
NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 
This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

 

 
Contract No. DE-AC36-08GO28308 

  

Conference Paper  
NREL/CP-5D00-78295 
July 2021 

On the Use of Smart Meter Data to 
Estimate the Voltage Magnitude on the 
Primary Side of Distribution Service 
Transformers  

Preprint  
Marcos Netto, Jun Hao, Harsha Padullaparti, and  
Venkat Krishnan 

National Renewable Energy Laboratory 

Presented at the 2021 IEEE Power and Energy Society General Meeting  
July 25–29, 2021  



NREL is a national laboratory of the U.S. Department of Energy 
Office of Energy Efficiency & Renewable Energy 
Operated by the Alliance for Sustainable Energy, LLC 
This report is available at no cost from the National Renewable Energy 
Laboratory (NREL) at www.nrel.gov/publications. 

 

 
Contract No. DE-AC36-08GO28308 

 

National Renewable Energy Laboratory 
15013 Denver West Parkway 
Golden, CO 80401 
303-275-3000 • www.nrel.gov 

Conference Paper  
NREL/CP-5D00-78295 
July 2021 

On the Use of Smart Meter Data to 
Estimate the Voltage Magnitude on the 
Primary Side of Distribution Service 
Transformers 

Preprint  
Marcos Netto, Jun Hao, Harsha Padullaparti, and  
Venkat Krishnan   

National Renewable Energy Laboratory 

Suggested Citation  
Netto, Marcos, Jun Hao, Harsha Padullaparti, and Venkat Krishnan. 2021. On the Use of 
Smart Meter Data to Estimate the Voltage Magnitude on the Primary Side of Distribution 
Service Transformers: Preprint. Golden, CO: National Renewable Energy Laboratory. 
NREL/CP-5D00-78295. https://www.nrel.gov/docs/fy21osti/78295.pdf.  

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in 
any current or future media, including reprinting/republishing this material for advertising or promotional purposes, 
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of 
this work in other works. 

 

https://www.nrel.gov/docs/fy21osti/78295.pdf


 

 

NOTICE 

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for 
Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. 
Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy (EERE) and 
by Electric Program Investment Charge (EPIC) of San Diego Gas & Electric Company under the cooperative 
research and development agreement CRD-17-712. The views expressed herein do not necessarily represent the 
views of the DOE or the U.S. Government. 

This report is available at no cost from the National Renewable 
Energy Laboratory (NREL) at www.nrel.gov/publications. 

U.S. Department of Energy (DOE) reports produced after 1991 
and a growing number of pre-1991 documents are available  
free via www.OSTI.gov. 

Cover Photos by Dennis Schroeder: (clockwise, left to right) NREL 51934, NREL 45897, NREL 42160, NREL 45891, NREL 48097,  
NREL 46526. 

NREL prints on paper that contains recycled content. 

http://www.nrel.gov/publications
http://www.osti.gov/


1

On the Use of Smart Meter Data to Estimate the
Voltage Magnitude on the Primary Side of

Distribution Service Transformers
Marcos Netto, Member, IEEE, Jun Hao, Student Member, IEEE, Harsha Padullaparti, Member, IEEE,

and Venkat Krishnan, Senior Member, IEEE

Abstract—This paper develops a novel method to estimate the
voltage magnitude on the primary side of distribution service
transformers. The proposed method relies exclusively on smart
meters, and therefore it is fully data-driven. This is an important
feature because electric utilities have detailed models of only the
primary network—that is, the network between the distribution
substation and the primary side of service transformers that are
installed closer to end-customer sites. The network that connects
the secondary side of service transformers to end-customer sites,
referred to as the secondary network, is simply represented by a
lumped load. For each secondary network, the proposed method
uses data acquired from only 2 smart meters: the closest and
the farthest—in the sense of electrical distance—from the service
transformer. As a reference to this feature, the proposed method
is named SM2Vp. To our knowledge, this is the first time a
method is shown to provide actionable information for real-
time operation and control of power distribution grids using
only two smart meters per secondary network. This is important
because utilities have experienced barriers in managing and
using large data sets for real-time operation and control.
SM2Vp is primarily intended to provide pseudo-measurements
for distribution system state estimation, but it can also be used
directly for voltage control schemes. The performance of SM2Vp
is demonstrated by numerical simulations carried out on three
secondary network synthetic models and by using field data
provided by a utility partner serving customers in southwestern
California. A maximum relative error of approximately 3.9% or
less is observed for the primary voltage magnitude estimates in
all numerical experiments.

