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Various modeling techniques are used to predict the capacity fade of Li-ion batteries. Algebraic reduced-order models, which are
inherently interpretable and computationally fast, are ideal for use in battery controllers, technoeconomic models, and multi-
objective optimizations. For Li-ion batteries with graphite anodes, solid-electrolyte-interphase (SEI) growth on the graphite surface
dominates fade. This fade is often modeled using physically informed equations, such as square-root of time for predicting solvent-
diffusion limited SEI growth, and Arrhenius and Tafel-like equations predicting the temperature and state-of-charge rate
dependencies. In some cases, completely empirical relationships are proposed. However, statistical validation is rarely conducted to
evaluate model optimality, and only a handful of possible models are usually investigated. This article demonstrates a novel
procedure for automatically identifying reduced-order degradation models from millions of algorithmically generated equations via
bi-level optimization and symbolic regression. Identified models are statistically validated using cross-validation, sensitivity
analysis, and uncertainty quantification via bootstrapping. On a LiFePO4/Graphite cell calendar aging data set, automatically
identified models utilizing square-root, power law, stretched exponential, and sigmoidal functions result in greater accuracy and
lower uncertainty than models identified by human experts, and demonstrate that previously known physical relationships can be
empirically “rediscovered” using machine learning.
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The simultaneous decrease of cost and increase of performance
of lithium-ion batteries (LIBs) in recent years 1,2 has expanded
their use from a longtime market niche of portable electronics to new
markets, predominantly electric vehicles and stationary energy
storage systems. These new markets require LIBs to achieve
long lifetimes while still meeting performance requirements. For
example, the profitability of stationary energy storage systems is
often dependent on their lifetime; revenue can be generated by
delivering energy as long as the batteries are still useful, but LIBs
degrade both over time and as a function of energy throughput,
eventually requiring replacement, which is capital-intensive and
costly. LIB degradation varies substantially based on environmental
conditions and use case, making it challenging to estimate the
degradation cost and system profitability.3–6 At the root of esti-
mating degradation cost is estimating the state-of-health (SOH) of a
cell, which is some measure of the cell performance relative to its
initial state. It is possible to simply measure battery SOH, but this
approach is not predictive; a predictive model is required to estimate
the future state of the battery from its present state. Predictive
models enable battery controllers to optimize for long cell life or for
project planners to estimate cost of cell degradation as part of
technoeconomic analyses.3,4,7–9

Predictive models for battery lifetime can be loosely categorized
into empirical, semi-empirical, and electrochemical models. Empirical
and semi-empirical models are models that predict capacity fade
without any simulation of the internal physics; this includes reduced-
order models,10–24 which are simply algebraic equations, as well as
machine-learning based approaches.25–28 For this application, the key
difference between these approaches is their interpretability; low-
dimensional algebraic models are straightforward to interpret, as
observed behaviors can be attributed to the various components of
an equation, while machine learning models can be challenging to
draw physical interpretations from Refs. 29, 30. The main draw-back

of any empirical model, reduced-order or machine-learning based, is
that they risk poor extrapolation to new conditions. This would not be
a problem if all relevant conditions for a system could be tested, but
the parameter space of battery aging studies is much too large to cost-
effectively test. Semi-empirical models attempt to address the
challenge of identifying algebraic models that are safe to extrapolate
when trained on very small data sets by incorporating physically
informed equations, usually simple chemical or electrochemical
reaction models such as the Arrhenius equation,17,18,23 incorporating
domain knowledge to counteract a lack of data; recent work, however,
has shown that this widely used approach may not be analytically or
statistically valid.10 Electrochemical models, which numerically or
analytically simulate the internal physics of a battery, are inherently
interpretable but are usually too computationally intensive to predict
degradation over tens of thousands of hours. Recent work by Reniers
et al. demonstrated that numerical electrochemical models can be fast-
computing while modeling both short-term battery dynamics as well
as long-term degradation effects.3,31 However, these models are still
much more computationally intensive than the algebraic expressions
used by reduced-order models, and are challenging to properly
parameterize,32–34 making them powerful tools for experts, but
difficult to apply quickly when experimental data is limited. The
flexibility to handle both small and large training data sets, fast
computation, and ease-of-implementation inherent to algebraic re-
duced-order models naturally lends them to use many complex
optimizations, where implementing numerical electrochemical models
may be computationally prohibitive.4,7–9

The main challenge of utilizing a reduced-order battery lifetime
model is in identifying an algebraic expression that predicts cell
behavior accurately and extrapolates safely. This process is challen-
ging for even the simplest battery degradation mechanisms. The
most straightforward degradation data to model for LIBs is calendar
degradation, i.e., the degradation observed when a cell is left to age
without cycling. This is because the capacity fade for common
LIBs during calendar aging is dominated by a single degradation
mechanism, the growth of the solid-electrolyte-interphase (SEI) atzE-mail: pauljgasper@gmail.com
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the graphite electrode, and the only experimental variables are time,
ambient temperature, and cell state-of-charge (SOC). This source of
capacity loss is often categorized as the loss of lithium inventory
(LLI). Even for this simple case, a litany of models exists. Often,
model identification is informed by known physical relationships,
such as individual cell fade models assuming t0.5 behavior, which
models SEI growth when it is rate-limited by the diffusion of neutral
lithium through the SEI,35–37 or SEI growth rate models based on
Arrhenius or Tafel equations. There are several reasons that
researchers use physically informed reduced-order models:

1. Obvious starting point for identifying reduced-order models of
complex systems

2. Inherent interpretability of model behavior when utilizing
equations derived from first principles analysis of simple
systems

3. Model behavior when extrapolating to untested conditions is
known a-priori

However, as demonstrated in a recent article by Attia, Chueh, and
Harris,10 physically informed models may not be statistically
validated: they have not been carefully investigated through a
statistical lens, extrapolation has not been tested or validated, and
model optimality has not been demonstrated through comparison to
other possible models. Additionally, because reduced-order models
are being used to model complex systems with competing internal
processes, rather than the simple systems used to derive most
physically informed models, these models may not even be
analytically supported. This is not to suggest that physically
informed models cannot be utilized, only to highlight the need for
statistical validation of any reduced-order model. And, in lieu of
effective physically informed equations, a statistically rigorous
methodology for empirically deriving reduced-order models needs
to be presented. Empirically derived and physically informed models
can then be compared to clarify the advantages or disadvantages of
both approaches; presenting such a method and comparing the
results with prior best-practices is the purpose of this work.

In this work, a new procedure for the automatic identification of
reduced-order capacity fade models for LIBs is presented, imple-
menting a variety of statistical techniques to interrogate and validate
models. Multiple model types to describe cell capacity fade are
compared to identify an optimal model: square-root, power law,
stretched exponential, and sigmoidal models. For each model,
several variations are tested, where for each variation, certain
parameters are optimized locally to each individual cell of a data
set and others are optimized globally across the entire data set. This
is done simultaneously via bi-level optimization, which is also be
referred to as nested optimization. Sub-models that predict the
values of local parameters as functions of cell operating conditions
are then automatically identified via symbolic regression, which
selects a low-dimensional sub-model from over one million possible
combinations utilizing LASSO regularization38 on an algorithmi-
cally generated library of possible descriptors. This sub-model then
replaces its corresponding local parameter, constructing a global
model, which is a single equation describing the behavior of the
entire data set. Global model quality is investigated using cross-
validation, convergence analysis, sensitivity analysis, uncertainty
quantification, and extrapolation.

On a standout experimental data set monitoring calendar aging of
22 commercial LiFePO4 (LFP)/Graphite cells for about 8 months,18

a range of automatically identified models outperform the physically
informed t0.5 model structure commonly used in the literature, with
substantially lower error, less evidence of systematic deviation
between model predictions and data, and lower uncertainty. For
this data set, the most accurate model identified is a sigmoidal model
that predicts both the degradation rate as well as the curvature of
each data series. Automatically identified models for the degradation
rate consistently converged on Arrhenius and Tafel-like terms,
“rediscovering” these well-understood physical relationships, while

also predicting the degradation rate of each cell more accurately than
previously documented models. Variation of the curvature between
data series reveals non-diffusion-limited SEI growth for this cell,
with the power exponent of time shifting from 1 (kinetic-limited SEI
growth) when capacity fade is very small to 0.45 (slower than
diffusion-limited) when capacity fade is more substantial.
Predictions by various models of the capacity fade after 20 years
of aging imply that t0.5 models may be overpredicting capacity
degradation by almost 100% at long times, when compared with
more accurate power-law or sigmoidal models.

The approach shown here for automatically identifying reduced-
order models can hopefully be used to explore the implications of
predictive model accuracy on the conclusions of technoeconomic
models or battery controllers, rapidly develop accurate models to
predict and compare the degradation behaviors of multiple Li-ion
technologies, and also accelerate learning from new experimental
data sets. This work builds on a growing amount of literature
utilizing compressed sensing methods, such as symbolic regression,
for harnessing the advantages of machine-learning in a scientific
context. MATLAB code for implementing the bi-level optimization
and symbolic regression techniques used in this study has been
publicly shared at https://github.com/NREL/AI-Batt to improve the
reproducibility of this work and accessibility of these methods.

Reduced-Order Models in Literature

Reduced-order models of individual-cell capacity fade.—New
research on calendar fade mechanisms in Li-ion batteries, specifi-
cally on batteries using graphite intercalation anodes, has brought
issues to light with the historical approach of modeling the calendar
fade of individual cells using a t0.5 dependence for capacity loss.
This t0.5 dependence is born from assuming that LLI due to SEI
growth on graphite is rate-limited by diffusion of neutral lithium
through the SEI after the first few formation cycles have been
completed.36,37 However, recent fundamental studies have shown
that this single rate-limiting mechanism does not describe SEI
growth in cases where the SEI is very small, or during lithiation
or delithiation of the electrode.36,37,39,40 Of note from these funda-
mental works is that during calendar aging, the power exponent of
time is near 1 when the SEI is very thin, then decays towards 0.5 at
long times.37 The t0.5 model is also undoubtedly an oversimplifica-
tion that overlooks the impact of multiple aging processes at the
electrode surfaces that may occur at different and sometimes
interdependent rates or be affected by surface heterogeneity. Thus,
the t0.5 model is not necessarily validated as a general model from an
analytical standpoint. This conclusion is doubly true for studies
modeling calendar fade in full cells, which experience separate
cathode effects during aging, or calendar fade models for LIBs using
other anode materials.41 Empirical analysis also contests the suit-
ability of t0.5 models for predicting calendar fade of lithium-ion
batteries with graphite anodes. Attia et al. determined that the t0.5

model was not statistically validated on several published data sets
by comparing fits from multiple models, reporting confidence
intervals, and analyzing model residuals.10 For example, many
data series showed “high” R2 values of 0.99 or greater when fit
with a t0.5 model, but only 1 out of 17 data series investigated
contained 0.5 within the 95% confidence interval for the power
exponent of time when fit with a power law model (tz). Residuals
analysis of the t0.5 models generally displayed obvious heterosce-
dasticity, indicating that the models were not effectively predicting
system behavior.

