new information

from hub when ready
– Hub acts on new information from

spokes when ready

…… …

HubSpoke Spoke

Architecture

NREL | 7

Algorithms & Cylinders

Hub Algorithms
– Progressive Hedging
– Asynchronous Projective

Hedging
– L-Shaped Method1

Spoke Algorithms
– Frank-Wolfe Progressive

Hedging1 (dual bound)

1Two-stage problems only

Spoke Helpers
– Lagrangian (dual bound)

• Uses subgradiants on non-anticipatory
constraints computed by PH

– Lagranger (dual bound)
• Computes subgradiants separately from PH

– Xhatters (primal bound)
• Use non-anticipative decisions from Hub

algorithms
• Xhat-Specific, Xhat-Shuffle1, Xhat L-Shaped1

– Slam Heuristics1 (primal bound, PH)
• Slam non-anticipative decisions to max/min of

scenario solutions

– Cross-scenario Cuts1 (PH)

NREL | 8

Case Study

Stochastic Unit Commitment
– Schedule thermal generators (on/off) to meet uncertain load and supply

from wind generators.
– Two-stage:

• Stage 1: determine on/off status of thermal generators
• Stage 2: dispatch thermal/wind generators for realized load and wind availability

NREL | 9

Case Study

Stochastic Unit Commitment
– Thermal fleet based on WECC-240

• 85 thermal generators
• 48-hour time-horizon

– 1,000 aggregated wind scenarios based on CAISO data
• Created using mape_maker (https://github.com/mape-maker/mape-maker)
• Wind as percentage of load: 0-46%; maximal single-period difference: 45%

– Deterministic equivalent problem formulated using EGRET’s unit
commitment models (https://github.com/grid-parity-exchange/Egret)

• 61833 constraints, 54805 variables (20533 binary), 226235 non-zeros
• 4080 binary first-stage (non-anticipative) variables

https://github.com/mape-maker/mape-maker
https://github.com/grid-parity-exchange/Egret

NREL | 10

Case Study

Stochastic Unit Commitment
– Full scenario decomposition using PH as Hub algorithm

• 1 subproblem : 1 scenario
• PH “Fixer” extension (fixed “converged” non-anticipative variables)
• custom rho setter

– XhatShuffleLooper Spoke: discover incumbent solutions
– Lagrangian Spoke: Dual bounds from PH-calculated subgradients (Gade et al.

2016)
– FW-PH Spoke: Dual bounds using the method from Boland et al. (2018)
– 1000 subproblems with 4 cylinders: utilize up to 4000 MPI ranks

NREL | 11

Case Study

Stochastic Unit Commitment
– Tested on NREL’s HPC platform Eagle
– 36 cores per node; 223 nodes
– 4000 MPI ranks; 1000 per cylinder
– Subproblem solver Xpress (limited to 2 threads)

• Using 8000 cores of the 8028 available
– 100 PH iterations (fixed by negative convergence criterion)

NREL | 12

Case Study

…
…

Warm-up to warm-down
computation time: 97 sec.

Post warm-up time: 133 sec.

Total time: 310 sec.

Final gap: 0.1258%

NREL | 13

Case Study

Stochastic Unit Commitment
– Same computation on LLNL’s Quartz cluster
– 36 cores per node; 256 nodes
– 4000 MPI ranks; 1000 per cylinder
– Subproblem solver Gurobi (limited to 2 threads)

• Using 8000 cores of the 9216 available
– 100 PH iterations (fixed by negative convergence criterion)

NREL | 14

Case Study

1000- vs. 3-scenario instance on Eagle

Very low additional inter-iteration overhead scaling from 3 scenarios on a single
node to 1,000 scenarios on 200+ nodes

|S|
(Iter)

1000
(0)

3
(0)

1000
(25)

3
(25)

1000
(50)

3
(50)

1000
(75)

3
(75)

Total iteration time 10.11 s 2.89 s 0.74 s 0.39 s 0.58 s 0.39 s 0.56 s 0.45 s

Pyomo & solver time 8.74 s 1.58 s 0.54 s 0.27 s 0.39 s 0.26 s 0.39 s 0.29 s

Difference 1.37 s 1.31 s 0.20 s 0.12 s 0.19 s 0.13 s 0.17 s 0.16 s

NREL | 15

Conclusion

Available: http://github.com/Pyomo/mpi-sppy
Several examples (farmer, SSLP, unit commitment, network
design, others) and documentation available:

– See David Woodruff’s talk (TD34)
– UC driver used in the computation section can optionally use most of

the functionality of mpi-sppy with progressive hedging; only ~400
lines of (unoptimized) Python over deterministic model.

– Easy to get started with existing two-stage PySP model

With enough compute power, mpi-sppy enables the solution
of very large-scale stochastic optimization problems

http://github.com/Pyomo/mpi-sppy

www.nrel.gov

Q&A

NREL/PR-2C00-78043

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable
Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided in
part by the U.S. Department of Energy Advanced Research Projects Agency - Energy. A portion of this research was
performed using computational resources sponsored by the Department of Energy's Office of Energy Efficiency and
Renewable Energy and located at the National Renewable Energy Laboratory. The views expressed in the article do
not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the
publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive,
paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to
do so, for U.S. Government purposes.

	mpi-sppy: Optimization Under Uncertainty for Pyomo
	Introduction
	Overview
	Architecture
	Architecture
	Architecture

	Algorithms & Cylinders
	Case Study
	Case Study
	Case Study
	Case Study
	Case Study
	Case Study
	Case Study

	Conclusion