Index Terms—Distribution system state estimation, distribution
service transformer, pseudo-measurement, smart meter.

I. INTRODUCTION

Electric utilities are undergoing radical changes triggered
by the advent of new technologies in power electronics,
energy conversion and storage, sensing and measurements,
and communications and networking. These technologies
have collectively led to the development of small-scale
electric power generation and storage systems that are
connected to the grid in a distributed fashion, closer to
end-customer sites. These systems are commonly referred
to as distributed energy resources (DERs) [1]. Following
[2], “rooftop solar photovoltaics (PVs) have the highest
profile of these resources, but DERs include any generator
or energy-storage device connected at distribution voltage
levels and characterized by relatively small capacities (e.g.,

This work was authored by the National Renewable Energy Laboratory
(NREL), operated by Alliance for Sustainable Energy, LLC, for the U.S.
Department of Energy (DOE) under Contract No. DE-AC36-08GO28308.
Funding provided by U.S. Department of Energy Office of Energy Efficiency
and Renewable Energy (EERE), and by Electric Program Investment Charge
(EPIC) of San Diego Gas & Electric Company under the cooperative
research and development agreement CRD-17-712. The views expressed in
the article do not necessarily represent the views of the DOE or the U.S.
Government. The U.S. Government and the publisher, by accepting the
article for publication, acknowledges that the U.S. Government retains a
nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce
the published form of this work, or allow others to do so, for U.S. Government
purposes. The authors are with the National Renewable Energy Laboratory,
Golden, CO 80401, USA. Corresponding author: marcos.netto@nrel.gov.

a few kilowatts to a few megawatts).” The dynamics of
distribution systems are changing tremendously because of
DERs. For example, electrical quantities such as voltage and
power are varying more abruptly in distribution secondary
networks with significant numbers of installed PV. This poses
a threat to the effectiveness of long-established distribution
operation and control schemes. In particular, the voltage profile
from the distribution substation, along the feeder, down to
the end-customer site is no longer monotonically decreasing.
Consequently, rules of thumb [3] used in the past to ensure that
voltages were within limits (1.00± 0.05 per unit) throughout
the distribution network are no longer acceptable. It is now
widely recognized that the next generation of distribution
operation and control schemes [4], [5] will rely on distribution
system state estimation (DSSE) [6]. Typically, DSSE is
designed to provide estimates of the algebraic states of the
distribution system, including the primary network. There have
been some proposals to include the secondary network as
well [7], but this would require a detailed model that is not
available. For this reason, in what follows, we assume that
DSSE involves only the primary network, and the secondary
network is simply modeled by a lumped load. Note that the
set of algebraic states is not unique, and it can be defined as i)
voltage magnitudes and phase angles or ii) current magnitudes
and phase angles, depending on how the DSSE problem is
formulated. Despite all the progress in DSSE algorithms,
deploying meters in distribution networks [8] is challenging
because of the greater number of spatially distributed electrical
nodes. As a consequence, observability remains the key
bottleneck preventing DSSE from being effectively realized.
This is why researchers and practitioners resort heavily to
using pseudo-measurements [9], [10] for DSSE.

Meanwhile, legacy energy meters used for customer billing
are being progressively replaced by smart meters [13]. It
turns out that, other than billing, the data acquired from
smart meters have a secondary set of equally important
roles. Examples include topology and phase identification and
model identification and calibration [14]–[17]. These tasks
are accomplished, however, under the assumption that all
end-customer sites connected to the secondary network are
monitored by smart meters. As another example, data from
smart meters can also be used to enhance DSSE [18]. Along
these lines, [19] studied the role of smart meter data to
enhance the system observability after reformulating the DSSE
problem as an optimization problem; [20] addressed the use of
nonsynchronized measurements coming from smart meters in
DSSE; and [7] proposed a multilevel DSSE that includes both
primary and secondary networks. These works assume either
that a detailed model of the secondary network is available,
or that a large portion of end-customer sites are monitored
by smart meters, or both. These assumptions, which are not
always true, have been an impediment for the adoption of
previous works by electric utilities for real-time operation and
control.

