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Fast Pyrolysis of Biomass
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Pyrolysis of biomass generates hundreds of molecules with different functional 
groups; water, char and inorganics are also produced
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In general, new catalysts are evaluated with single model compounds

< 50% of the bio-oil has been identified by GCMS
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Mo2C: Bifunctional Metal-Acid Catalyst

3

Mo2C is a single active phase material possessing acidic and metallic-like active 
sites

 Acidic character: Surface –OH (Brønsted acid sites) and Lewis acidic Mo sites
 Promote dehydration, alkylation and coupling reactions

 Metallic like character: Exposed C and Mo sites
 Promote hydrogenolysis and hydrogenation
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Model Compound Summary
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Products from carbohydrate model compounds are consistent with metallic and 
acidic sites chemistries. Those from lignin model compounds are consistent 

with metallic site chemistry only

Hydrogenolysis—Hydrogenation—Dehydration —
Hydrogenation
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Sullivan, et al., ACS Catalysis 2016, 6 (2), 1145-1152
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Kumar, et al., Cat. Sci. Tech 2018, 8 (11), 2938
Schaidle, et al., ACS Catalysis 2016, 6 (2), 1181

Metallic site chemistry Acidic site chemistry

Carbohydrate Model Compounds
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Lee, et al., Journal of Catalysis 2014, 319, 44

Baddour, et al., ACS Sus. Chem. Eng. 2017, 5, 12, 11433

Lignin Model Compounds

Chen, et al., ACS Catalysis 2017, 7 (2), 1113

Metallic site chemistry

Hydrogenolysis

 Mo2C regenerated by flowing hot H2
 Limited alkylation products  
 Some hydrogenation of the aromatic ring
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Project Objective

5

Mo2C demonstrates similar upgrading performance of biomass vapors as 
model compounds (high conversion)

Pyrolysis: 500 °C
Upgrading: 400 °C 
Catalyst: 5mg Mo2C  

Mo2C (biomass-to-catalyst ratio: 
0.1/pulse) produces alkanes, 1-
ring aromatics and olefins

Micro-scale evaluation Aromatic Selectivity
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Project Objective
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 Unknowns
 Methoxyphenols
 Indenols and Naphthols
 Phenols
 Furanics
 Carbonyls
 Hydrogenated aromatics
 2ring aromatics
 1ring aromatics

Lignin is upgraded via sequential cleavage of –OCH3, followed by –OH side 
groupsBench-scale: CFP Oil Composition B:C 2
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 Multi-alkylbenzene
 Xylenes
 Propenylbenzene
 Propylbenzene
 Ethylbenzene
 Toluene
 Benzene

CFP Oil 1-ring Aromatics
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Mo2C Stability 
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Sullivan, et al., Catal. Sci. Technol., 6 (2016) 602 Sullivan, et al., ACS Catalysis 2016, 6 (2), 1145

Micro-scale evaluation Bench-scale evaluation



Bioenergy Technologies Office  |

Summary: Model compounds vs Biomass
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Agreement Disagreement

Metallic site-driven chemistry for 
phenolics

Acidic site alkylation chemistry

Metallic and acidic sites-driven chemistry 
for sugars

Aromatic-ring hydrogenation

Product selectivities Deactivation rates (rapid for biomass)

Catalyst surface modification chemistry:
Oxygen adsorption followed by carbon 
build-up

Regeneration with H2 (Not sufficient for 
biomass)

Can we realistically predict biomass CFP performance based on the model compound data? 
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Catalyst Design Guidance for Complex Feeds
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Biomass bench scale

Single model compound

Model compound mixtures

Biomass Micro-scale 

Pilot-scale validation

Process Knowledge (Technology Readiness)
(Increasing complexity and time/resource demand)
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Biopolymers Micro-scale 

Catalyst design for processes with complex feeds will benefit from increased 
emphasis on micro-scale evaluation with real feedstocks.

Mukarakate, et al., Nature Catalysis, submitted
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