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A Machine Learning-based Method to Estimate 
Transformer Primary-Side Voltages with Limited 

Customer-Side AMI Measurements

Abstract— Distribution control applications such as volt/var 
optimization, network reconfiguration, and distribution 
automation require accurate knowledge of the distribution 
system state. The lack of sufficient sensors on the primary side 
of distribution networks often limits the accuracy of the control 
decisions by these applications. The deployment of advanced 
metering infrastructure (AMI) provides utilities an opportunity 
to translate the AMI data on the secondary onto the primary so 
that it can be used as pseudo-measurements to augment the 
limited existing measurements on the primary. This paper 
develops a machine learning based approach for estimating 
service transformer primary-side voltages by using limited 
secondary-side AMI measurement. The machine learning model 
is developed by using random forest algorithm. The estimated 
primary-side voltages can be used by utilities as pseudo-
measurements for distribution control applications. The detailed 
secondary model topology, which is an essential input data for 
many existing algorithms, is not required for the proposed 
method. The performance of the proposed method is validated 
by using AMI measurements from the field and an actual 
distribution feeder model of San Diego Gas & Electric 
Company. 

Index Terms— Advanced metering infrastructure (AMI), 
distribution system, service transformer, smart grid, voltage 
estimation. 

I. INTRODUCTION  
Obtaining accurate information of the system state is 

critical for many distribution control applications including 
volt/var optimization, network reconfiguration, and 
distribution automation in today’s modernized grid [1]. These 
control applications can help improve grid operations by 
solving problems caused by increasing integration of 
distributed energy resources (DERs) [2]–[4]. Nevertheless, 
the lack of enough sensors on the feeder primary side might 
limit the accuracy of these control decisions. To avoid these 
issues during operation, electric utilities require accurate 

feeder models for planning and real-time data measurement 
for control implementations [5]. Therefore, utilities in the 
United States have deployed advanced metering 
infrastructure (AMI) to further modernize the grid [6].  

The deployment of AMI on the customer side can enable 
the collection of smart meter measurements from the grid 
edge to improve the efficiency of utility system operation and 
reduce the cost for metering and billing. The AMI 
measurement can also help with feeder analysis, such as 
phase identification [7], transformer identification, 
identifying energy thefts [8], and load forecasting [9]. In 
addition, because the AMI measurements are usually from the 
customer side, the secondary model and service transformer 
primary-side voltage can be estimated by the collected data as 
well. The estimated voltage at the service transformer 
primary side is important to electric utilities for network 
model validation, state estimation, and control 
implementation.  

The methods using AMI measurements to estimate 
secondary model topology and primary-side voltage have 
been studied by researchers. Bottoms-up regression method 
was used in [8] to group the AMI data from two transformers 
that are electrically close and estimate the primary voltage; 
however, the estimated primary voltage is for the constructed 
mock circuit based on AMI data instead of the actual 
distribution feeder. The works reported in [10] and [11] 
developed a linear regression method to estimate the 
distribution system secondary-side parameters and topology; 
however, this method requires AMI measurements from all 
customers on the feeder. In reality, utilities might not be able 
to obtain these measurements because of customer privacy 
concerns. An algorithm to improve the network connectivity 
topology was proposed in [12]. One assumption of this 
algorithm is that the voltage magnitude decreases 
downstream along the feeder, which means that it will not 
work when DERs are integrated. In [13], the authors 
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Fig. 1. Topology of the distribution feeder 

presented a simplified DER-integrated distribution system 
secondary circuit model estimation method when limited 
AMI measurements were available. However, it assumes that 
each secondary circuit had one or more PV systems, which is 
not realistic in all distribution systems.  

In this context, the contributions of this paper are: 
 (1) A machine learning-based method is developed to 

estimate the service transformer primary-side voltages with 
limited AMI measurements from the secondary side. The 
estimated voltages on the primary can be used as pseudo-
measurements for distribution control applications.  

(2) The proposed approach does not require detailed 
topological information of the secondary networks which is 
often complex and not available with the utilities. 