In this paper, we propose to estimate the voltage magnitude
on the primary side of distribution service transformers by
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Fig. 1: Single-phase center-tapped transformer with a single connected load [11], [12].

using only a limited number of smart meters—in particular,
we consider the extreme case of using data from only two
smart meters per secondary network. The obtained voltage
magnitude estimates can be readily incorporated into existing
DSSE algorithms as pseudo-measurements. To give the reader
a sense of the impact of the proposed method, referred to as
SM2Vp, a single feeder in our utility partner’s distribution grid
has 345 service transformers; therefore, SM2Vp provides 345
pseudo-measurements by using data from 700 smart meters
installed across this particular feeder, without any additional
information regarding the secondary network. Further, we
observe that the accuracy of SM2Vp is better than the reported
accuracy of other data-driven methods used to generate
pseudo-measurements from smart meters [10], [21]. This is
possible because of the derived two-stage approach that uses
the fact that smart meters are strategically placed on the closest
and farthest—in the electrical sense—load from the service
transformer. Note that the proposed approach is extendable to
include more than two smart meters per secondary network.

This paper proceeds as follows. Section II briefly introduces
the modeling of power distribution secondary networks and
shows the electrical link between smart meter data and the
primary voltage of interest. Section III presents the proposed
SM2Vp method. Section IV discusses the numerical results,
and Section V provides conclusions and future work.

Notation: In what follows, lower-case (upper-case) boldface
letters are used to denote column vectors (matrices); 0
denotes the all-zero vector of suitable dimension; and Im and
0m denote, respectively, the identity matrix and the square
matrix whose entries are all zero, both of dimension m. The
superscript T denotes transposition.

II. SECONDARY LOW-VOLTAGE CIRCUIT MODEL

This section introduces the basics of modeling power
distribution secondary networks. The goal is to establish
the link between smart meter data and the primary voltage
of interest. The full model of a single-phase, center-tapped
transformer with a single load connected to its terminals
through a triplex cable is shown in Fig. 1. Note that using
center-tapped transformers is common practice in the United
States, hence its use in the present work. For simplicity
of presentation, Fig. 1 illustrates the connection of a single
load. In practice, a secondary network typically supplies 2–
10 customers with split-phase service consisting of a 240-V
connection that is split into two 120-V circuits [12].

A. Single-Phase Center-Tapped Transformer
Transformer manufacturers usually provide the transformer

total losses, no-load losses, and the full-winding short-circuit
impedance, zsc = rsc + jxsc. From [12], based on zsc, for
core-type or shell-type transformers with interlaced secondary
winding:

z0 = 0.5rsc + j0.8xsc, (1)
z1 = 1.0rsc + j0.4xsc, (2)
z2 = 1.0rsc + j0.4xsc. (3)

For shell-type transformers with noninterlaced secondary
winding:

z0 = 0.25rsc − j0.6xsc, (4)
z1 = 1.50rsc + j3.3xsc, (outer winding) (5)
z2 = 1.50rsc + j3.1xsc. (inner winding) (6)

The impedances in (1)–(6) are in per unit and must be
converted to ohms relative to the respective sides of the
transformer. Let:

n′t =
high-side rated voltage

low-side half-winding rated voltage
, (7)

where the low-side half-winding rated voltage is 120 V. The
relationship between voltages and currents in the single-phase
center-tapped transformer shown in Fig. 1 is given by [11]:[

vs1
vs2

]
=

1

nt

[
vp
vp

]
−Zt

[
is1
is2

]
, (8)

where:
Zt =

[
z1 + z0/n

2
t −z0/n2t

z0/n
2
t −z2 − z0/n2t

]
. (9)

B. Triplex Cable
Typical triplex cables consist of two identical insulated

conductors wrapped around a noninsulated neutral conductor.
The π-model is typically adopted. The model is defined by

a series of primitive impedance matrices, Zc12n , and primitive
shunt admittance matrices, Yc12n , where:

Zc12n = Rc12n + jXc12n , (10)
Yc12n = Gc12n + jBc12n . (11)

The conductance, Gc12n , is typically ignored because it is
much smaller than the capacitive susceptance, Bc12n [22]. For
short lines, Bc12n is so small that the resulting impedance is
much larger than Zc12n , and thus Bc12n is also neglected;
therefore, the relationship between voltages and currents in
the triplex cable is given by:[

vs1
vs2
vn1

]
=

[
va
vb
vn

]
+

[
zc11 zc12 zc1n
zc12 zc22 zc2n
zc1n zc2n zcnn

][
is1
is2
in

]
= v`12n +Zc12ni12n. (12)

Provided that the phase conductors are identical and placed
symmetrically with respect to the neutral conductor, Zc12n is
always symmetric. The elements of Zc12n can be calculated
using, e.g., the modified Carson’s equations [22]. If the neutral
conductor is effectively grounded, i.e., vn1

= vn = 0, the
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equation for the neutral conductor in (12) can be eliminated
via the Kron reduction, yielding:[

vs1
vs2

]
=
[
va
vb

]
+

[
z′c11 z′c12
z′c12 z′c22

] [
is1
is2

]
. (13)

The secondary network synthetic models in this manuscript
are built based on the principles introduced in this section.

