

Biomass Ex-Situ CFP Catalyst Design: A Mo₂C Case Study to Evaluate if Trends in Model Compound Reactivity Translate to Real Biomass Feeds

Calvin Mukarakate

TCS 2020 October 5th, 2020

Fast Pyrolysis of Biomass

Pyrolysis of biomass generates hundreds of molecules with different functional groups; water, char and inorganics are also produced

In general, new catalysts are evaluated with single model compounds

ChemCatBio

Mo₂C: Bifunctional Metal-Acid Catalyst

Mo₂C is a single active phase material possessing acidic and metallic-like active sites

Acidic character: Surface –OH (Brønsted acid sites) and Lewis acidic Mo sites
✓ Promote dehydration, alkylation and coupling reactions

Metallic like character: Exposed C and Mo sites

Promote hydrogenolysis and hydrogenation

Model Compound Summary

Products from carbohydrate model compounds are consistent with metallic and acidic sites chemistries. Those from lignin model compounds are consistent with metallic site chemistry only

Carbohydrate Model Compounds

Kumar, et al., Cat. Sci. Tech 2018, *8* (11), 2938 *Schaidle, et al., ACS Catalysis* 2016, *6* (2), 1181

Sullivan, et al., ACS Catalysis 2016, 6 (2), 1145-1152

Sullivan, et al., J. Catal. 326 (2015) 82

Hydrogenolysis—Hydrogenation—Dehydration — Hydrogenation

Metallic site chemistry

Acidic site chemistry

Lignin Model Compounds

Hydrogenolysis

Chen, et al., ACS Catalysis 2017, 7 (2), 1113

Lee, et al., Journal of Catalysis 2014, 319, 44

Baddour, et al., ACS Sus. Chem. Eng. 2017, 5, 12, 11433

Metallic site chemistry

- ✤ Mo₂C regenerated by flowing hot H₂
- Limited alkylation products
- Some hydrogenation of the aromatic ring

4

Project Objective

Mo₂C demonstrates similar upgrading performance of biomass vapors as model compounds (high conversion)

Pyrolysis: 500 °C Upgrading: 400 °C Catalyst: 5mg Mo₂C

ChemCatBio

Mo₂C (**biomass-to-catalyst ratio**: 0.1/pulse) produces alkanes, 1ring aromatics and olefins

Project Objective

Lignin is upgraded via sequential cleavage of –OCH₃, followed by –OH side

groups

Bench-scale: CFP Oil Composition B:C 2

ChemCatBio

6

Mo₂C Stability

Sullivan, et al., Catal. Sci. Technol., 6 (2016) 602

ChemCatBio

7

Summary: Model compounds vs Biomass

Can we realistically predict biomass CFP performance based on the model compound data?

Agreement	Disagreement
Metallic site-driven chemistry for phenolics	Acidic site alkylation chemistry
Metallic and acidic sites-driven chemistry for sugars	Aromatic-ring hydrogenation
Product selectivities	Deactivation rates (rapid for biomass)
Catalyst surface modification chemistry: Oxygen adsorption followed by carbon build-up	Regeneration with H ₂ (Not sufficient for biomass)

Catalyst Design Guidance for Complex Feeds

Catalyst design for processes with complex feeds will benefit from increased emphasis on micro-scale evaluation with real feedstocks.

Mukarakate, et al., Nature Catalysis, submitted

Acknowledgements

Kellene A. Orton Mengze Xu Kristiina Iisa Richard J. French Scott Palmer Connor Nash Susan Habas Mark R. Nimlos Joshua A. Schaidle

NREL/PR-5100-78048

Energy Efficiency &

Renewable Energy

Bioenergy Technologies Office

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.