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Introduction

The Agile BioFoundry (ABF) consortium goal: enable biorefineries to achieve 50% reductions in time to
bioprocess scale-up as compared to the current average of around 10 years by establishing a distributed
Agile BioFoundry to productionize synthetic biology. https://agilebiofoundry.org/

Integrated Analysis team goal

» Help to quantify the ultimate economic and environmental sustainability
potential for a given beachhead molecule/ product pathway of interest,

» Compare different products or synthesis routes to understand
relative merits or drawbacks,

 Highlight key TEA/LCA drivers for prioritizing R&D focus areas

Goal of this presentation

* Present a methodology to select a single exemplar product molecule to represent each beachhead
pathway based on similarities

» Present techno-economic analysis (TEA) and life-cycle analysis (LCA) for two selected ABF technology
pathways to bio-derived chemicals:

v adipic acid production via muconic acid fermentation from mixed sugars with Pseudomonas putida
v’ cineole via geranyl diphosphate with Rhodosporidium toruloides
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https://agilebiofoundry.org/

TEA/LCA approach

1) Conceptual process is formulated or 2) Individual unit operations are designed and
refined based on current research and modeled using experimental data. Process
expected chemical transformations. Process model outputs are used to size and cost equipment.
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I
Beachhead Molecules

« Beachheads are metabolites that can be converted into many different

bioproducts

» ABF will develop >15 beachhead strains to enable rapid development of a

wide range of downstream bioproducts

\ Y eitie] 113

Beachheads

1 Developed (7)

C—1 Mid Goal (3 additional FY20Q2)
B FY22 Goal (15+ total)
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Metabolic
pathways
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About adipic acid & cineole

Adipic acid

Widely used dicarboxylic acid
High-value chemical with a market
volume of ~2.6 million tons per year
Demand expected to growth 3-5%
globally

Industrial applications include production
of Nylon 66, polyurethanes, plasticizers,
and food additives

US is the leading producer (net exporter)
and consumer of the compound
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Cineole

Natural organic compound, used as a
fragrance (known as eucalyptol in lower
purities)

Mainly obtained through extraction from
eucalyptus leaves

Market likely restricted to hundreds of tons
per year; high price

New applications such as a natural
insecticide, an industrial solvent, a
backbone for organic synthesis, or a high-
octane number gasoline blendstock
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Design of integrated biorefineries
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https://www.nrel.gov/docs/fy190sti/71949.pdf

Evaluate sensitivity drivers to key fermentation parameters (rate, yield) over a range of
achievable values towards impacts on MSP and GHG emissions
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MSP ($/kg adipic acid)

10

TEA: adipic acid

MSP of adipic acid ($/kg AA)

75% 2.0

Yield (%)

Reference market price: $1.89/kg AA

« MSP driven strongly by productivity below 0.3
g/L.h, starts to plateau at productivities higher
than 0.3 - 0.5 g/L.h

« Considerable influence of MA yield when
passing from 25% to 50% of theoretical yield

« Strategies to further reduce MSP:
= Lowering feedstock costs
» |ncreasing biorefinery scale
» Using lower-cost separation strategy
= Adding value to lignin

Productivity (g/L/h)

01-2 @2-3 @34 045 O5-6 C06-7 [17-8 7189 19-10
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LCA: adipic acid

GHG emissions ( kgCO,e/kg product)
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TEA: cineole

MSP of cineole ($/kg cineole)

Reference market price: $30/kg cineole

« Biorefinery able to deliver cineole at MSP
lower than $5/kg with productivities above 0.5
g/L.h and product yield of 50%

* Low market volume likely limits deployment of
multiple full scale biorefineries
= Development of new applications such as an
industrial solvent, insecticide/repellant, or
backbone for organic synthesis could enable
reaching larger markets

MSP ($/kg cineole)
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Productivity (g/L/h)
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GHG emissions (kg CO.e/kg cineole)

LCA n ci n e o I e GHG emissions ( kgCO,e/kg product)

Productivity: 0.5g/L.h
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Conclusions

* Two selected BH/EX pairs were assessed in this work:
= Protocatechuate to muconic acid/adipic acid
= Geranyl diphosphate to cineole

 The proposed agile TEA/LCA approach to scan metabolic pathways was able

to provide insights into the main barriers for development of bioproducts
= TEA: minimum production conditions for economical production of adipic acid
and cineole were determined
= LCA: improvement in terms of GHG emissions in comparison to fossil-based
counterparts was seen under any fermentation conditions

« Future developments will expand this type of analysis to other BH/EX pairs
= Covering the full metabolic space of interest to ABF and the industry
* [nforming ABF R&D priorities
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P. Thathiana Benavides (pbenavides@anl.gov)
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