III. THE PROPOSED SM2VP METHOD

From the brief introduction in Section II to distribution grid
secondary network modeling, it is evident that an estimate of
vp is challenging to obtain if only 2 of n` loads connected to
the service transformer are equipped with smart meters. We
start from the following assumptions:

1) The neutral conductor of the triplex cable is effectively
grounded, i.e., vn1

= vn = 0 (see Fig. 1).
2) The loads connected between va and vn, and between

vb and vn (see Fig. 1) are identical, and thus the current
in the neutral conductor is equal to zero (see Fig. 2).

3) The smart meter is connected as shown in Fig. 2,
and it provides ideal measurements—noises, gross
measurement errors, data dropouts, and time delays are
neglected.

Note that, as demonstrated in [12], “split-phase secondary
networks [as shown in Fig. 1] can be modeled accurately with
single-phase equivalents under perfectly balanced conditions;”
the balanced condition is provided by Assumption 2. We
propose using the equivalent one-line circuit shown in Fig.
3. To this end, we further assume that:

4) The closest (p1) and the farthest (p2)—in the sense of
electrical distance—loads from the service transformer
are equipped with smart meters; all remaining n` − 2
loads are not metered.

5) All remaining n`−2 loads in the secondary are lumped
as a single load, pu.

At any point in time, v1, p1, v2, p2, and nt = 2n′t are
known; this is the only information we have access to. Note
that circuit reactances and reactive power are not considered
because the available smart meter provides measurements of
voltage magnitude and kilowatt-hour—from which we obtain
a sample measurement of active power per hour.

The SM2Vp method has two stages. The first stage performs
a linear regression on the latest data window available at the
control center—we use a data window of 288 points, which is
equivalent to a day for a 5-minute sampling resolution—and it
is executed only once. The second stage comprises a Kalman
filter and it is used to update the voltage magnitude estimates
continuously based on new data points. The formulation of
both stages is presented next.
A. First Stage: Linear Regression

From Kirchhoff’s voltage law, we have:
vp = v′p + rpip = ntv

′
s + rpis/nt

= ntv
′
s + rp (i1 + i2 + iu) /nt. (14)

v′s = (rs + r1) (i1 + i2 + iu) + v1, (15)
= (rs + r1) (i1 + i2 + iu) + v2 + r2i2. (16)

v1 − v2 = r2i2. (17)

v1, p1 v2, p2

vu, pu

vp v′p v′s

rp rs r1 r2
1 : nt

Fig. 3: Equivalent circuit used by the SM2Vp method.

where rp and rs denote, respectively, the losses in the primary
and the secondary winding of the service transformer; v′p
and v′s denote, respectively, the voltage magnitude at the
primary and the secondary of an ideal transformer; nt is as
defined in (7); v1 and p1 (v2 and p2) denote, respectively,
the voltage magnitude and the active power measured at the
closest (farthest) load from the service transformer; r1 and r2
account for cable impedance; and vu and pu are unknown,
time-varying quantities that denote the voltage magnitude and
the active power of the lumped load. By substituting (15) and
(16) into (14) and rearranging:

v1 = −r′1 (i1 + i2)− ku + vp/nt, (18)
v2 = −r′1 (i1 + i2)− ku + vp/nt − r2i2, (19)

where r′1 = r1 + rs +
1
n2
t
rp, and ku = r′1iu. Basically, ku is

the voltage drop through the line caused by the pseudo-node.
Now, let v1, v2, i1, and i2 be column vectors containing m

measurements. For example, v1 =
[
v
(1)
1 · · · v(m)

1

]T
. By using

(17)–(19), it follows that:[
v1
v2

v1 − v2

]
=

 − (i1 + i2) 0 1
nt
Im −Im

− (i1 + i2) −i2 1
nt
Im −Im

0 i2 0m 0m

 r′1r2
vp
ku

 ,
or simply:

d = Cx. (20)

Unfortunately, the matrix C is rank deficient, and (20) has
infinitely many solutions; thus, a classic linear least-squares
regression-type approach will probably lead to an incorrect
solution. Instead, to solve (20), we formulate it as a constrained
linear least-squares problem of the form:

min
x

1

2
‖Cx− d‖22

s.t. `b ≤ x ≤ ub,
(21)

where the lower, `b, and upper, ub, bounds play an important
role in finding a physically meaningful solution to (20). After

solving (21), we have x̂ =
[
r̂′1 r̂2 v̂Tp k̂Tu

]T
and îTu = k̂Tu

/
r̂′1.

