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– Bioreactor: use microbial action for conversion 
• Pharmaceutical industry
• Waste water treatment
• Biofuels and molecules (Research at NREL)

– Ethanol/Butane-diol/Methane

– Fermentation is a large cost contributor1

• Cost is important: low value products

– Improve economics through bioreactor design
• More engineering than biology
• Validated high-fidelity modeling
• Scale-up/reactor-design optimization 
• Techno-economic analysis

Biomethanation reactor (NREL)

Algae bioreactor

1Humbird, D., R. Davis, and J. D. McMillan. "Aeration costs in stirred-tank and bubble 
column bioreactors." Biochemical engineering journal 127 (2017): 161-166.

Image by Dennis Schroeder, NREL
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Micro-aeration for BDO Production

• Central idea: 
• These are not like the traditional bubble columns where lot of air is sparged 

(superficial velocities of ~1 m/s compared to ~10-2 m/s)
• Only controlled amount of O2 is required

• Too much O2 will trigger creation of wrong products
• Not enough air will reduce the reaction rate overall, and thus the rate of 

production of the desired product – butanediol (BDO)
• Method

• Bubble column CFD + microbial bioreaction
• Reactions – 5 species (microbe, glucose, xylose, acetoin and BDO)
• Assume these species are well mixed and O2 mixing is what limits reactions spatially

• Challenge 
• Long time scales for reactions ~ hours
• Sub-cycling/operator splitting

• Solve flow to steady-state
• Do reactions
• Redo until final reaction time
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Kinetics Model Development and Low-Order Results
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Kinetics
Substrate Uptake

Sugar Limitation

Biomass Growth

Aerobic Limitation

Electrons Consumed

Substrate Used Products Formed
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Kinetics – Substrate/Product Partitioning

Experimental Phenomena Well-Mixed Model Result
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Glucose consumed before Xylose

P is the CDF of a gamma 
distribution

BDO and Acetoin are assumed to be 
produced in a consistent ratio prior to re-

consumption

Modeling Formalism

At low O2 concentrations, existing acetoin 
serves as an electron source
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Kinetics Model Exploration –
Well-mixed, Constant kLa

kLa = 1 h-1

kLa = 3 h-1 kLa = 9 h-1

Increased oxygen availability: 
• Increases overall rate
• Reduces BDO selectivity
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Kinetics Model Exploration –
O2 Distribution

Increasing oxygen distribution (holding mean O2 constant) in the reactor 
reduces overall reaction rate but does not significantly impact product  
selectivity.

O2 mean: 0.004 mM 0.02 mM 0.1 mM
(Max O2 at 1 
bar: 0.21 mM) O2 assumed to have 

gamma distribution, 
where the normalized 
variance is:

β-1

Solid 0

Dashed 0.05

Dotted 0.2
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High-Fidelity CFD Sub-cycling Methods
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Multiphase Euler-Euler equations
• Gas and liquid as continuous interpenetrating phases

• Bubble sizes are small compared to reactor dimensions
• Constant bubble size - 6 mm

• Compressible low Mach RANS equations 

Volume fraction constraint

Mass conservation

Momentum conservation

Species transport within 
each phase
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Mass transfer
Oxygen mass transfer (Higbie et al. 1 )

Oxygen transfer rate

Henry’s law

Mass transfer coefficient

Microbial oxygen uptake (Monod model)

1 Higbie, R., 1935. The rate of absorption of a pure gas into a still liquid during short periods of exposure. Trans. AIChE 31, 365–389. 

Representative oxygen uptake relationship during CFD
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Reaction Subcycling/Operator Splitting

Euler-Euler CFD to 
Pseudo-Steady-State

Advance Bio-Reaction
In Each Cell

Oxygen 
concentration 

distribution

Biomass, substrate,  
and product 

concentrations give 
new max O2 uptake
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Computational model

• Transport properties

• Fermentation broth properties are similar to water
• Grace drag model for bubbles
• Wilke-Chang diffusion of species 
• Multiphase k-ϵ turbulence model
• Wall lubrication effects

• Customized solver bdoFOAM calls customized solver TwoPhaseEulerFoam
in OpenFOAM

• Simulations performed using

• 72 Intel Skylake processors
• 48 hours of run time to simulate 2000-8000 seconds
• Kinetics step is trivially fast

• More details in Rahimi et al., Chem. Eng. Res. Design, 139, 2018
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Subcycling Results
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Bubble Column Reactor for BDO Production