Attia et al.10 also convincingly showed that the model structure
substantially effects predictive accuracy; for some data series,
models required an intercept term, while for others, an intercept
term did not substantially improve the result. In many other recent
works, though, the functional structure of calendar fade models is
only occasionally explored within each study, though a wide variety
of models have been proposed across all studies, clearly indicating
that model structure matters. Some articles compare the results of a
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few models, choosing one or several for further study based on either
qualitative comparison42 or fit metrics.12,23,24,43 This includes the
square-root of time model, various power law models, logarithms,
stretched exponential, and sigmoidal models. Logarithm models are
useful for modeling a wide variety of systems but are difficult to
physically interpret in this context and are not considered in this
work. Stretched exponential models have been used to model decay
of the dielectric constant of polymers and glasses with time,44,45 and
in the context of LIBs, have been used to model both calendric and
cyclic capacity loss.42,46,47 Sigmoidal type models have been used to
model bacterial growth/survival48 and more recently chemical
reaction kinetics,49–52 and were proposed for modeling LIB capacity
fade by Gering.13 Various proposed local cell degradation models
from literature are reported in Table I. All equations have been
rearranged to have the structure q = β0−…, where q is the relative
discharge capacity of the battery, and β0 is the relative discharge
capacity at time t = 0. This intercept term, β0, is often neglected,
assuming the intercept to be equal to 1.

Reduced-order models of rate dependence on cell operating
conditions.—Predictive models for battery degradation are most
useful for control algorithms or technoeconomic analysis when they
predict battery performance across a wide range of environmental
conditions and use cases. One path to constructing such a model is to
predict the variation of parameters from individual cell models, i.e.,
local models, as a function of each cell’s operating conditions. For
example, consider a local model fitting the relative capacity loss vs
time for calendar aged LIBs at various temperatures and SOCs:

q tt 1n n n1,
0.5( ) · [ ]b=

where qn is the relative capacity loss vector of cell n as a function
time, tn, and β1,n is the capacity fade rate of cell n, which in this
example is dominated by the SEI growth rate at the graphite
electrode. Local models can be constructed with any time-varying
experimental variables as the input (time) or the predicted response
(relative capacity). After applying Eq. 1 to each two-dimensional
data series within a data set, the values of β1 from each cell can be
combined into a one-dimensional vector, β1. A global model is then
formed by identifying some function that predicts the variation of β1
across the data set as a function of any time-invariant experimental
variables (temperature and SOC). Identifying this function, or

sub-model, is a dimensional reduction, compressing unique sets of
parameters for each cell into a single set of parameters shared by all
cells. Dimension reduction is a required step when fitting a cell test
data set without a pre-determined global model, as local data series
are not necessarily of the same size. The identified global model can
then be optimized to all data series simultaneously and extrapolated
both forward in time and to unseen conditions. Battery behavior in
real-world applications, which may not have any constant variables,
can be predicted by deriving the instantaneous derivative of the
global model and integrating over discrete timesteps by determining
scalar values for each input variable at each timestep.11,17,19,20

The most common approach in literature for modeling the SEI
growth rate (β1 in Eq. 1) is to use Arrhenius- and Tafel-like
descriptors.14–19,22,23,53,56 Arrhenius relationships are used to model
the rate of chemical reactions, which for simple cases that can
neglect reactant and product concentrations only requires considera-
tion of the reaction temperature. Tafel relationships are used to
model the rate of electrochemical reactions, which require con-
sideration of the interactions between electrochemical potential and
temperature. A common model structure using Arrhenius and Tafel
descriptors is Refs. 17, 53:
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where γ is the vector of parameters for the sub-model, of which γi is
the ith parameter, R is the universal gas constant, T is the vector of
experimental temperatures, ne is the number of electrons of the rate
limiting reaction, usually assumed to be equal to 1, F is Faraday’s
constant, Ua is the vector of experimental anode-to-reference
potentials, and Tref and Ua,ref are reference values for temperature
and anode-to-reference potential, respectively. These reference
values aid interpretability but have no impact on model performance;
β1 is equal to γ0 at T = Tref and Ua = Ua,ref. The anode-to-reference
potential, Ua, is a function of SOC, determined using graphite/Li
half-cell measurements or full-cell measurements with a reference
electrode.60 The Arrhenius and Tafel descriptors can be simplified
by removing constants and reference values:

Table I. Proposed reduced-order local cell degradation models from literature.

References Description Equation

Various authors15,23 Linear q = 1 − β1t
Schmitt, 201712 Linear q = β0 − β1t
Various authors10,11,18,19,23,35,43,53–57 Square-root q = 1 − β1t

0.5

Various authors10,12,15,17,58 Square-root q = β0−β1t
0.5

Various authors43,57 Square-root + linear q = 1−β1t
0.5−β2t

Schmalstieg, 201414 Power law q = 1 − β1t
0.75

Grolleau, 201422 Power law q = 2 − (1 + β1t)
β2

Various authors7,10,59 Power law q = 1 − β1t
β2

Various authors10,12,47 Power law q = β0 − β1t
β2

Attia, 202010 Power law q = 1 − β1(t + β3)
β2

Attia, 202010 Power law q = β0 − β1(t + β3)
β2

Attia, 202010 Logarithm q = 1−β1 ln(t + β2)
Various authors10,43 Logarithm q = β0−β1ln(t)
Ecker, 201243 Square-root + log q = β0 − β1t

0.5 − β2ln(t)
Attia, 202010 Logarithm q = β0−β1ln(t + β2)
Various authors42,46,47 Stretched exponential q = exp(−(β1t)

β2),

1, 0.745, ,2
3

5

1

3{ }b Î

Gering, 201713 Sigmoidal
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This model is a two-dimensional model, where the input features T
and Ua are used to construct two descriptors, 1/T and Ua/T.
Literature review in the following paragraph is conducted by
simplifying models from literature in a similar manner. It is worth
noting that the multiplicative model shown in Eq. 3 can be reframed
as a linear model (Eq. 4) by taking the natural log of β1, so that
rather than using a non-linear optimization algorithm, linear opti-
mization algorithms can be utilized.47 Not all multiplicative models
can be transformed into linear models.
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Various other models have been proposed for predicting the
calendar fade rate of LIBs with graphite anodes in the literature.
These models are shown in Table II. Even when only modeling
temperature effects, various models have been proposed (Eqs. 5
and 6). For incorporating the additional impact of cell SOC on
degradation rate, several different input features have been proposed:
Ua (Eqs. 7 and 8), SOC (Eqs. 9–12), and the full cell potential V
(Eqs. 13 and 14). These models also propose widely varying
structures, such as multiplicative models (Eqs. 3, 5, 11, 14), linear
combinations of complex descriptors (Eqs. 9, 12, 13), and non-linear
models (Eqs. 6, 7, 8, 10). Most models use exponential functions to
predict non-linearities, though one model also includes a polynomial
descriptor (Eq. 12), and another (Eq. 14) uses power terms.

The argument against using physically informed Arrhenius and
Tafel descriptors is essentially the same as that described previously
against modeling the capacity fade of local cells using t0.5: the
physically informed model is very accurate for ideal systems in
specific conditions, but may not be statistically or analytically
validated. Given the wide variety of models present in the literature,
varying from simple modifications of the Arrhenius and Tafel
descriptors in Eq. 2 to models without either descriptor present at
all (Eqs. 8, 13, 14), it is obvious that model structure is crucial to
model performance, and model structure is most readily justified via
statistical methods. A good example of justifying the structure of an
empirically identified parameter sub-model is shown in work by
Mathieu et al.,47 who used p-values to determine that all but one of
several possible descriptors were statistically significant. Similarly,
Rahimian et al. 53 used a t test to evaluate the significance of
parameters in their identified model. However, without thorough

statistical validation, it is not possible to reach a detailed under-
standing of model behavior or predictive accuracy compared to other
potential model structures.

Approach for Statistically Validating Model Selection

As this study aims to generalize the work by Attia et al.10 from
individual cell models to reduced-order models of cell aging data
sets, it is worth repeating their approach for determining a
statistically valid reduced-order model, with some editorializing
and the addition of one further step concerning cross-validation,
which helps to evaluate whether models are over or under
parameterized for a given data set.

1. Compare multiple models for each data series to investigate
model structure: Multiple models of varying complexity and
structure need to be investigated. The relative optimality of a
model is only known by comparison to other models.

2. Include confidence intervals to evaluate model uncertainties:
Confidence intervals quantify the uncertainty of model predic-
tions and are necessary for investigating model behavior.
Confidence intervals can be calculated by a variety of methods,
including using F tests, bootstrap resampling, jackknife resam-
pling, Bayesian regression approaches, and others. Bootstrap
resampling, which optimizes a model many times using data
sets constructed by randomly resampling with replacement from
the original data set for each iteration, is an effective method for
accurately measuring model uncertainty and determining under-
lying model behavior for fast optimizing models.61 Another
rigorous method for determining parameter distributions, and
thus confidence intervals, is to use a Bayesian approach, which
assumes a prior distribution for the values of the model
parameters. Compared with bootstrap resampling, which is a
“frequentist” approach, Bayesian methods may be sensitive to
the selection of the priors but give more information on the
relationships between dependent parameters and may be more
likely to find a global optimum when there are local minima
present in the loss function.62,63 In any case, both approaches
have merits and drawbacks, and it is up to the experience of the
researcher to pick a method, and consider their results carefully
based on the merits and drawbacks of their chosen metho-
dology.

3. Include various fit metrics to investigate model quality: A wide
variety of fit metrics can be utilized, each with their own
qualities. The R2 metric accurately reports the collinearity of the
data and a model, but it does not consider the extent of model

Table II. Proposed calendar fade rate models from literature.

Reference Equation Eq. #

Ploehn, 200435 T, exp
T1 1 2
1( )( )b g g g= [5]

Belt, 201115 T, exp
T1 1 2
1( )( )b g g g= + [6]

Schimpe, 201818 T U, , exp expa T
U
T1 0 1

1
2 3

a( )( ) ( )( )b g g g g g= + [7]

Rumberg, 202016 T U, , expa
U

T1 0
a1 2( )( )b g g= g g+ [8]

Grolleau, 201422 T SOC SOC, , exp exp
T T1 0 1
1

2 3
1( ) ( )( ) ·b g g g g g= + [9]

Redondo-Iglesias, 201723 T SOC SOC, , exp exp
SOC

T1 0 1
2 3( )( ) ( · ) ·b g g g= g g+ [10]

Sarasketa-Zabala, 201556 T SOC SOC, , exp exp
T1 0 1
1

2 3( )( ) · ( · )b g g g g g= [11]

Naumann, 201819 T SOC SOC, , exp 0.5
T1 0 1
1

2 3
3( )( ) ( · ( ) )b g g g g g= + - [12]

Schamlstieg, 201414 T V V, , exp
T1 3
1

1 2( )( ) ( · )b g g g g= + [13]

Ecker, 201243 T V, , T V
1 1 2( )b g g g= [14]
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parameterization, leading to a preference for overparameterized
models. Other fit metrics, such as R2

adj, mean-squared error
(MSE) (in the context of model regression, referring to the
squared residuals divided by the degrees-of-freedom (DOF)),
mean signed difference (MSD), mean absolute error (MAE),
and mean absolute percent error (MAPE) are also useful for
evaluating model quality, among many others. For example, the
MAE is useful as it reports the average error in the same units as
the response variable, but when predicting a response variable
that varies over several orders of magnitude, the MAE will not
be influenced by the relative error at low magnitudes. The
MAPE, by reporting the average relative error of each data
point, more fairly represents the predictive quality of a model in
such a case. The MSD preserves the sign of the error, making it
a useful metric for identifying confidence intervals, or deter-
mining whether the model is consistently under- or over-
predicting the response variable. Mathematical expressions
used in this work to calculate R2, R2

adj, DOF, MSD, MAE,
MAPE, and MSE are defined in the Appendix.