B. Second Stage: Kalman Filtering
The first stage in Section III-A is intended to estimate the

parameters of the equivalent circuit, r′1 and r2, which are
constant scalars. Conversely, the vector-valued variables, vp
and ku, are time-varying. We design a discrete-time Kalman
filter to track these variables, as presented next. Let:

xk = xk−1 +wk−1
zk = Hxk + ek, (22)

where x = [vp i1 i2 iu]
T, z =

[
v1 v2 i1 i2

∼
iu

]T
,

H =


1/nt −r1 −r1 −r1
1/nt −r1 − (r1 + r2) −r1
0 1 0 0
0 0 1 0
0 0 0 1

 ,

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.
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(a) (b) (c)

Transformer
Load
Load + SM

Fig. 4: Topology of the secondary network synthetic models.
(a) 3 loads. (b) 9 loads. (c) 25 loads.

and
∼
iu denotes a pseudo-measurement of the current in the

unknown lumped load, given by an autoregressive model of
Order 2 as follows:

iu,k = a1iu,k−1 + a2iu,k−2 + ek, (23)

where k ∈ Z is the discrete time, ek is the error at time step
k, and ai denotes the model parameters.

IV. NUMERICAL RESULTS

A. Secondary Network Synthetic Models
To test SM2Vp, we developed three secondary network

synthetic models of increasing complexity, as shown in Fig.
4. These models are developed in OpenDSS and consider i)
resistance and reactance for the transformer and all cables;
and ii) a power factor equal to or less than 0.9 for all
loads. This is illustrated in Fig. 5 for the circuit with three
loads (case a in 4). One week of synthetic smart meter data
is generated for each of the three circuits under different
scenarios, which include balanced and unbalanced networks
and different levels of PV penetration, as shown in Table I.
Note that to be consistent with current smart meter technology,
we generate synthetic measurements of voltage magnitude on
a 5-minute time resolution and measurements of kilowatt-hour
on a 60-minute time resolution. The proposed SM2Vp method
currently uses linear interpolation to bring measurements of
active power to the same time resolution of measurements of
voltage magnitude. The data are separated into training and
testing data sets. One day of data—that is, 288 data points on a
5-minute resolution—is used for training, described as the first
stage in Section III-A. The remaining six days of data—1,728
data points—are for testing, described as the second stage
in Section III-B. We use the relative error of the estimated
primary voltage magnitude to evaluate the performance of
the proposed methodology. The relative error is defined as
e := (100 · |v̂p − vp,true|) /vp,true, where e is the relative error,
v̂p denotes the estimated voltage magnitude, and vp,true is the
true voltage magnitude obtained in OpenDSS.

Table II shows the maximum relative error for all cases
in Table I. For the circuits 25a–25d, Fig. 6 shows in
detail the relative error in time. The largest relative error
among all the cases is 2.5225%, which is the case with
an unbalanced network and low PV penetration level. The
results indicate that the proposed SM2Vp method provides
results with good accuracy under various secondary network
topologies and different loading conditions, despite the fact
that the mathematical formulation neglects reactances and
reactive power. We should mention that 316 of 345 secondary
networks in one of our utility partner’s feeders have 25 loads
or less, thereby corroborating the practical relevance of test
cases 25a–25d. We should also point out that all the results
have the similar periodic pattern shown in Fig. 6. The periodic
oscillation in the relative error is mainly caused by the lumped
load representing the part of the secondary network that does
not have smart meters. The second-order autoregressive model
used to forecast the lumped load is only effective to a certain
extent. Table III shows the computational time for all cases in
Table I. In all cases, 205 seconds or less is needed to simulate
144 hours—or 6 days worth of data. If we assume that a batch
of smart meter data is collected at the control center on a 5-
minute time resolution, it is evident that the proposed SM2Vp
method is adequate in terms of processing time.

vp

1 : nt

`cab
`uab

`fab

`can
`uan

`fan
`cbn `ubn

`fbn

Fig. 5: (a) The three-phase model of the secondary network
synthetic with three loads, as built in OpenDSS.

