

Coupled Microbial-Conversion and Computational-Fluid-Dynamics (CFD) Models for Butanediol Production in Micro-Aerated Reactors

Hari Sitaraman, **James J Lischeske**, Mohammad J Rahimi, Yannick J Bomble, Peter C St John, Chao Wu and Jonathan J Stickel Venue: AIChE Virtual Annual Meeting 2020

Funding provided U.S Dept. of Energy, Bioenergy Technologies Office

Introduction and Motivation

- Bioreactor: use microbial action for conversion
	- Pharmaceutical industry
	- Waste water treatment
	- **Biofuels and molecules (Research at NREL)**
		- **Ethanol/Butane-diol/Methane**
- $-$ Fermentation is a large cost contributor¹
	- Cost is important: low value products
- Improve economics through bioreactor design
	- More engineering than biology
	- Validated high-fidelity modeling
	- Scale-up/reactor-design optimization
	- Techno-economic analysis

1Humbird, D., R. Davis, and J. D. McMillan. "Aeration costs in stirred-tank and bubble column bioreactors." *Biochemical engineering journal* 127 (2017): 161-166.

Algae bioreactor

Image by Dennis Schroeder, NREL

Biomethanation reactor (NREL)

Micro-aeration for BDO Production

- Central idea:
	- These are not like the traditional bubble columns where lot of air is sparged (superficial velocities of \sim 1 m/s compared to \sim 10⁻² m/s)
	- Only controlled amount of $O₂$ is required
		- Too much $O₂$ will trigger creation of wrong products
		- Not enough air will reduce the reaction rate overall, and thus the rate of production of the desired product – butanediol (BDO)
- Method
	- Bubble column CFD + microbial bioreaction
	- Reactions 5 species (microbe, glucose, xylose, acetoin and BDO)
	- Assume these species are well mixed and $O₂$ mixing is what limits reactions spatially
- **Challenge**
	- Long time scales for reactions \sim hours
	- Sub-cycling/operator splitting
		- Solve flow to steady-state
		- Do reactions
		- Redo until final reaction time

Kinetics Model Development and Low-Order Results

Kinetics

$$
q_s = q_{s,mx} F_s F_e
$$

\n
$$
F_s = \frac{C_g + C_x}{C_g + C_x + K_s}
$$

\n
$$
F_e = \frac{C_{O_2} + C_A/\beta_e}{C_{O_2} + C_A/\beta_e + K_e}
$$

\n
$$
\frac{dX}{dt} = Y_{X/s} q_s X (1 - \frac{X}{X_{mx}})
$$

\n
$$
-r_{O_2,e} = \chi_e Y_{O/s} q_s X
$$

\n
$$
-r_{A,e} = (1 - \chi_e) Y_{A/s} q_s X
$$

 $-r_G=\chi_s q_s X$ $-r_{Xy} = (1 - \chi_s) q_s X$ $r_{O_2} = r_{O_2,e} + k_L a([O_2]_{sat} - [O_2](x,t))$ Substrate Uptake

Sugar Limitation

Aerobic Limitation

Biomass Growth

Electrons Consumed

Substrate Used **Products Formed**

$$
r_{A,r}=\chi_p Y_{A/s} q_s X
$$

$$
r_{B,r} = (1 - \chi_p) Y_{B/s} q_s X
$$

Kinetics – Substrate/Product Partitioning

Kinetics Model Exploration – Well-mixed, Constant k_1 a

Increased oxygen availability:

- Increases overall rate
- Reduces BDO selectivity

Kinetics Model Exploration – $O₂$ Distribution

Increasing oxygen distribution (holding mean O2 constant) in the reactor reduces overall reaction rate but does not significantly impact product selectivity.

High-Fidelity CFD Sub-cycling Methods

Multiphase Euler-Euler equations

- Gas and liquid as continuous interpenetrating phases
	- Bubble sizes are small compared to reactor dimensions
	- Constant bubble size 6 mm

 $\alpha_{\rm L} + \alpha_{\rm G} = 1$

• Compressible low Mach RANS equations

 $\frac{\partial}{\partial t}(\alpha_i \rho_i) + \vec{\nabla} \cdot (\alpha_i \rho_i \mathbf{V}_i) = 0$

 $\begin{split} \frac{\partial}{\partial t}(\alpha_i \rho_i \mathbf{V}_i) + \vec{\nabla} \cdot (\alpha_i \rho_i \mathbf{V}_i \mathbf{V}_i) \nonumber \ = -\alpha_i \vec{\nabla} P + \alpha_i \rho_i \mathbf{g} + \vec{\nabla} \cdot (\alpha_i \mathbf{\bar{R}}_i) + \mathbf{F}_i \end{split}$

$$
\boxed{\infty}
$$

Volume fraction constraint

Mass conservation

Momentum conservation

$$
\frac{\partial}{\partial t}(\alpha_i \rho_i Y_{ij}) + \vec{\nabla} \cdot (\alpha_i \rho_i Y_{ij} \mathbf{V}_i)
$$

$$
= \vec{\nabla} \cdot (\alpha_i \rho_i \bar{D}_{ij} \vec{\nabla} Y_{ij}) + \dot{R}_{ij}^{\text{MT}}
$$