4. Include residuals analysis to reveal systematic trends in model
behavior: Residuals analysis is critical for revealing systematic
trends in the fit of a model, as the behavior of models that are
highly collinear with their data (high R2) often cannot be
interrogated by simply plotting the data and the fit because
model error might be several orders of magnitude smaller than
the model predictions. Additionally, calculation of fit metrics
reduces the dimensionality of the data, obscuring systematic
trends of the residuals.

5. Include cross-validation to estimate model predictive quality:
Cross-validation is conducted by iteratively training a model on
portions of the data set and calculating the prediction error on
the held-out data. Cross-validation is a first step when evalu-
ating the predictive quality of a model, and is complemented by
other methods demonstrated in this work: testing models against
unseen validation or extrapolation data sets, quantifying model
sensitivity to its inputs, and quantifying model uncertainty.

These statistical validation steps are important when models are
developed manually, using known physical behaviors to inform
model structure, and that importance is heightened when model
structure is determined automatically, as is done in this work. The
behavior of automatically identified models can reflect unforeseen
trends in the data set or behave non-physically in unexpected ways,
especially when trained on small data sets, so diligent interrogation
of automatically identified models is a necessity.

Procedure for Identifying Optimal Reduced-Order
Degradation Models

A schematic of the optimization and analysis procedure used in
this work is shown in Fig. 1. Three steps are involved for optimizing
each model: 1) Use bi-level optimization to simultaneously regress
both local (β) and global parameters (α) to each cell’s data series
across a data set, 2) automatically identify and regress sub-models
for each local parameter, and 3) assemble the global model by
replacing local parameters with their respective sub-models and
regressing. Any interesting or promising models are then interro-
gated in step 4) via sensitivity analysis, bootstrap resampling, and
extrapolation over long times and to unseen validation data.

Bi-level optimization.—Bi-level optimization was conducted to
simultaneously optimize global and local parameters. This was done
by nesting n local optimization loops, within which a model with N
free local parameters (β1:N) is optimized, within each iteration of a
global optimization loop. The values of each of M global parameters
(α1:M) are fed down from the global optimization loop into each cell’s
local optimization loop. The local cell model predictions are then
concatenated into a single vector to calculate the error across the

whole data set for the global optimization loop. Both optimization
loops were solved by unconstrained non-linear least squares (NLLS)
optimization using the Levenberg-Marquardt algorithm by the
MATLAB function nlinfit. Cross-validation error was calculated using
leave-one-out cross-validation on a cell-by-cell basis, essentially
cross-validating the global parameters. If there are no global para-
meters, the optimization algorithm is only single-leveled, and cross-
validation was conducted using hold-one-out cross-validation on each
cells’ data series independently. The cross-validation error from each
cell was then summed to determine the error on the entire data set.

Identification of local parameter sub-models.—Local parameter
sub-models are used to predict the value of local parameters as
functions of any time-invariant input features. Sub-models were
identified by first generating a library of descriptors from the input
features, then down selecting to an optimal set of descriptors from
these, a process known as symbolic regression.64 Several approaches
exist for conducting symbolic regression, notably genetic program-
ming 65–69 and compressed sensing (also known as sparse regres-
sion) methods.70–77 This work takes the latter approach, utilizing
LASSO ℓ1-norm regularization to identify subsets of descriptors from
the descriptor library. LASSO is not necessarily the best algorithm
for this approach; Ouyang et al. 72 review the benefits and limitations
of various sparse regression methods, and demonstrate that several
may be more effective than LASSO. The main drawback of LASSO
is that it is not guaranteed to converge on an optimal solution for
small data sets when the number of generated descriptors is very
large (for example, there are ∼1012 possible 5-dimensional models
in a library of 1000 descriptors).71,72 LASSO was chosen in this
work over other approaches because it is natively implemented in
MATLAB, the generated descriptor libraries are small (∼100
descriptors), and the procedure resulted in models that substantially
improved upon physically informed models.

Generation of the descriptor libraries was conducted according to
a procedure inspired by prior works.71,75 For modeling the calendar
aging of lithium-ion batteries with graphite electrodes, the salient
input features are ambient temperature, SOC, and Ua, which were
separated into two groups: temperature related, and voltage related.
Next, several operators were defined for generating descriptors.
Unary operators are operators that are applied to a single feature or
descriptor and generate a new descriptor. The unary operators used
in this work to modify any feature X are X0.5, X2, X3, X−1, and eX.
Binary operators combine two features or descriptors from different
groups and create a new group. The only binary operator used in this
work is element-wise multiplication of two groups, XA · XB.

Two separate descriptor libraries were generated for identifying
linear and multiplicative models. The procedure for applying operators
to generate each descriptor library is shown in Table III. As noted
previously, multiplicative models can be identified by fitting a linear
model to the natural log of a local parameter, and then taking the
exponential of the identified linear model. This procedure can identify
models with multiplication between exponential or power terms. The
transformation of a linear model to a multiplicative model is shown for
an arbitrary sub-model in the following equations:

X Xexp log exp log 150 1 1 2 2( ( )) ( ( ) ) [ ]b g g g= + + + ¼

X Xexp exp 160 1 1 2
2( ) ( ) · · [ ]b g g= ¼g

No power terms were identified in this work to keep the
descriptor library small, and because accurate model predictions
were achieved without any. Note that this procedure cannot be used
to generate models with linear combinations of arbitrary power
terms (e.g., X X1 2

1 2+g g ), as this requires a non-linear optimization,
and LASSO applies only to linear models. By identifying more
operators and repeatedly applying them to create tiers of increasingly
complex descriptors, this procedure can be used to rapidly generate
many thousands of possible descriptors from a small set of input
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features. Even with only 110 possible descriptors, there are 215,820
potential 3-dimesional models, so searching for the optimal sub-
model for only a handful of model structures can easily exceed over
one million possible equations; if sub-models can have 5 or 6
descriptors, the number of potential equations becomes enormous.
LASSO does not require a limit on the number of optimal model
descriptors, however, it was observed during the implementation
of this method that no sub-models converged with more than 6
descriptors.

Down selection of descriptors from the generated libraries was
conducted using the MATLAB function lasso, which implements
LASSO ℓ1-norm regularization. The LASSO algorithm requires the
input of a hyperparameter, λ, which sets the magnitude of the
penalty imposed on the number of non-zero model parameters. In
this work, λ was optimized by a grid-search over logarithmically
spaced values with 200 points between 10−6 and 100. Model error at
each λ was quantified by the MSE after cross-validation (MSECV)
using 4-fold cross-validation. LASSO was used not to find the model
with the lowest possible MSECV, but rather to find the model with
the fewest parameters that has MSECV equal to the lowest MSECV

plus one standard deviation, referred to as the “1SE” model in the
MATLAB documentation.78 This was done because the lowest
MSECV model often contains many parameters, but lower-dimen-
sional models are preferred for this work to aid interpretability and
avoid over parameterization. The MATLAB function lasso can also
implement the elastic-net regularization algorithm, which can help
balance model sparsity with tolerance to noise or correlated input
data; elastic-net was not used here due to the complexity of finding
the optimal values for two hyperparameters, but will be considered
in the future, along with other sparse regression algorithms.

After identification, the behavior of local parameter sub-models
was investigated by cross-validation and bootstrap resampling.
NLLS optimization utilizing the Levenberg-Marquardt algorithm
via the MATLAB function nlinfit was used for calculation cross
validation error and quantifying model uncertainty via bootstrap
resampling. Hold-one-out cross-validation was conducted to calcu-
late MSECV. Model uncertainty was quantified by 1000 iterations of
bootstrap resampling and model optimization. Confidence intervals
were identified from the bootstrap iterations using the MSD, which
is simply the sum of all residual errors divided by the number of data

Figure 1. Optimization and analysis procedure.
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Table III. Procedure for generating descriptor libraries used for automatic identification of local parameter sub-models.

Step Description Formula Example # descriptors

1 Input features XA(T),XB(SOC,Ua) T,SOC,Ua 3
2 Square-root, square, and cube of input features X0.5, X2., X3

T2, U ,a
3 SOC0.5 10

3 Inverse of all descriptors X−1 1/T, 1/SOC3 20
4 Multiplication of features between groups X1 · X2 U T ,a

2 T2/SOC0.5 84

5 (omitted for mult. models) Exponential of all descriptors eX exp(T),

U SOC Texp , expa
0.5 2 3( ) ( )

168

6 Remove any descriptors with infinite or NaN values 110 (linear), 64 (mult.)
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points, giving the under- and over-predictions at the desired
percentiles. Unless otherwise specified, 90% confidence intervals
are used instead of 95% confidence intervals, as is often reported,
because random sampling from small data sets can result in a higher
proportion of divergent models that do not aid interpretation of
model behavior.

Global model optimization and interrogation.—A global model
is created by replacing each local parameter with its respective sub-
model, forming a single equation that predicts the capacity fade of
for the entire data set. Global models were optimized using NLLS
fitting utilizing the Levenberg-Marquardt algorithm via the
MATLAB function nlinfit. Cross-validation error was calculated
using leave-one-out cross-validation on a cell-by-cell basis.
Sensitivity analysis was conducted by adding Gaussian random
noise to each input vector, optimizing the model on the noisy data,
and normalizing the MSE of the model trained on noisy input data
by the MSE of the unperturbed model. Random noise with
magnitudes of 0.001, 0.01, 0.03, 0.05, 0.1, 0.13, and 0.3 times the
standard deviation of the input vector being perturbed was used here.
Because random noise can occasionally cause extremely poor fit
results, the median MSE from 10 iterations is reported.

Confidence intervals for the global model prediction were
determined by 1000 iterations of bootstrap resampling and model
optimization. 90% confidence intervals of model predictions were
identified for each cell’s data series separately, using the MSD to
calculate percentiles. Determining confidence intervals must be done
on a cell-by-cell basis because the set of parameter values that
correspond to the confidence intervals at one experimental condition
will likely not correspond to the confidence intervals at another. To
put it another way, the vectors of bootstrapped parameters that result
in the greatest under- or over-prediction for the entire data set do not
result in the greatest under- or over-prediction for each cell
individually. The results from bootstrapping can also be used to
quantify model uncertainty when simulating capacity fade in
completely new test conditions in the same manner.