TABLE I: Secondary network synthetic models
Circuit No. of loads Circuit loading No. of loads with PV

3a 3 Balanced 0
9a 9 Balanced 0
9b 9 Unbalanced 0
9c 9 Unbalanced 3
9d 9 Unbalanced 5
25a 25 Balanced 0
25b 25 Unbalanced 0
25c 25 Unbalanced 5
25d 25 Unbalanced 10

TABLE II: Maximum relative error for synthetic models
Case (all values in %)

No. of loads a b c d
3 1.0069 — — —
9 1.3863 1.3632 1.3458 1.0362
25 0.6011 0.7269 2.5225 1.3959
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Fig. 6: Relative error in the voltage magnitude estimates at
the primary side of the service transformer for the circuit with
25 loads. Note that a relative error of 1% is equivalent to a
relative error of 0.01 per unit if vp,true is the base voltage.

TABLE III: Computational time for synthetic models
Case (all values in seconds)

No. of loads a b c d
3 205 — — —
9 189 199 196 187
25 189 187 188 188

TABLE IV: Maximum relative error for utility models
Secondary No. of loads in the field Maximum relative error (%)
A 9 3.2520
B 13 1.7592
C 181 3.4023
D 20 3.1706
E 35 3.8517

B. Real Smart Meter Data from a Utility
The original feeder model from the utility partner has

only the primary network; service transformers and associated
secondary networks are simply modeled by a lumped load. The
secondary networks in this particular feeder are, however, fully
monitored by smart meters. We therefore used all available
smart meter data sets to build secondary network equivalent
models for this feeder as in Fig. 5. The utility partner identified

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.
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Fig. 7: Utility’s equivalent secondary network model.
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Fig. 8: (Left) Relative error in the voltage magnitude estimates
at the primary side of the service transformer for Secondary
C in Table IV. (Right) Histogram of the relative error with a
Gaussian distribution fit.

the smart meter data sets associated with the closest and
farthest loads for each secondary; these data sets are directly
used as load profiles. The remaining unknown load is modeled
as an aggregated unmeasured load, and its load profile is
computed by subtracting the sum of the two smart meter data
sets from the service transformer rated power. The service
transformer ratings and impedance parameters are selected
based on the available field data. This approach is used
to model 340 out of the 345 service transformers in this
feeder. The remaining 5 service transformers were selected
for this study because they have different number of loads,
as shown in Table IV, and interesting characteristics of the
5 secondaries designated A to E. The secondary networks
associated with these service transformers are represented by
a refined equivalent model, using a principled methodology
developed at NREL. The description of this methodology is
beyond the scope of this paper and will be reported elsewhere.
To provide the reader with some details, however, the topology
of the refined equivalent model for secondary network C in
Table IV is shown in Fig. 7.

The primary voltages of the selected secondaries are
estimated using SM2Vp, and the maximum relative errors are
summarized in Table IV. The maximum relative error is higher
than that observed in the case of the synthetic models. This
could be because of the increased complexity of the utility
feeder compared to the synthetic models. The relative error in
time is shown in Fig. 8 for the Secondary C, which has the
highest number of customer loads. For the same secondary, a
histogram of the error is also shown in Fig. 8.

V. CONCLUSIONS AND AVENUES FOR FUTURE RESEARCH

We propose a novel method, referred to as SM2VP, to
estimate the voltage magnitude on the primary side of service
transformers using only two smart meter data sets. The method
comprises two stages and can achieve consistent and promising
performance in diverse scenarios tested with synthetic as
well as real utility network data with relative error less than
3.9%. Two aspects need to be addressed in future work:
i) Currently, bounded linear-least squares is implemented in
stage one to estimate the parameters, and other optimization
methods—such as multi-objective genetic algorithm—could
be investigated in future work to improve the estimation results
in the training stage. ii) Advanced forecasting algorithms—
such as deep neural networks—could be implemented to

replace the autoregressive model in the second stage to
improve the prediction results for pseudo-nodes; therefore,
the peaks in the results could be reduced, and the periodic
estimation error pattern could potentially be eliminated. We
envision that such use of smart meter data from the secondary
network for the estimation of the primary-side voltage of
the service transformer has the potential to enhance DSSE
by supplying pseudo-measurement data in practical utility
networks with limited primary-side measurements.
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