The rest of this paper is organized as follows. Section II 
describes the models and data used in this study. Section III 
introduces the proposed machine learning-based methodology 
to estimate the transformer primary-side voltage. The 
simulation and method validation results are shown and 
analyzed in Section IV. Section V concludes this paper and 
presents potential future work. 

II. FEEDER MODEL AND FIELD DATA 
This section details the distribution feeder modeling and 

the data sets used in this study. 
A.  Feeder Model 

An actual distribution feeder model developed in the 
Synergi software platform is received from San Diego Gas & 
Electric Company (SDG&E) for this study. This is a 12-kV 
feeder with a peak load of 10.3 MW. The topology of the 
feeder plotted using the GridPV toolbox [14] is shown in Fig. 
1. The substation transformer is equipped with a load tap 
changer. Three capacitor banks are available on the feeder for 
reactive power support. The feeder serves more than 5,000 
customers using 341 service transformers. Solar generation of 
approximately 70% relative to the peak load is present in this 
feeder at the locations highlighted in Fig. 1. 

 

The original Synergi feeder model is converted to OpenDSS 
using the Distribution Transformation Tool (DiTTo) model 
conversion tool to perform quasi-static time-series (QSTS) 
simulation [15], [16]. The conversion is validated by 
comparing the voltage mismatches between the Synergi and 

OpenDSS power flow results, which is shown in Fig. 2. It can 
be observed that the mismatches are very low, which confirm 
the accuracy of the model conversion process. 

 
Fig. 2. Bus voltage mismatches between Synergi and OpenDSS power flow 
results. 

B. AMI Data 
AMI data are recorded at the secondary side of each 

service transformer in the SDG&E feeder. The AMI data set 
includes the voltage and real power measurements from two 
customers and the total real power consumption at the 
secondary side of each service transformer. The AMI data 
recorded for a period of 107 days from October 2018 to 
January 2019 are used. The data resolution is 1-hour for the 
real power measurements and 5-minute for the voltage 
measurements at the load locations. The voltage distribution 
for all AMI measurements on a selected day is shown in Fig. 
3.  

 

Fig. 3. Voltage distribution for all AMI measurements for a selected day. 

C. SCADA Data 
The historical SCADA measurements at the feeder head 

include line-to-line voltages, line currents, and three-phase 
real and reactive power. Additionally, primary-side voltage 
measurements from a remote terminal unit (RTU) installed on 
the feeder are available in the SCADA system. The RTU 
location is highlighted in Fig. 1. 

III. METHODOLOGY 
A machine learning-based approach is proposed in this 

work to estimate the service transformer primary-side voltage 
by using the AMI measurements on the secondary side. The 
details of this approach are presented in this section. 

A. Synthetic Primary-Side Voltage Generation 
Machine learning approaches typically require a training 

data set that contains the features to be estimated. In this 
application, the inputs include the AMI measured power and 
voltages at two customers under each service transformer and 
the total power consumption of all customers under the 
service transformer. The output is the transformer primary-
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side voltage. Therefore, the transformer primary voltage data 
must be included in the training data set in addition to the 
other specified feature data; however, because no primary-
side measurements are available in this feeder except the 
RTU voltage, as described in Section II, time-series voltage 
data recorded from the simulations in OpenDSS are used to 
form the required training data set. The feeder is simulated in 
OpenDSS with QSTS mode for the whole 107 days to obtain 
the primary-side voltages. In the QSTS simulation, the time 
resolution is hourly to follow the AMI load time resolution. 
The load profile of each secondary-side measured load is set 
to be the AMI measured total power under that transformer. 
The simulated primary-side synthetic voltage from the QSTS 
simulation and the actual measured secondary-side voltages 
at the two AMI measured loads recorded are used to train the 
machine learning model. 
B. Machine Learning Model  

Multiple machine learning algorithms—random forest, 
adaptive boosting, and gradient boosting—are tested to find 
the relationship between the primary-side voltages and the 
AMI measurements under each service transformer [17]-[19]. 
The data from each service transformer (341 in total) will be 
trained separately to account for their unique characteristics, 
i.e., separate models are constructed for each service 
transformer. The input of each model is the hourly load 
measurement from two AMI meters under that service 
transformer, the average hourly AMI voltage measurement, 
and the total load of that service transformer. The output of 
the model is the voltage on the primary side of the service 
transformer. 