20
 m

5 m

15
 m

3 m dia sparger
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Sparge Rate Comparison

0.01 m/s

0.005 m/s

40
 m
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Reactor Height

30 m

20 m
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Conclusions and future work
• Conclusions

• Computational model
• Kinetics model capturing unique dynamics of Z mobilis bench-scale 

fermentation developed
• Euler-Euler gas-transfer and OUR model implemented to determine 

pseudo-steady-state O2 profiles in industrially-relevant bubble columns
• Subcycling implemented to model batch fermentation in large-scale 

reactors
• Results

• Impact of mean and variance of O2 demonstrated using a simple model
• High-fidelity CFD demonstrated the impact of flow rate and reactor height 

on product selectivity

• Future work
• Pushing oxygen concentration to lower mean O2 values

• Model stability
• Characterize tradeoff between selectivity and productivity

• Evaluate additional reactor designs to enable high-scale low-mean and low-
variance O2 concentration across reactor. Some possibilities:

• Pump-around loop
• Shallow channel

• Evaluate oxygen feed timing strategies to overcome reactor limitations
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Thank You

Questions? Email me at 
James.Lischeske@nrel.gov

NREL/PR-5100-78334
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Appendix
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Geometry and meshing

• Bottom inlet with a gas fraction that specifies sparger mass flow rate
• Lateral walls use no-slip condition for liquid and slip for gas
• ~ 300,000 cells – sufficient for grid convergent solutions

airliftBubble column Stir tank Sparger
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CFD Model validation with small-scale bubble column

• Validation done for a small-scale bubble column  (1 m height, 15 cm diameter)
• Average mass transfer coefficient matches Heijnen and Van’t Riet (1984)1

• Gas holdup matches experiments/simulations by Mcclure et al. (2013) 2

1 Heijnen, J. J., Van’t Riet, K., Apr. 1984. Mass transfer, mixing and heat transfer phenomena in low viscosity bubble column reactors. Chem. Eng. J. 28 (2), B21–B42.
2 McClure, D. D., Kavanagh, J. M., Fletcher, D. F., Barton, G. W., 2013.  Development of a CFD model of bubble column bioreactors: Part one - a 
detailed experimental study. Chem. Eng. Technol. 36 (12), 2065–2070. 

Superficial gas velocity:
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Sensitivity to reactor height

Pressure (Pa)
O2 conc 
(mol/m3)

10
 m

40
 m

5 m

• Cases are at superficial gas velocity of 2 cm/s

• Larger hydrostatic pressure head with greater height
• Larger oxygen transfer due to higher Henry saturation concentration
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Transient fluid dynamics (comparison)

• Superficial gas velocity = 0.1 m/s, impeller speed = 2 rad/s
• Gas hold up is similar for all cases
• Faster time scale to steady state with impellers
• Draft tube and impellers aid better mixing

Gas fraction



NREL    |    26

Oxygen transfer

OUR=75 mol/m3/h

OUR=0

• All reactors show almost the same average concentration 
without microbial uptake

• Higher mass transfer rate in that case of stir tank reactor
• Stir-tank reactor higher average oxygen concentration with 

microbial uptake

Oxygen concentration in mol/m3
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Oxygen limited regions

Bubble column airlift Stir tank

• Oxygen limited regions are 
where microbial uptake is 
sub-optimal < 0.1 mol/m3

• Radial transport is limited in 
bubble column, mitigated in 
airlift and stir tank

• O2 limited regions towards 
the top and the wall 
boundaries
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Streamlines and mixing

• Streamlines obtained from 
temporal averaging of liquid 
velocity at steady-state

• Draft tube allows for better 
top to bottom mixing

• Impellers in the stir tank form 
Taylor vortices that aid in 
better mixing

Bubble column airlift Stir tank
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Automated meshing of stir-tank reactor

3 impellers, 
10 baffles

9 impellers, 
5 baffles

5 impellers, 
6 baffles

• Automated python script allows for a generic design that can be used for optimization
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Stir tank optimization

Sensitivity of stir-tank reactor

• 5 m dia, 17 m height
• Vgs=2 cm/s

• average O2 concentration
• Rotational speed
• No: of blades
• No: of impellers

3 impellers, 4 blades

3 impellers, 20 rpm 4 blades, 20 rpm

O2 (mol/m3)
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