Species transport within each phase

Mass transfer

Oxygen mass transfer (Higbie et al. 1)

$$
\text{OTR} = k_{\text{L}} a (C_{\text{O}_2}^* - C_{\text{O}_2})
$$

$$
C_i^* = \frac{X_{i,G}P}{H_i} \frac{\rho_L}{M_L}
$$

$$
k_{\rm L} = \sqrt{\frac{4D}{\pi} \frac{|\mathbf{u}_{\rm slip}|}{d_{\rm b}}} \quad a = \frac{6\alpha_{\rm G}}{d_{\rm b}}
$$

Microbial oxygen uptake (Monod model)

Oxygen transfer rate Henry's law

Mass transfer coefficient

Reaction Subcycling/Operator Splitting

Euler-Euler CFD to Pseudo-Steady-State

Biomass, substrate, and product concentrations give new max O2 uptake

> Advance Bio-Reaction In Each Cell

Oxygen concentration distribution

Computational model

- Transport properties
	- Fermentation broth properties are similar to water
	- Grace drag model for bubbles
	- Wilke-Chang diffusion of species
	- Multiphase k- ϵ turbulence model
	- Wall lubrication effects
- Customized solver *bdoFOAM* calls customized solver *TwoPhaseEulerFoam* in OpenFOAM
- Simulations performed using
	- 72 Intel Skylake processors
	- 48 hours of run time to simulate 2000-8000 seconds
	- Kinetics step is trivially fast
- More details in Rahimi et al., Chem. Eng. Res. Design, 139, 2018

Subcycling Results

Bubble Column Reactor for BDO Production

³ m dia sparger

Sparge Rate Comparison

Reactor Height

Conclusions and future work

• **Conclusions**

- Computational model
	- Kinetics model capturing unique dynamics of *Z mobilis* bench-scale fermentation developed
	- Euler-Euler gas-transfer and OUR model implemented to determine pseudo-steady-state O2 profiles in industrially-relevant bubble columns
	- Subcycling implemented to model batch fermentation in large-scale reactors
- Results
	- Impact of mean and variance of O2 demonstrated using a simple model
	- High-fidelity CFD demonstrated the impact of flow rate and reactor height on product selectivity

• **Future work**

- Pushing oxygen concentration to lower mean O2 values
	- Model stability
	- Characterize tradeoff between selectivity and productivity
- Evaluate additional reactor designs to enable high-scale low-mean and lowvariance O2 concentration across reactor. Some possibilities:
	- Pump-around loop
	- Shallow channel
- Evaluate oxygen feed timing strategies to overcome reactor limitations

Acknowledgements

U.S. DEPARTMENT OF Energy Efficiency & ENERGY **Renewable Energy**

BIOENERGY TECHNOLOGIES OFFICE

- Funding from DOE, office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office
- A portion of this research was performed using computational resources sponsored by the Department of Energy's Office of Energy Efficiency and Renewable Energy and located at the National Renewable Energy Laboratory.

Thank You

Questions? Email me at James.Lischeske@nrel.gov

NREL/PR-5100-78334

Appendix

Geometry and meshing

- Bottom inlet with a gas fraction that specifies sparger mass flow rate
- Lateral walls use no-slip condition for liquid and slip for gas
- \sim 300,000 cells sufficient for grid convergent solutions

CFD Model validation with small-scale bubble column

- Validation done for a small-scale bubble column (1 m height, 15 cm diameter)
- Average mass transfer coefficient matches *Heijnen and Van't Riet (1984)1*
- Gas holdup matches experiments/simulations by Mcclure et al. (2013) 2

¹ Heijnen, J. J., Van't Riet, K., Apr. 1984. Mass transfer, mixing and heat transfer phenomena in low viscosity bubble column reactors. Chem. Eng. J. 28 (2), B21–B42. ² McClure, D. D., Kavanagh, J. M., Fletcher, D. F., Barton, G. W., 2013. Development of a CFD model of bubble column bioreactors: Part one - a detailed experimental study. Chem. Eng. Technol. 36 (12), 2065–2070.

Sensitivity to reactor height

- Cases are at superficial gas velocity of 2 cm/s
- Larger hydrostatic pressure head with greater height
	- Larger oxygen transfer due to higher Henry saturation concentration

Transient fluid dynamics (comparison)

- Superficial gas velocity = 0.1 m/s, impeller speed = 2 rad/s
- Gas hold up is similar for all cases
- Faster time scale to steady state with impellers
- Draft tube and impellers aid better mixing

Oxygen transfer

Oxygen concentration in mol/m3

- All reactors show almost the same average concentration without microbial uptake
- Higher mass transfer rate in that case of stir tank reactor
- Stir-tank reactor higher average oxygen concentration with microbial uptake

Oxygen limited regions

- Oxygen limited regions are where microbial uptake is sub-optimal < 0.1 mol/m³
- Radial transport is limited in bubble column, mitigated in airlift and stir tank
- O2 limited regions towards the top and the wall boundaries

Bubble column airlift and Stir tank

Streamlines and mixing

- Streamlines obtained from temporal averaging of liquid velocity at steady-state
- Draft tube allows for better top to bottom mixing
- Impellers in the stir tank form Taylor vortices that aid in better mixing

Automated meshing of stir-tank reactor

• Automated python script allows for a generic design that can be used for optimization

Stir tank optimization

$O₂$ (mol/m³)

Sensitivity of stir-tank reactor

- 5 m dia, 17 m height
- Vgs=2 cm/s
- average $O₂$ concentration
	- Rotational speed
	- No: of blades
	- No: of impellers