Data

Train, validation, test, and extrapolation data sets.—The data
set used in this study was previously published by Schimpe et al.18

Their work reported calendar aging data from 22 commercial LFP/
graphite 26650 format cells (Sony US26650FTC1). Cells were
calendar aged at temperatures of 10 °C, 15 °C, 25 °C, 35 °C,
45 °C, and 55 °C, with SOC variation at 15 °C and 45 °C between
0%, 12.5%, 25%, 37.5%, 50%, 67.5%, 75%, 87.5%, and 100%.
Cells at other temperatures were stored at 100% SOC. Cell discharge
capacity was measured during a reference performance test (RPT)
procedure using a CC–CV discharge (1C, C/50 cut-off). After the
beginning of life RPT, RPTs were conducted with decreasing
frequency as the cells aged, with the first RPT conducted at 7 d,
and the duration between later RPTs up to 6 weeks. The average
number of RPTs in each cell data series is 10.5 over a period of
∼8 months. See their work for other testing details.18 Data points were
extracted from published figures using the WebPlotDigitizer.79 Data
was drawn in duplicate from several data series to estimate error in the
data extraction process; across 3 data series, the MAPE between
extracted data points was only 0.06%, so noise from data extraction
error is considered negligible (see Supplementary Material). The
anode-to-reference potential, Ua, at a given SOC was used as an
additional input feature. Ua was calculated using the formula by Safari
and Delacourt,60 as used by Schimpe et al.18 when modeling this data
set (reproduced in the Appendix). The relative discharge capacity over
time for each of the 22 cells in the data set is shown in Fig. 2. A.mat
file and an excel table with all input data used during the modeling
process are provided in the Supplementary Material.

The data set is broken up into train, validation, test, and
extrapolation sets. Segmenting of the data set into these subsets is
not done randomly, but rather to aid interpretation of model behavior.

In general, construction of these subsets needs to be done with
consideration for the intended use of the model as well as the qualities
of the data set; data sets can contain biases, and constructing these
subsets completely at random can hide biases within a data set.29 In
this work, the validation set is used to explore the extrapolation of
models with respect to (w.r.t.) time, which is critical for battery control
systems or technoeconomic models. The data in the training sets and
validation set overlap, which is unusual, but is done so that models
trained on different portions of the data are validated on the same data
and can be compared fairly, while still utilizing most of the limited
amount of data for training. Comparing the error of all models on the
validation set is used to determine the “hyperparameter” of model
structure; model structure being the choice of the time dependent
equation (t0.5, power law, stretched exponential, or sigmoidal), and the
selection of each parameter as local or global. The test and extrapola-
tion sets contain data that is unseen during model training. The test set
is used to explore the interpolation of models w.r.t. experimental
conditions, and the extrapolation sets are used to explore the
extrapolation of models w.r.t. experimental conditions. No data subset
explores the interpolation of models w.r.t. time, as the time variable is
sampled quite heavily, so it is assumed that models will interpolate
well w.r.t. time.

To construct these data subsets, test data is first withheld from 6
randomly selected cells that have a varied distribution of tempera-
tures and SOCs: cells 6, 8, 12, 14, 18, and 20. Training sets are then
formed from the remaining 16 cells by separating out data points
from each cell’s data series, using the first 2, 4, 6, 9, and finally all
the available RPTs. The validation set is composed of all available
RPTs from each of the 16 cells. The convergence behavior of models
is observed by comparing model performance on the test set vs the
number of RPTs used for training, as well as by training models
using data from only 4, 5, 6, 8, or 12 cells of the training set and
comparing the prediction error on the test set. Two extrapolation sets
are also formed to investigate whether the structure of the identified
global models can infer the behavior of unseen experimental
conditions with shared physical relationships. The first extrapolation
set is composed of six cells from the test set with the highest fade
rates: cells 12, 18, 19, 20, 21, and 22. The second extrapolation set is
composed of six cells from the test set with low SOCs: cells 2, 3, 4,
13, 14, and 15.

Results

Investigated models.—Four model types (square-root, power
law, stretched exponential, and sigmoidal) were used to create
fifteen distinct models to investigate in this work, detailed in
Table IV. Square-root and power law models are widely used
throughout the literature. Stretched exponential models contain one
more parameter than power-law models, and have a constant bound
at positive infinity, ensuring the model will not extrapolate to
infinitely large degradations. Sigmoidal models have the same
number of parameters and the same qualitative behavior as stretched
exponential models but have constant bounds at both positive and
negative infinity, so they may behave differently.

The first investigated model is the square-root model reported in
many prior studies,

q t1 171
0.5 [ ]b= -

Then, for each of the power law, stretched exponential, and
sigmoidal type equations, several models are defined with increasing
number of local parameters. The final model of each type enforces
no global parameters. The total number of free model parameters for
bi-level optimization is equal to:

p M n N 18· [ ]= +

where M is the number of global parameters, n is the number of cells
in the data set, and N is the number of local parameters. Models with
more local parameters will have more total parameters and fewer
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DOF, which can lead to over-fitting. Here, DOF refers to the total
number of data points in the data set minus the total number of
model parameters. The total DOF in the data set is equal to the total
number of data points; for the 16 cells of the train/test set, the total
DOF is 168.

Individual cell models after bi-level optimization.—The MSE
and MSECV after bi-level optimization (before symbolic regression)
are plotted Fig. 3. The plot clearly shows regions of under-
parameterized, well-parameterized, and over-parameterized models;
models of each type appear in every region, so model structure plays
no role in determining whether the model is well-parameterized.
Under-parameterized models, such as Models 1, 2, 6, and 11, have
only one local parameter each and higher MSE than models with
more parameters. Notably, Model 1, which is the t0.5 model widely
present in the literature, has the largest MSE of any model. Models
with a relative DOF of 0.8 appear to be well-parameterized for this

data set; their MSE is low, and they show almost no difference
between their best fit MSE and MSECV. For these well-parameter-
ized models, model structure plays a role in the quality of the model
fit. For example, consider Models 3 and 4, both power law models
with one global parameter and two local parameters, but Model 4 has
almost double the MSE of Model 3. Models with a DOF ratio less
than 0.8, which have more local parameters, are clearly over-
parameterized. Two details make this obvious: adding more para-
meters has not improved the MSE, and the MSECV begins to
increase dramatically.

The convergence of bi-level optimized models when trained on
increasing number of RPTs per cell is shown for the sigmoidal
models in Fig. 4. The behavior of the power law and stretched
exponential models, shown Fig. S1 (available online at stacks.iop.
org/JES/168/020502/mmedia) in the Supplementary Material, follow
a nearly identical trend. As models are trained on more data, their
error when extrapolating to the validation set decreases, reaching a

Figure 2. Relative discharge capacity vs time during calendar aging of LFP/graphite cells from Schimpe et al.18 Cells at high temperature and high SOC degrade
much more rapidly than cells at low temperature and low SOC. Several data series at differing conditions result in similar degradation, indicating that multiple
temperature and SOC effects impact degradation.

Table IV. Model structures studied in this work.

Model ID Description Model equation # of global params (α) # of local params (β) Total # params

1 Square-root q = 1 − β1t
0.5 0 1 16

2 Power law q t0 1 2a b= - a 2 1 18
3 Power law q t0 1 2a b= - b 1 2 33

4 Power law q t0 1 2b b= - a 1 2 33
5 Power law q t0 1 2b b= - b 0 3 48

6 Stretched exponential q t1 1 exp0 1 2 3( (( ) ))a b a= - - a 3 1 19
7 Stretched exponential q t1 1 exp0 1 2 3( (( ) ))a b b= - - a 2 2 34
8 Stretched exponential q t1 1 exp0 1 2 3( (( ) ))a b a= - - b 2 2 34

9 Stretched exponential q t1 1 exp0 1 2 3( (( ) ))a b b= - - b 1 3 49

10 Stretched exponential q t1 1 exp0 1 2 3( (( ) ))b b b= - - b 0 4 64

11 Sigmoidal q 2
t0 1

1

2

1

1 exp 2 3( )(( ) )
a b= - -

a+ a
3 1 19

12 Sigmoidal q 2
t0 1

1

2

1

1 exp 2 3( )(( ) )
a b= - -

b+ a
2 2 34

13 Sigmoidal
q 2

t0 1
1

2

1

1 exp 2 3( )(( ) )
a b= - -

a+ b
2 2 34

14 Sigmoidal
q 2

t0 1
1

2

1

1 exp 2 3( )(( ) )
a b= - -

b+ b
1 3 49

15 Sigmoidal
q 2

t0 1
1

2

1

1 exp 2 3( )(( ) )
b b= - -

b+ b
0 4 64
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minimum when trained on all available data (where the training set
and the validation set are identical). Under-parameterized models,
such as Model 11, never converge to low error. The well-
parameterized (Model 13) and over-parameterized (Models 14 and
15) models exhibit a learning behavior between RPTs 4 and 6, where
the MAE suddenly decreases. Well- and over-parameterized models
cannot be distinguished from Fig. 4, since the cross-validation error
is not shown, highlighting the need to cross-validate models.

Global models after symbolic regression.—The MSE and
MSECV after bi-level optimization, symbolic regression, and global
optimization are plotted vs. the relative DOF of each model in Fig. 5.
Results in Fig. 5 are substantially different than that in Fig. 3, with
few obviously over-parameterized models. This is due to the
symbolic regression procedure. For models that were obviously
over-parameterized after bi-level optimization, the values of the
locally fit parameters vary wildly across the data set and cannot be
effectively modeled with any combination of proposed descriptors.
In this situation, LASSO returns a constant as the optimal model.

This prevents the over-parameterization of the global model, and
often results in global models that are under-parameterized (Models
5, 10, 12, and 14). Well-parameterized models are identified for each
of the power law, stretched exponential, and sigmoidal model types:
Model 2, Model 6, and Model 13, respectively. Of the power law
models, Model 2 is preferred over Model 4, because while their error
is similar, Model 2 has fewer parameters. Two different global
models are investigated for the square-root model, Model 1: “t0.5

(LASSO),” which uses an automatically identified β1 parameter sub-
model, and “t0.5 (ArrTflmod),” which uses a semi-empirically defined
β1 parameter sub-model consisting of an Arrhenius descriptor and a
modified Tafel-like descriptor, which was identified by Schimpe
et al. specifically for this data set (Eq. 7).18 A detailed comparison of
these two t0.5 models is made in the next section.

The fit quality of some well-parameterized models of the square-
root (both LASSO identified and human-expert defined), power law
(Model 2), stretched exponential (Model 6), and sigmoidal (Model
13) is shown in Fig. 6. These well-parameterized models are further
investigated in the following sections and will be henceforth referred
to by their type (e.g., power law). The equations and parameter
values for each of these well-parameterized models after training on
all RPT data is reported in the Appendix. Immediately apparent is
that the sigmoidal model has the best performance, with a MAE of
about 0.125% (Fig. 6b) and R2

adj greater than 0.99 (Fig. 6c). The t0.5

(LASSO), power law, and stretched exponential models all have
similar MAE of about 0.2%, ∼60% more than the sigmoidal model.
The t0.5 (ArrTflmod) model, which was identified by a human expert,
is the worst performing, with a MAE of about 0.25%, about double
the MAE of the sigmoidal model. Similar MSECV between the t0.5

(ArrTflmod) and t0.5 (LASSO) models (Fig. 6a) suggests that the
major source of cross-validation error for both models is the t0.5

assumption, rather than the structure of their β1 parameter sub-
models. Histograms of the residual errors from these models are
shown in Fig. 6d. The t0.5 (ArrTflmod) model has the largest errors,
with some errors near ±1%; note that the maximum capacity fade in
the training set is only 8%, so this magnitude of error denotes a
substantial mismatch between the model and the training data. The
t0.5 (LASSO) model improves upon the t0.5 (ArrTflmod) model, with
more data points being fit within a ± 0.25% error margin. The power
law model improves upon both iterations of the t0.5 models, with
most data points being fit within a ± 0.5% margin of error. The
stretched exponential model is not shown, as it behaves nearly

Figure 3. MSE and MSECV of models after bi-level optimization on the 16
cells of the training set, using all available RPTs. Polynomial trendlines have
been added to each data series to guide the eye.