The data from first month are selected to compare the 
estimation accuracy of different algorithms. K-fold cross 
validation is used to validate the machine learning models, 
and the validation is repeated 30 times. In each test, 80% of 
the monthly data are randomly drawn from the data set to 
train the model, and the remaining 20% are used for testing. 
The mean absolute percentage error (MAPE) and maximum 
absolute percentage error between the synthetic primary 
voltage and estimated primary voltage is used to evaluate the 
performance of each machine learning method. The 
performance comparison is shown in TABLE I. 

TABLE I. PERFORMANCE OF DIFFERENT METHODS  

 Machine Learning Method 
Random Forest AdaBoost Gradient Boost 

MAPE 0.12% 0.75% 0.48% 
Maximum 0.46% 1.08% 0.95% 

 
The results summarized in TABLE I show that random 

forest model performs better than the other two models in the 
selected performance criteria; therefore, it is selected to 
estimate the primary-side voltages in this study. Another 
advantage of using random forest algorithm is as random 
forest is an ensemble learning method that integrates multiple 
decision trees, it will combine these decision trees and use 
average or voting schemes to calculate the results. Therefore, 
the outliers in the AMI measurements can be well handled 

with this algorithm. Further, an exhaustive search is 
conducted to determine the model parameters (number of 
decision trees and maximum depth). These two parameters 
are varied from 1 to 500 and 1 to 30, respectively, to test the 
estimation performance. Considering both estimation 
accuracy and training time, the number of decision trees are 
selected to be 80 and the maximum depth to be 10. The time 
to build the machine learning model for each service 
transformer is around 5 seconds, and the total time for 
building the models for all service transformers is 30 minutes. 
As the process of training model is usually developed for the 
distribution system planning studies, it meets the run-time 
requirement. 

IV. CASE STUDIES 
This section presents the case studies for validating the 

proposed approach by using both simulated and actual voltage 
data. The training and test dataset for each case study is 
summarized in TABLE II. 

TABLE II. SUMMARY OF DATA USED FOR EACH CASE STUDY 

 Case 1 
Case 2 

2a 2b 

Train 

Primary voltage Simulated Actual Simulated 

Secondary voltage Simulated Actual Actual 

Load Actual Actual Actual 

Test 

Primary voltage Simulated Actual Actual 

Secondary voltage Simulated Actual Actual 

Load Actual Actual Actual 
 

A. Case 1: Validation with Simulated Data 
The proposed machine learning model is first validated by 

the synthetic primary-side voltage generated from the QSTS 
simulation. A secondary model is built for each service 
transformer in OpenDSS. Each secondary model includes the 
two loads with voltage measurements and a load without 
voltage measurement. The load profiles of each secondary 
measured load are set to be one AMI measured power under 
that transformer. The load profile of the unmeasured load is 
set to be the AMI measured total power at that service 
transformer minus the two measured loads. The primary-side 
and secondary-side voltages at the two AMI measured loads 
recorded from the QSTS simulation are used to train the 
machine learning model. The data from the first 1,000 hours 
are used as training data set to train the model for each 
service transformer, and the next 1,568-hour data are used to 
test the performance of each machine learning model.  

The MAPEs for the estimation of all service transformer 
primary-side voltages are shown in Fig. 4. All of them are 
less than 0.07%. Although the largest estimation error is 
around 0.65%, the number of such occurrences is very small. 
For most estimations, the error is less than 0.02%. Overall, 
the MAPE for all predictions in the feeder is 0.012%, and the 
MAPE for the service transformer with maximum error is 
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0.056%. The comparison between estimated and actual 
voltages (synthetic voltage, in this case) for one example 
service transformer is shown in the two subplots of Fig. 5. 
The first subplot shows the voltage comparison, and the 
second subplot shows the estimation absolute percentage 
error at each time step. Generally, the shape of the estimated 
voltages follows the actual voltages. The mismatch between 
the estimated and actual voltages is within 0.2%, which is 
very small. The model is also tested when using the first 
2000-hour data as training dataset and test with the rest 568-
hour data. The performance is similar to the previous case, 
which means over-fitting problem does not exists for the 
model. 