Figure 4. Convergence of bi-level optimized sigmoidal models when
trained on increasing number of RPTs per cell.

Figure 5. MSE and MSECV after global optimization on the 16 cells of the
training set, using all RPT data. Data points for the MSECV of Model 3 and
the MSE and MSECV of Model 9 are not shown, as they are orders of
magnitude larger than other data points.
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identically as the power law model. The sigmoidal model clearly
shows the best predictive performance, with nearly all data points
predicted within a ± 0.25% error margin. Results from the sensitivity
analysis (Fig. S2) showed that all models are most sensitive to
temperature, followed by Ua. Models with high accuracy (power
law, sigmoidal) are more sensitive than the worse performing t0.5

model; for this application, more sensitive models are preferred, as it
is safe to assume that input features such as temperature can be
measured relatively accurately, so more sensitivity to the input
temperature is preferred over tolerance to noise.

A comparison of the capacity fade predictions for these models is
shown in Fig. 7 (excluding the stretched exponential model, as it
behaves nearly identically to the power law model). The sigmoidal
model results in the best fit for every case; residual errors of the
sigmoidal model show consistent matching of both the slope and
magnitude of the relative capacity for each data series, while other
models over or under predict degradation (see 15 °C, 100% SOC and
55 °C, 100% SOC) or misjudge the slope of the degradation curve
(see 25 °C, 100% SOC and 45 °C, 25% SOC). All models under-
predict degradation at 55 °C, 100% SOC, though the power law and
sigmoidal models perform substantially better than either t0.5 model.

Detailed Analysis

The following subsections analyze models in detail. The impact of
using human-expert defined sub-models vs. those identified by
symbolic regression is compared using the t0.5 model as an example.
The behavior of the sigmoidal model, which demonstrates the best
performance of any model investigated, is then thoroughly interro-
gated. The convergence behavior of investigated models is analyzed to
determine which features of the data set are learned during training.
The impact of input feature selection on the resulting model behaviors
is analyzed by comparing power law and sigmoidal models after
training with and without Ua as an available feature. Extrapolation of
models across test conditions is used to reveal if the automatically

identified structure of the models inherently captures physical
behaviors, as well as the impact of input feature selection on
extrapolation. Finally, extrapolation of models from the ∼8 months
of training data to 20 years of simulated aging is conducted to magnify
differences between models, making obvious the substantial implica-
tions of sub-optimal model choice on long term predictions.

Comparison of t0.5 global models using LASSO and physics-
informed sub-models.—To critically evaluate the impact of auto-
matically identifying local parameter sub-models, the t0.5 model is
used as a baseline to compare the behavior of sub-models that are
derived autonomously (Eq. 19, shown below) vs those derived by
human-experts, using both physically informed (“ArrTfl,” Eq. 3) and
semi-empirical equations (“ArrTflmod,” Eq. 7, identified by Schimpe
et al. for this data set18). The predictions of these sub-models for the
local parameter β1 (Figs. 8a–8c), as well as histograms of the
residual errors (Figs. 8d–8f) from each model show somewhat subtle
but important differences. The ArrTfl sub-model, being the simplest
of the three, captures the qualitative behavior of β1 but has the worst
performance. The residuals plotted in Fig. 8d show that the ArrTfl
sub-model predicts only 11 out of the 16 locally fit β1 values within
± 0.0005 d−0.5. The most obvious issue of the ArrTfl sub-model is
that as the SOC approaches 0, so does the prediction of β1, causing
substantial error at 0% SOC. The ArrTflmod sub-model adds a
parameter to address this issue, resulting in much better predictions
at 0% SOC, and predicts 12 out of the 16 locally fit β1 values within
±0.0005 d−0.5 (Fig. 8e). The LASSO identified sub-model, given by
the equation:

T U T T U

U T U T

exp exp exp

exp exp 19

a a

a a

1 0 1
2

2
2

3
2

4
2 2

5
3 2

· ( ) ( ) ( )
( ( )) ( ( )) [ ]

b g g g g

g g

=

´

shows the best fit quality of the three models, with approximately 70%
lower MAPE than the ArrTfl sub-model. The LASSO sub-model

Figure 6. (a) MSE, MSECV, (b) MAE, (c) R2, and R2
adj fit metrics for models after global optimization on the 16 cells of the training set using all available

RPTs: t0.5 model (Model 1), with both LASSO identified (Eq. 19) and the semi-empirically derived ArrTflmod (Eq. 7) β1 parameter sub-models, and the best
performing power law (Model 2), stretched exponential (Model 6), and sigmoidal models (Model 13). d) Histograms of residual errors for the t0.5 (ArrTflmod),
t0.5 (LASSO), power law, and sigmoidal models. Residual errors from the t0.5 (ArrTflmod) model are shown shadowed behind the other models, and vertical
dashed lines have been added at ± 0.25% error to aid interpretation.
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predicts 15 of the 16 locally fit β1 values within ±0.0005 days−0.5

(Fig. 8f), improving substantially on the performance of the other sub-
models.

Structural similarities exist between the LASSO identified β1
parameter sub-model and the physically informed sub-models. The
simplest descriptor identified by LASSO is exp(T2), like an

Figure 7. Capacity fade predictions for t0.5, power law, and sigmoidal models after global optimization on the 16 cells of the training set, using all available
RPTs, plotted on a subset of training cells. The residual errors of each prediction are plotted vs time to the right of each relative capacity plot.

Figure 8. β1 parameter sub-models for the t0.5 model after optimizing on the 16 cells of the training set using all RPT data: (a) ArrTfl sub-model (Eq. 3) and
(d) residuals histogram, (b) ArrTflmod sub-model (Eq. 7) and (e) residuals histogram, and (c) LASSO identified sub-model (Eq. 19) and (f) residuals histogram.
Circular markers in (a,b,c) are colored according to SOC to help visualize the variation of β1 with both temperature and SOC. Dashed lines are added in (d)–(f) at
±0.0005 residual error to aid interpretation.
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Arrhenius descriptor. Almost all other descriptors identified by
LASSO are interactions between temperature and Ua, like the
Tafel descriptor used in the physically informed models; remark-
ably, across all well-performing models, all LASSO identified
descriptors containing Ua also contain temperature, demonstrating
consistency with known Tafel kinetics that govern the relationship
between SEI growth and electrochemical potential. This relationship
is automatically identified without any prior knowledge. No
descriptor contains SOC; Ua is always preferred, demonstrating
the value of providing input features that reflect the behavior of
internal processes. This approach of using input features informed
by prior knowledge of internal processes has been harnessed to great
effect in the field of scientific machine learning, for example, as
shown by the hierarchical machine learning approach.80–83

Examining the 90% confidence intervals for each model, large
uncertainty consistently occurs at high fade rates (high β1 values)
and low SOCs for the ArrTflmod and LASSO identified sub-models;
confidence intervals for the prediction at 55 °C and 100% SOC have
a width of approximately 2–4∙10−3 d−0.5, while confidence intervals
at lower temperatures and SOCs are as small as 1–5∙10−4 d−0.5,
simply reflecting that β1 is more difficult to predict with high
confidence at extrema.

The relative capacity predictions of the t0.5 (LASSO) and t0.5

(ArrTflmod) models are shown with 90% confidence intervals for a
few cells of interest in Fig. 9. While not substantially different, given
that both models share a t0.5 curvature assumption, the t0.5 (LASSO)
model has lower error, especially at middling SOCs, as seen in the
relative capacity prediction at 45 °C and 25% SOC. This is reflected
by the fit metrics: the t0.5 (LASSO) model has an R2

adj of 0.978 and a
MAE of 0.19% relative capacity, while the t0.5 (ArrTflmod) model
has an R2

adj of 0.959 and a MAE of 0.26% relative capacity, about
37% larger. Both models exhibit significant error in predicting the

proper fade rate at 25 °C, 100% SOC, shown by the positive slope of
the residual errors of both models at this condition. This error is not
due to the prediction of the β1 value at this condition SOC, which
both sub-models predict accurately (Fig. 8), but rather the t0.5

assumption. In other test conditions, such as at 45 °C, 25% SOC, the
t0.5 assumption is more valid, as the t0.5 (LASSO) model predicts the
slope of the relative capacity fade with only a small amount of error.

Detailed evaluation of the sigmoidal global model.—Figure 10
compares the uncertainty of the capacity predictions for the t0.5

(ArrTflmod) and sigmoidal models. Not only are the predictions made
by the sigmoidal model more accurate than those made by the t0.5

(ArrTflmod) model, but the confidence intervals are substantially
narrower for the sigmoidal model. At 25 °C, 100% SOC, the width
of the 90% confidence interval at the end of testing for the sigmoidal
model is only about 0.3%, and is nearly centered on the experimental
data point, while for the t0.5 (ArrTflmod) model, the width of the
confidence interval is about 0.8%, more than two and a half times
larger. Comparison of the confidence intervals is easier when
examining the residual error plots. Both models show relatively
high uncertainty at low fade rates (15 °C, 0% SOC). The only
condition where the uncertainty of the models is similar is at 55 °C,
100% SOC, which has substantially faster capacity fade than any
other cell of the training set; this uniqueness and large magnitude of
capacity fade results in high uncertainty compared with predictions
made for other cells.

The sigmoidal model (model 13) demonstrates the best fit
quality, highest sensitivity, and lowest uncertainty of all studied
models because it is the only model where the symbolic regression
procedure was able to find accurate sub-models for both the rate/
extent of capacity fade (β1 for all models) as well as the power
exponent of time (β3 for the sigmoidal model). For all other models

Figure 9. Capacity fade predictions with 90% confidence intervals for model 1 after global optimization on the 16 cells of the training set, using all RPT data,
plotted on a subset of training cells. The two t0.5 models use the ArrTflmod β1 parameter sub-model (Eq. 5) (black), and the LASSO identified β1 parameter sub-
model (green). The residual errors of each prediction are plotted vs time to the right of each relative capacity plot.
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that optimized the power exponent of time locally (Models 3, 5, 8, 9,
10, 14, 15, as detailed in Table IV), LASSO was not able to find a
predictive model better than a constant. The locally fit β3 values and
the predictions of the LASSO identified sub-model for β3 for the
sigmoidal model are shown in Fig. 11. The LASSO identified β3
parameter sub-model for the sigmoidal model is:

T U T Uexp exp 20a a3 0 1
2

2
2 2· ( ) ( ( )) [ ]b g g g=

While the R2
adj is not extremely high (0.761), the MAPE is

reasonably low (14.1%), and the sub-model correctly captures
several trends in the variation of the locally fit β3 values: the
convergence of β3 towards 0.5 at 100% SOC with increasing
temperature, and the nearly linear behavior of capacity fade at 0%
SOC. The nearly linear behavior of capacity fade at 0% SOC is of
particular interest because it reflects the conclusions of recent
research on fundamental modeling of graphite SEI growth,37 which
determined that the power exponent of time is near 1 when the
graphite SEI is very thin, but then decays very quickly to 0.5 as the
SEI thickens. Cells at 0% SOC also may not be self-discharging to
the extent of cells at higher SOCs, impacting their aging trajectory.
Another possible explanation for this behavior is that at 0% SOC, the
capacity fade due to SEI growth is competing with other degradation
mechanisms, for example, the influence of the few charge/discharge
cycles used in each RPT measurement. An increase of cell capacity
during the first tens of cycles has been observed for LFP/graphite
LIBs by other researchers.25 At higher SOCs, the magnitude of
capacity fade due to SEI growth begins to eclipse any RPT induced
changes to cell capacity. The competition of these two mechanisms
may be the cause of the noisy signal observed in the capacity fade at
low SOCs, such as at 15 °C and 0% SOC in Fig. 10.

Plotting of the β1 surface vs temperature and SOC is also a useful
way to examine the behavior of the sigmoidal model, as shown in
Fig. 12. For sigmoidal type models, β1 is the limit of the relative
capacity loss at infinitely long times. Figure 12 also shows the
corresponding uncertainties vs temperature and SOC. The LASSO
identified β1 sub-model predicts the value of β1 with very low
uncertainty, except at low SOCs and high temperatures. This is
because no experimental data was measured at low SOCs and high

Figure 10. Relative capacity predictions with 90% confidence intervals for the t0.5 (ArrTflmod) (black) and sigmoidal (red) models after global optimization on
the 16 cells of the training set, using all RPT data, plotted on a subset of the training cells. The residual errors of each prediction are plotted vs time to the right of
each relative capacity plot.

Figure 11. LASSO identified β3 parameter (power exponent of time) sub-
model for the sigmoidal model.
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temperature, but the predicted degradation rate is relatively high,
leading to a wide confidence interval in that region; the limits of the
confidence interval range from approximately 0.15 to 0.9, which is a
very large range, considering the maximum physically realistic
range of β1 is 0 to 1. Despite this uncertainty, the mean prediction
in this region still behaves as expected, showing lower capacity fade
at low SOCs. The curvature of β1 vs SOC reflects the variation of Ua

vs SOC, which has several plateaus corresponding to different
graphite intercalation stages.60

Model convergence behaviors.—The convergence of models to a
global minimum when trained on increasing amounts of data is
explored here, both in the time dimension as well with respect to the
number of test conditions. Convergence of models with respect to
test time is investigated by training several model types on
increasing numbers of RPTs. Convergence of models with respect
to the test conditions is investigated by training the power law model
on increasing numbers of cells. In both cases, models using machine-
learned sub-model equations are compared directly with models
using human-expert defined sub-models.

The convergence of models when trained on an increasing
number of RPTs per cell is shown in Fig. 13. At just 2 RPTs of
training data, the t0.5 (ArrTflmod) model has the lowest prediction
error on both the validation and test sets. This is because the t0.5

(ArrTflmod) model makes physically informed assumptions about the
nature of the capacity fade, reducing the need to learn from the data
set. However, after about 70 d of aging (RPT 6), all the models with
automatically identified local parameter sub-models exceed the
performance of the t0.5 (ArrTflmod) model when trained on all
available data (∼235 d). The sigmoidal model also shows evidence
of learning a key feature of the data set at RPT 9, improving
substantially upon all other models; this improvement is not reflected
in the test set MAE, suggesting whatever features learned from the
training set are not reflected in the test set. A simple comparison of
the data sets reveals that the test set contains no cells with SOCs less
than 25%, so whatever feature of the training data learned by the
sigmoidal model at RPT 9 likely improved the predictions for cells
at low SOCs. The convergence behavior of all global models is
shown in Fig. S3 in the Supplementary Material.

Convergence of the values of global model parameters provides
insight into the learning behavior of a model. As an example, the
convergence of global power exponent of time from the power law
model, α2, is shown in Fig. 14. The value of the global parameter has
converged by 6 RPTs (∼70 d of aging) to a value near 0.45, with
little change when trained on all available data (∼235 d of aging).
This result shows that for most cells in this data set, the t0.5

assumption does not hold, as 0.5 is not within the 90% confidence
interval during any stage of training. Additionally, comparing the
value of the optimized power exponent from the power model, 0.45,
to the locally fit power exponents from the sigmoidal model

Figure 13. Convergence of global models to the (a) validation data and the
(b) test data, which is unseen during the training process.

Figure 14. Convergence of global parameter α2 from the power law model.

Figure 12. Predicted β1 values for the sigmoidal model. 90% confidence
intervals are shaded on each side face (shading is too narrow to be observed
at low temps.). Solid markers denote training data.
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(Fig. 11), it is clear that Model 2 is reaching an optimum that most
effectively models the capacity fade of cells at high temperatures
(35 °C to 55 °C) and high SOCs; at lower temperature (10 °C to
25 °C) and high SOCs, the locally fit power exponents of the sigmoidal
model are between 0.35 and 0.4, and thus the optimized power
exponent of 0.45 for the power law model will cause systematic error.
This systematic error is clearly observable in the residuals plot of the
capacity prediction at 25°C, 100% SOC in Fig. 7.

The convergence of the LASSO identified descriptors for local
parameter sub-models can also be investigated to provide insight
into model learning behaviors. The first 5 identified descriptors for
the β1 parameter sub-model for the power law model vs the number
of RPTs per cell used for training are shown in Table V. When
trained with 2 and 3 RPTs, the sub-model predictions have low R2

adj

values, indicating that the locally fit values are not varying
predictably. At 4 RPTs, the quality of the sub-model prediction
increases substantially. At 6 RPTs, the prediction quality again
increases, and the chosen descriptors begin to stabilize. The simplest
descriptor, exp(T2), is repeated when training with 6 RPTs, 9 RPTs,
and all RPTs, giving high confidence that this descriptor is reflective
of the internal physics that govern the variation of the capacity fade
rate. Several Tafel-like descriptors appear throughout the training
process; the most common form, T Uexp a

2( ) or its inverse

U Texp ,a
2( ) appears in every sub-model from RPT 3 onward,

demonstrating that this descriptor is also critical for modeling the
capacity fade rate. As noted previously, Ua is not present without
temperature in any descriptors for well-performing models, indi-
cating that the symbolic regression process has correctly “discov-
ered” the physical relationship between temperature and electro-
chemical potential known to govern SEI growth behavior without
any prior knowledge. Also, no sub-model contains only a single
Tafel-like descriptor, instead relying on several similar descriptors.
This suggests that none of the proposed descriptors effectively
capture the interactions between temperature and Ua. Future work
will build larger libraries of possible descriptors to hopefully find
more effective models with fewer parameters.

The convergence of the power law model when trained on an
increasing number of cells is shown in Figs. 15a, 15c. Cells were
chosen to vary the sampled temperature and state-of-charge as much
as possible with each added cell; the test conditions of each training
set are shown in Fig. 15a. The MAE of the prediction of the test data
is plotted vs the number of cells in the training set for the power law
models using either automatically identified (LASSO) or human-
expert identified (ArrTfl) β1 sub-models in Fig. 15c. Even with only
four cells in the training set, the symbolic regression procedure can
identify a sub-model that results in a more accurate global model
than a human expert. At five cells, the LASSO approach cannot
converge, resulting in high error. At six cells, both models reach an
optimum value. As more data is added to the training set, the power
law model using the ArrTfl equation gets worse; additional cells at
lower SOCs cause the ArrTfl equation to balance underprediction of
the degradation rate at low SOCs with overprediction at other

conditions (see Fig. 8a), while the LASSO models maintain the same
MAE. The stability of the prediction error is reflected by the stability
of the identified sub-model descriptors, shown in Table VI, which do
not vary significantly from 6 cells onward.

The effect of the sampling strategy on the quality of the power
law model using LASSO or ArrTfl sub-models when training on an
extremely small data set of only 4 cells is shown in Figs. 15b, 15d.
Three sampling strategies are explored, and shown in Fig. 15b: an
orthogonal strategy, which varies temperature at 100% SOC and
varies SOC at a single temperature, an extrema strategy, which uses
data at the “corners” of the parameter space, and a varied strategy,
which attempts to get the most unique values of temperature and
SOC as possible. The MAE of the prediction error on the validation
set of both power law models is shown in Fig. 15d. The error
of the models developed using LASSO for the “Extrema” and
“Orthogonal” training sets is high, because LASSO is not able to
converge on a model and returns a constant as the best-fit. This is
because without enough variance in the training set, the symbolic
regression procedure cannot find relationships in the data. The
impact on the power law model using the ArrTfl equation is not
significant, as this model makes prior assumptions about the
relationships present in the data.

Impact of Ua vs SOC.—Because all LASSO identified sub-
models showed a preference for using Ua as an input feature over
SOC, the impact of using Ua as opposed to SOC needs to be
investigated. While the transformation of SOC to Ua clearly imparts
physically relevant information, causing it to be chosen over SOC,
the sampling of Ua across the data set is more imbalanced than the
sampling of SOC. The relationship between SOC and Ua is shown in
Fig. 16. While SOC is evenly sampled across its range, Ua is not. At
low SOCs, Ua increases rapidly, while at higher SOCs, Ua shows
several plateaus, which correspond to intercalation stages of the
graphite electrode.60 These plateaus are sampled heavily, so any
models constructed using Ua should be accurate when predicting SEI
growth rate at SOCs between ∼30% and 100%, but the sharp rise in
Ua as SOC approaches 0% has only a single sample at 0% SOC, so a
model constructed with Ua will have trouble making accurate
predictions at low SOCs. To study this hypothesis, the power law
and sigmoidal models were re-identified after removing Ua as an
input feature, forcing the models to use SOC.

LASSO identified models with and without Ua for the β1
parameter of the sigmoidal model are shown in Fig. 17 at 45 °C.
Both models capture the essential behavior of β1, which mono-
tonically increases vs SOC. With Ua (Fig. 17a), the sub-model
predicts the behavior of β1 with high accuracy at all sampled SOCs.
Without Ua (Fig. 17b), the sub-model does not have enough data to
infer the plateaus of Ua vs SOC. This is clear when comparing how
the models behave between 40%–70% SOC. The model with Ua

predicts that β1 does not vary much across this voltage plateau, while
the model without Ua shows a nearly linear increase of β1 across
this region, leading to underprediction at middling SOCs and

Table V. Convergence of first 5 descriptors identified by LASSO for the β1 parameter sub-model of the power law model.