 

Fig. 4. MAPE for the voltage estimation of each service transformer. 

 

Fig. 5. Comparison between estimated and synthetic voltages for one 
example service transformer. 

B. Case 2: Validation with Actual Data 
In Section IV-A, the trained machine learning model is 

validated with synthetic primary-side voltage data. However, 
the synthetic voltages are from the simulation and because 
there are differences between the OpenDSS feeder model and 
the operation in reality, the machine learning method still 
needs to be validated with actual data. The SCADA voltage 
measurement from the RTU location will be used as the 
primary-side voltage measurement. A service transformer that 
has the shortest distance to the RTU location is selected for 
the validation. 

1) Case 2a: Model trained by Actual Data 
In this validation, we use the first 1,000-hour SCADA 

measured primary-side voltages to train the model, and we 
validate it with the rest of the 1,568-hour data. The validation 
results are shown in Fig. 6 and Fig. 7. The plots show that all 
estimation errors are within 1% range, and most errors are 
smaller than 0.5%. Because the operation condition in reality 

is much more complex than the simulation, these errors are 
larger than the result in the previous subsection. It means that 
if the electric utilities can record the primary-side voltages for 
a period of time for each service transformer by using a 
movable meter, however, the trained models could estimate 
the voltages with small errors. 

 
Fig. 6. Comparison between actual voltages and estimated voltages from 

actual data trained model 

 
Fig. 7. Violin plot of all estimation errors with actual data trained model 

2) Case 2b: Model trained by Simulated Data 
In this validation, we use the SCADA measured primary-

side voltages to validate the model trained by the synthetic 
data. Sometimes the utilities will not collect any primary 
voltage measurements. Under this situation, we can use the 
model trained by synthetic primary-side voltages and actual 
AMI measurements to estimate the actual primary-side 
voltages. We input the 2,568-hour measurements from the 
two AMI meters and the total load consumption under that 
service transformer into the model trained by the synthetic 
data, and the estimated voltages are compared with the actual 
SCADA data. The comparison results are shown in the two 
subplots in Fig. 8. The first subplot shows the voltage 
comparison. The shape of the estimated voltages follows the 
actual voltages, but the deviations are much larger. The 
percentage errors are shown in the second subplot, and there 
are some estimation errors larger than 2%. Overall, the 
average percentage error is 0.57%, and the largest error is 
2.20%. 

The error distribution is shown in Fig. 9. Although the 
overall estimation errors are larger compared with the 
validation in the previous two cases, most errors are still less 
than 1%. For more than 85% of the time, the estimation error 
is within 1%, and there is only 5% of time the error is larger 
than 1.5%. The results show that when field data 
measurements are not available, the machine learning models 
can be trained by synthetic data to estimate actual primary 
voltages with reasonable accuracy. If more sensors are 
available on the primary to measure actual primary voltages 
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could be measured for a period of time, the estimation 
accuracy can be improved further. The addition of available 
AMI measurements under each service transformer would 
also help improve the results. 

 
Fig. 8. Comparison between actual voltages and estimated voltages from 

synthetic data trained model 

 

Fig. 9. Estimation error distribution with synthetic data trained model 

V. CONCLUSION 
This paper presented a machine learning-based method to 
estimate the service transformer primary-side voltage by 
using limited AMI measurements from the secondary side. A 
realistic feeder model and AMI measurements were used in 
this study. The performances for different machine learning 
methods were compared, and the random forest model was 
used in the estimation. The parameters in the random forest 
model were selected based on an exhaustive search. Three 
case studies were conducted, and the proposed method was 
validated with the model trained by synthetic and actual 
primary voltage data. The validation results demonstrated the 
advantage of the proposed method. As part of the future 
work, we will compare the proposed method with the other 
state-of-the-art methods to show the effectiveness. 
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