# of RPTs
Eq.
type R2

adj

Descriptors

1 2 3 4 5

2 Lin. 0.49 γ1T
2sSOC γ2T

2/Ua T Ua3
2g

3 Mult. 0.55 T Uexp a1( )g exp(γ2T
2Ua) T Uexp a3

2( )g
4 Mult. 0.92 T Uexp a1( )g T Uexp a2

2 2( )g T Uexp a3
2( )g U Texp a4( )g

6 Mult. 0.97 exp(γ1T
2) exp(γ2T

2SOC) T Uexp a3
2( )g U Texp a4

2( )g U Texp a5
2( )g

9 Mult. 0.99 exp(γ1T
2) T Uexp a2

2( )g T SOCexp 3
2 2( )g U Texp a4

2( )g U Texp a5
2 2( ( ))g

All Mult. 0.99 exp(γ1T
2) U Texp a1

2( )g U Texp a3
2 2( ( ))g U Texp a4

3 2( ( ))g

Journal of The Electrochemical Society, 2021 168 020502



overprediction at the high SOCs. At low SOCs, both models show
high uncertainty, with only a single data point at low β1 and low
SOC. The model with Ua, which has more curvature, is more
difficult to extrapolate without data, and correspondingly has a large
confidence interval (width of ∼0.15, vs ∼0.1 for the model without
Ua). The implication here is that if the governing physics of a
problem are known, those governing physics should guide experi-
mental design to produce low uncertainty models. For this applica-
tion, this means that sampling Ua evenly will result in more accurate
models than sampling SOC evenly.

The first five descriptors identified by LASSO for the β1
parameter sub-models of the power law and sigmoidal models
with and without Ua are shown in Table VII. All models predict
the variation of β1 with high accuracy. Very similar temperature

descriptors are present in each sub-model, with all containing an
exp(T2) descriptor. The sub-models with Ua have relatively con-
sistent Tafel-like descriptors between then power law and sigmoidal
models, with 2 out of the 3 being identical. Without Ua, the identified
Tafel-like descriptors are less consistent, sharing only a single binary
descriptor in common between the power law and sigmoidal models.
This stabilizing effect of Ua on the structure of the automatically
identified sub-models demonstrates that Ua is a critical feature for
modeling this data set.

Global models built with and without Ua show similar behavior
to that of β1 sub-models discussed previously (Fig. 17). The MSE
and MSECV of the power law and sigmoidal models constructed with
and without Ua are shown in Fig. 18. As expected, the models
constructed with Ua perform better than models constructed without

Figure 15. Convergence of the power law model, using both machine-learned (LASSO) and human-expert (ArrTfl) β1 sub-models, as a function of the cells used
for model training. (a) Cell test conditions for each training set, with the (c) MAE of the prediction of the test data from models trained on each training set shown
below. (b) Cell test conditions used for exploring the impact of the sampling strategy on model quality for extremely small data sets, with the (d) MAE of the
prediction of the test data from models trained on data using various sampling strategy shown below.

Table VI. Convergence of β1 parameter sub-model descriptors of the power law model when adding cells to the training set.

# of cells Eq. type R2
adj

Descriptors

1 2 3 4 5

4 Mult. 0.88 Texp 1
2( )g U Texp a2( )g

5 Mult. 0
6 Mult. 0.97 Texp 1

2( )g T Uexp a2
2( )g U Texp a3

2( )g
8 Mult. 0.99 Texp 1

2( )g U Texp a2
2( )g SOC Texp 3

3 2( )g
12 Mult. 0.99 Texp 1

2( )g SOC Texp 2
2( )g U Texp a3

2( )g U Texp a4
2 2( ( ))g U Texp a5

3 2( ( ))g
All Mult. 0.99 Texp 1

2( )g U Texp a2
2( )g U Texp a3

2 2( ( ))g U Texp a4
3 2( ( ))g
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Ua. The sigmoidal model without Ua shows substantially higher
MSECV than other models as well, demonstrating the importance of
high value features for creating a stable model. Plots comparing the
capacity predictions from the power law and sigmoidal models with
and without Ua are shown in Figs. S4 and S5, respectively.

Extrapolation of models across test conditions.—To study the
ability of models to learn physical relationships from training data,
the extrapolation of some selected models w.r.t. experimental
conditions is tested. Two extrapolations tests were conducted, first
to cells with high fade rates (cells 12, 18, 19, 20, 21, and 22) and
second to cells with SOCs less than or equal to 25% (cells 2, 3, 4, 13,
14, and 15). For each extrapolation test, models which had been
identified using all 16 cells of the training set were re-optimized
without the extrapolation cells, and then used to predict the
performance of the withheld cells; thus, this procedure is testing
whether structure of models identified on all available data inher-
ently contain physical insight. Models investigated using this
approach are the t0.5 (ArrTflmod) and t0.5 (LASSO) models, power
law models with and without Ua, and sigmoidal models with and
without Ua.

The MAE of each model on training and extrapolation data from
the two extrapolation tests are shown in Table VIII. In general,
extrapolation to low SOCs performs worse than extrapolation to high
fade rates when using Ua as an input feature, and vice-versa when
using SOC as an input feature. Because this behavior is reflected by
all the investigated models, this indicates that selection of input
features is more important than model structure for determining
model behavior during extrapolation in this study. Models using Ua

cannot accurately predict cell behaviors at low SOCs without

exposure to low SOC training data, due to the steep curvature of
Ua at low SOCs; while the relationship between SOC and Ua is
known, this information is not incorporated into the models, so
models only “learn” this sharp increase in Ua when provided data
from low SOC cells. Models without Ua do not accurately predict
cell behaviors at high fade rates, as they cannot infer the plateaus of
Ua vs SOC given the available data.

Improved extrapolation to high fade rates when using Ua, and
improved extrapolation to low SOCs without Ua are shown by
comparing the capacity predictions of the sigmoidal and power law
models with and without Ua in Fig. 19. Examining the behavior of
the sigmoidal model with and without Ua when extrapolated to high
fade rates (Fig. 19a), it seems that both models perform well at 100%
SOC, though the model with Ua has a narrower confidence interval
(width of ∼0.1 with Ua, and ∼0.15 without Ua) and performs much
better at 62.5% SOC. However, models with Ua cannot accurately
extrapolate to low SOCs. The power law model with Ua dramatically
overpredicts capacity fade when extrapolating to low SOCs
(Fig. 19b), while without Ua, the power law model makes fairly
accurate predictions. Capacity fade predictions for the power law
and sigmoidal models, with and without Ua, are shown for all six
cells in the high fade rate extrapolation test in Figs. S6 and S7,
respectively, and for the six cells in the low SOC extrapolation test
in Figs. S8 and S9, respectively, in the Supplementary Material.

Extrapolation of models to long times.—Extrapolation of
models over long times is useful for exaggerating differences and
is representative of their intended use as predictive models for
control systems or technoeconomic analyses. The predictions of the
t0.5 (ArrTflmod), power law, and sigmoidal models over 20 years of
aging at 50% SOC and temperatures of 10 °C, 25 °C, and 40 °C is
shown in Fig. 20; confidence intervals of the predictions are shown
as opposed to prediction intervals to show the impact of the
reliability of parameter estimation on model predictions. Prediction
intervals, which are generally wider than confidence intervals, may
be more appropriate for estimating the reliability of predicting future
measurements, and will be used in future analyses. The t0.5

(ArrTflmod) model predicts the largest magnitude of capacity fade
for all the simulations, while the predictions of the power law and
sigmoidal models show different behaviors across the temperatures.
The difference in the capacity fade predictions between the models is
the most drastic when the capacity fade rate is low: at 10 °C, the t0.5

(ArrTflmod) model predicts the cell will reach 5% capacity fade
within 4 years, while the sigmoidal model predicts the same amount
of degradation will require almost 11 years. This is despite a
difference in the MAE of these models of only 0.125% on the
training set (MAE for the t0.5 (ArrTflmod) model is ∼0.25%, MAE
for the sigmoidal model is ∼0.125%). While this is clearly an
example picked to exaggerate differences between these models, the
implications are significant nonetheless; small differences in model
predictions on the training data, when simulated to long times
relevant to real-world use, may result in substantial disagreements
between models. In the absence of validation data from long-term
experiments, the predictions of the sigmoidal model are the most
trusted, as it captures the capacity fade behavior across the entire

Figure 16. Ua, as modeled by Safari, 2011,60 plotted vs SOC. The
experimentally tested conditions are shown by green markers.

Table VII. β1 parameter sub-models identified after global optimization on the 16 cells of the training set using all RPT data for the power law and
sigmoidal models, with and without Ua as an input feature. All sub-models are multiplicative.

Model R2
adj

Descriptors

1 2 3 4 5

Power law 0.99 Texp 1
2( )g U Texp a2

2( )g U Texp a3
2 2( ( ))g U Texp a4

3 2( ( ))g
Power law, no Ua 0.98 Texp 1

2( )g T SOCexp 2
2 2( )g SOC Texp 3

2( )g
Sigmoidal 0.99 Texp 1( )g Texp 2

2( )g T Uexp a3
2( )g U Texp a4

2( )g U Texp a5
2 2( ( ))g

Sigmoidal, no Ua 0.99 Texp 1
2( )g SOC Texp 2( )g SOC Texp 3

2( )g SOC Texp 4
2( )g
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data set with the best accuracy, indicated by its low error on all
subsets of the data and its relatively low uncertainty across all test
conditions.

A practical implication of more accurate extrapolations at long
times is that other degradation mechanisms can be detected as they
emerge during cell aging. LLI can itself have several contribution
mechanisms (SEI growth, lithium-metal deposition, accelerated SEI
growth due to cell charging, new SEI growth due to particle
fracturing), and more accurate degradation models enable researchers
to deconvolve multiple degradation mechanisms. For example,
modeling of the aging of cycled cells often requires tracking both
LLI as well as the loss of active material (LAM) in the positive or
negative electrodes, and isolating the contribution of LAM to overall
cell capacity requires extrapolation an LLI model (trained on cells/data
points known to be dominated by LLI) to cells with competing LLI/
LAM degradation modes. LIBs with other chemistries, such as those
with layered-oxide cathodes, may also necessitate disambiguation of
multiple degradation modes. Incorporating other input features, such

as information extracted from dQ∙dV−1 measurements, into the model
identification process may greatly assist the disambiguation of
competing degradation modes.

Conclusions

In this work, reduced-order models used to predict the capacity
fade of LIBs during calendar aging were reviewed to reveal common
assumptions and practices. While not true for all studies, many
works utilized physically informed models, such as t0.5 for pre-
dicting the behavior of individual cells, or Arrhenius and Tafel
equations to predict SEI growth rate as a function of temperature and
SOC. To repeat from the introduction, there are several reasons that
researchers typically use physically informed equations when
identifying reduced-order models:

1. Obvious starting point for developing reduced-order models of
complex systems

2. Inherent interpretability of model behavior when utilizing
equations derived from first principles analysis of simple
systems

3. Model behavior when extrapolating to untested conditions is
known a-priori

The obvious drawback of using physically informed reduced-
order models is that they are based on first principles analysis of
simplified systems, and do not necessary predict the behavior of
complex systems. Moreover, many researchers proposed modifica-
tions to the physically informed descriptors (semi-empirical models),
or used empirically informed descriptors, implying they could not
effectively model their data set using common physically informed

Figure 18. MSE and MSECV of the power law and sigmoidal models
constructed with and without Ua as an input feature.

Table VIII. MAE of training and extrapolation to test sets of cells that exhibit high fade rates and cells at low SOCs for a selection of models.

Model
Extrapolation to high fade rates Extrapolation to low SOCs

MAE (Train) MAE (Test) MAE (Train) MAE (Test)

t0.5 (ArrTflmod) 0.24% 0.43% 0.26% 0.84%
t0.5 (LASSO) 0.17% 0.34% 0.20% 2.97%
Power law 0.17% 0.45% 0.19% 3.08%
Power law, no Ua 0.20% 0.45% 0.25% 0.17%
Sigmoidal 0.11% 0.19% 0.13% 3.25%
Sigmoidal, no Ua 0.14% 0.34% 0.17% 0.14%

Figure 17. LASSO identified sub-models of the β1 parameter of the
sigmoidal model (a) with and (b) without Ua, calculated vs SOC at 45 °C
with 90% confidence intervals.
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equations. These empirically determined equations require statistical
validation to ensure safe extrapolation, a step which is often
neglected. Even with a physically informed model, careful statistical
validation is a necessary first step to proving that model predictions
are trustworthy and improves understanding of model behavior.

Thus, inspired by recent work of Attia et al.,10 recommendations
for statistically validating reduced-order capacity fade models were
presented, and these recommendations were demonstrated by
comparing physically informed and semi-empirical models found
in literature to those constructed empirically by an automatic
identification procedure utilizing bi-level optimization followed by

symbolic regression. Models using power law, stretched exponential,
and sigmoidal type equations were trained on a standout calendar
aging data set of LFP/graphite cells published by Schimpe et al.18

Statistical techniques of cross-validation, convergence analysis,
sensitivity analysis, uncertainty quantification by bootstrap resam-
pling, and extrapolation were utilized to interrogate the behavior of
the studied models. The best fitting model, a sigmoidal model,
predicted the relative capacity fade of the training data with
approximately half the MAE of a semi-empirical model identified
by a human-expert. The sigmoidal model reported here also
extrapolated more accurately to validation data and showed much

Figure 19. Capacity fade predictions with 90% confidence intervals with and without Ua as an input feature for the (a) sigmoidal model extrapolating to high
fade rates and the (b) power law model extrapolating to low SOC. Results are plotted on a subset of cells from each extrapolation test that demonstrate
characteristic behaviors. The residual error of each prediction is shown to the right of each plot.

Figure 20. Predictions of 20 years of calendar fade at several temperature and 50% SOC with 90% confidence intervals for the t0.5 (ArrTflmod), power law, and
sigmoidal models.
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lower predictive uncertainty. The automatic identification procedure
also found models with square-root, power law, and stretched
exponential structures that had improved performance relative to
human expert models were also identified, demonstrating the
flexibility of this method for identifying robust models regardless
of the chosen structure.

Through careful interrogation, the behavior of automatically
identified models can be interpreted and justified. Investigation of
the studied models revealed that the optimization procedure pro-
posed here “rediscovered” two known physical behaviors without
any presupposition: the bi-level optimization procedure identified
variation in the power exponent of time for calendar fade that
reflects recent fundamental research on SEI growth,37 and the
symbolic regression procedure consistently identified descriptors
that paired Ua or SOC with temperature, reflecting well-understood
Tafel kinetics that govern the relationship between SEI growth rate
and electrochemical potential. Additionally, it was shown the model
extrapolation to high fade rates or low SOCs was dependent on the
selection of input features, rather than on model structure, a clear
demonstration that model behavior is dependent not only on its
structure, but also its input data.

Extrapolating models forward in time revealed that even minor
disagreements between model predictions on the training data (8
months of aging) resulted in substantial deviations between predictions
after long times (20 years of aging). Models trained on the same data,
each of which predicted the relative capacity fade of the training data
with a MAE of less than 0.25% relative capacity, differed in their
predictions of the capacity fade after 20 years by a factor of 100% or
more (up to 10% disagreement of the relative capacity, or 50% of the
practical life of the battery if end of lifeis defined at 80% relative
capacity). This result has substantial implications for the use of
reduced-order models in battery control systems and technoeconomic
models, and highlights why it is necessary to statistically validate
reduced-order degradation models for LIBs.

Moreover, utilizing the methodology developed here can greatly
accelerate the model development process, and enable fair comparison
between degradation models trained on different aging data sets. This
is something that is traditionally difficult to do, because it is not
possible to assert that models which have been manually identified on
different data sets are getting the most out of their respective data, and
there exists no reduced-order model general enough to model an
arbitrary data set effectively. Models identified using the machine
learning empowered approach shown here are more readily compar-
able, as the search for best model is algorithmically defined, and thus
long-term predictions can be analyzed with confidence that compar-
isons between models trained on different data sets are fair. Regardless
of the model structure, quantification of uncertainty can be used to
guide the design of future experiments, and rigorous statistical
interrogation of models can speed the discovery of underlying physics
of complex systems by ensuring that as much information as possible
is learned from the available data. And while the focus of this article is
on capacity loss governed by a single degradation mechanism, the
approach herein is applicable to other battery health metrics such as
cell impedance rise, as well as to more complex data sets that
demonstrate multiple degradation mechanisms.

Including other features, such as those extracted from detailed
electrochemical measurements like dQ∙dV−1, as inputs for battery
life models would likely improve the predictive accuracy of these
models. This is especially true for data that exhibits multiple
degradation mechanisms, or heterogenous aging across test repli-
cates; in the case of calendar aging, as shown here, cell-to-cell
heterogeneity is usually reported as very small, and capacity fade is
dominated by a single degradation mechanism, so the data can be
modeled accurately without including additional features.

The results shown here clearly demonstrate that using physically
informed assumptions to predetermine model structure does not
necessarily improve either fit to training data or extrapolation to
unseen conditions. Looking forward, it is hoped that this work can
be a steppingstone for future studies utilizing machine learning

methods to automatically identify models for electrochemical
systems, building on the growing body of work utilizing symbolic
regression techniques in other scientific domains.
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Appendix

Calculation of anode-to-reference potential (Ua) from state-of-
charge (SOC).—This equation has been reproduced from Schimpe
et al.,18 and is originally attributed to Safari and Delacourt.60 Ua is
determined first by calculated the relative lithiation of the graphite,
xa, as a function of SOC, and the calculating Ua as a function of xa.
The equation for xa is a simple linear interpolation of the
stoichiometry of lithium in the graphite anode, as measured by
anode half-cell measurements:18

x SOC SOC0.0085 0.78 0.0085a ( ) · ( )= + -

Ua is then calculated as a function of xa by the equation from Safari
and Delacourt:60

U x x

x

x

x x

0.6379 0.5416 exp 305.5309
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Fit metrics.—Coefficient of determination (R2).—

R
y y

y y
1

n
n pred n

n
n

2 1 ,
2

1
2

( )

( ¯)
å
å

= -
-

-

where y is the response data (data being fit/predicted), n is the
number of data points in y, ȳ is the mean of the response data, and
ypred is the predicted response.

Adjusted coefficient of determination (R2
adj):

R R
DOF

n
1 1

1adj
2 2( ) ·= - -

-

where the degrees of freedom (DOF) is equal to:

DOF n p= -

where p is the number of model parameters.
Mean squared error (MSE):

MSE
y y

DOF

n
n pred n1 ,

2( )å
=

-
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Mean signed difference (MSD):

MSD
y y

n

n
n pred n1 ,

2( )å
=

-

Mean absolute error (MAE):

MAE
y y

n

n
n pred n1 ,∣ ∣å

=
-

Mean absolute percent error (MAPE):

MAPE
n

n y y

y1
n pred n

n

,å
=

-

Model Equations.—For all the following reduced-order model
equations, q is relative discharge capacity, t is time in days, T is
temperature in Kelvin, SOC is state of charge, and Ua is the anode-
to-lithium-reference potential, calculated as a function of SOC using
the model by Safari and Delacourt.59

Model 1—t0.5 (ArrTflmod).—Model equations

q t1 ,1
0.5b= -

T

U

T
exp

1
exp a

1 0 1 2 3
⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟· ·b g g g g= +

Model parameters.—β1 sub-model: γ0 = 0.00157509920559553,
γ1 = 21855.2495911229, γ2 = 0.391258956773426, γ3 =
0.342598196618906

Model 1—t0.5 (LASSO).—Model equations

q t1 ,1
0.5b= -

T exp U T T U

U T U T

exp exp

exp exp

a a

a a

1 0 1
2

2
2

3
2

4
2 2

5
3 2

· ( ) · ( ) · ( )
· ( ( )) · ( ( ))
b g g g g

g g

=

Model parameters.—β1 sub-model: γ0 = 5.66055159867028e
−05, γ1 = 6.78495316614697e−05, γ2 = −6.73196811705621e
−06, γ3 = −392313.347878663, γ4 = 780.754335526516, γ5 =
12.0073255348081

Model 2—power law.—Model equations

q t ,0 1
1a b= - a

T U T U T

U T

exp exp exp

exp

a a

a

1 0 1
2

2
2

3
2 2

4
3 2

· ( ) · ( ) · ( ( ))
· ( ( ))
b g g g g

g

=

.—Model parameters.—Global: α0 = 1.00077162305817, α1 =
0.422870911936737

β1 sub-model: γ0 = 0.000131359732087792, γ1 =
4.22464201471607e−05, γ2 = −229637.590117639, γ3 =
18.0867012887458, γ4 = 34.7563919770849

Model 2—Power law without Ua.—Model equations

q t ,0 1
1a b= - a

T T SOC SOC Texp exp exp1 0 1
2

2
2 2

3
2· ( ) · ( ) · ( )b g g g g=

.—Model parameters.—Global: α0 = 1.00071226034570, α1 =
0.423245474433938

β1 sub-model: γ0 = 2.48515307384225e−06, γ1 =
6.40511004337107e−05, γ2 = −1.13531789772891e−06, γ3 =
175790.934229002

Model 6—stretched exponential.—Model equations.—

q t1 1 exp , ,0 1 1 2( (( ) ))a b a= - - a

T U T U T
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1 0 1
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· ( ( ))
b g g g g

g

=

Model parameters.—Global: α0 = 1.00075169420981, α1 =
4.24534842040504e−05, α2 = 0.440370572271614

β1 sub-model: γ0 = 0.0106924644709047, γ1 =
4.22593522686259e−05, γ2 = −230010.659845844, γ3 =
18.1022718823750, γ4 = 34.7558667980410

Model 13—sigmoidal.—Model equations

q
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2,
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.—Model parameters.—Global: α0 = 1.00001376140538, α1 =
2.26315452719218e−07,

β1 sub-model: γ0,β1 = 2.87660289775572e−05, γ1,β1 =
0.00194139757136067, γ2,β1 = 0.000159242066031295, γ3,β1 =
1.67382362333744e−05, γ4,β1 = 114553.532911380, γ5,β1 =
1111.32287038007

β2 sub-model: γ0,β2 = 0.806779018023099, γ1,β2 =
4.21480492252815e−06, γ2,β2 = −23212.9725808128

Model 13—Sigmoidal without Ua.—Model equations
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g b −73372.3713767496.
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