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Restoring Critical Loads in Resilient Distribution
Systems Using a Curriculum Learned Controller

Xiangyu Zhang, Abinet Tesfaye Eseye, Matthew Reynolds, Bernard Knueven and Wesley Jones

Abstract—In this paper, we propose a curriculum learned
reinforcement learning (RL) controller to facilitate distribution
system critical load restoration (CLR), leveraging RL’s fast
online response and its outstanding optimal sequential control
capability. Like many grid control problems, CLR is complicated
due to the large control action space and renewable uncertainty
in a heavily constrained non-linear environment with strong
intertemporal dependency. The nature of the problem oftentimes
causes the RL policy to converge to a poor-performing local
optimum if learned directly. To overcome this, we design a two-
stage curriculum in which the RL agent will learn generation
control and load restoration decision under different scenarios
progressively. Via curriculum learning, the trained RL controller
is expected to achieve a better control performance, with critical
loads restored as rapidly and reliably as possible. Using the
IEEE 13-bus test system, we illustrate the performance of the RL
controller trained by the proposed curriculum-based method.

Index Terms—grid resiliency, load restoration, microgrid, re-
inforcement learning, curriculum learning

I. INTRODUCTION

A resilient distribution system should be able to withstand
the impact of extreme events and initiate a swift recovery. In
the event of a substation outage and subsequent distribution
feeder de-energization, it is essential to rapidly restore critical
loads in the system, which is now made possible by the
increasing number of distributed energy resources (DERs)
installed. Previous studies on this topic include: A restoration
process, which first determines post-restoration topology and
then restores loads and sets generation outputs, is introduced
in [1]. Liu et al. [2] leverage both fixed DERs and mobile
resources for system restoration using model predictive control
(MPC). To cope with generation uncertainty introduced by
renewable DERs, in [3], a chance-constrained method is pro-
posed for load restoration to limit risk. However, a bottleneck
for these approaches is that they require solutions of resource-
intensive optimization problems during online control. This
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issue of real-time computational complexity is usually circum-
vented by using a longer control interval and a shorter look-
ahead horizon, which inevitably impact the control accuracy.

In the past decade, reinforcement learning (RL), as an
alternative to optimization-based approaches, has shown great
performance in domains related to optimal sequential decision-
making [4]–[6]. Similarly, using RL for critical load restora-
tion (CLR) can be beneficial as CLR is a typical optimal
sequential control problem with strong temporal dependency.
Additionally, when compared with optimization-based ap-
proaches, RL for CLR has following merits: i) RL does not
require on-demand computation during real-time control and
thus can be faster and fine-granular (w.r.t control interval). ii)
Historical renewable generation data can be directly sampled
for controller training, avoiding the need for scenario reduction
or distribution identification. iii) RL can directly learn from
a nonlinear unbalanced multi-phase AC power flow model
instead of a simplified one, for a more accurate control
performance. iv) An RL controller can also provide ancillary
information to facilitate grid operator’s decision-making (e.g.,
value function of RL can provide an expected performance
evaluation when the restoration process starts).

Currently, to the best of our knowledge, no other studies
have aimed at exploring RL’s capability for CLR, with the
exception of our earlier work [7]. In [7], from an energy
adequacy perspective, we compared RL with MPC for CLR
considering imperfect renewable forecasts in a single-bus sys-
tem. In this work, we extend the work to a network-constrained
three-phase unbalanced distribution system, where power flow
and voltage violation are considered. This extension, however,
introduces more complexities such as nonlinear power flow
constraints and a larger action space, inevitably making it
harder to learn an RL policy (i.e. the learning can be easily
trapped in a poor-performing local optimum). To overcome
this, as our major contribution, we propose a novel curriculum
learning (CL) approach to guide the RL agent to escape
poorly-performing local optima and learn a better control
policy in a divide-and-conquer manner.

II. PROBLEM FORMULATION

A prioritized CLR problem after a distribution system
islanded due to the substation outage is investigated. Critical
load i ∈ L in the system is prioritized by the importance factor
ζi (H = [ζ1, ζ2, ..., ζN ]> ∈ RN for all loads, and N is the
number of loads). Available DERs assets like renewable DERs
(R) and dispatchable DERs (D) can be used for restoration.
To solve this problem, following assumptions are made:
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1) Available energy for D are limited.
2) The length of restoration horizon/substation repair time

T is deterministic and known when restoration starts.
3) Power of critical loads L (P = [p1, p2, ..., pN ]> ∈ RN

and Q = [q1, q2, ..., qN ]> ∈ RN ) is time-invariant over T ,
and can be partially restored with the same power factor.

4) Generation for R can be predicted accurately up to one
hour ahead, beyond which no forecast is available. Considering
T usually spans several hours, the proposed CLR problem is
still categorized as stochastic optimal control.

5) Grid topology is assumed to be intact and we defer the
inclusion of topology restoration to our future work.

A. Objective

At each control step t ∈ T , active power set point and
power factor angle for DERs (i.e., PGt ∈ R|G| and αGt ∈
R|G| for G = D

⋃
R, in which | · | calculates the cardinality

of a set) and the demand restored for each load (i.e., Pt =
[p1t , p

2
t , ..., p

N
t ]> ∈ RN and Qt = [q1t , q

2
t , ..., q

N
t ]> ∈ RN ) are

dynamically determined in order to maximize the following
objective function:

C =
∑
t∈T

(CLRt + CV Vt ), (1)

where CLRt = H>Pt −H>diag{ε}[Pt−1 − Pt]
+ represents

the load restoration reward, in which [[x1, x2, ..., xN ]]+ =
[(x1)+, (x2)+, ..., (xN )+]> and (xi)+ = max(0, xi). Specifi-
cally, in CLRt , the first term encourages load restoration and
the second term penalizes shedding previously restored load
by ε = {ε1, ε2, ..., εN}> ∈ RN . Introducing this penalty is
to encourage a reliable restoration considering the intermittent
renewable generation. At t = 0, we assume all loads are not
served (i.e., P0 = 0). Besides load restoration reward, voltage
violation is penalized by CV Vt = −

∑
n∈Nb

λ[max(0, V nt −
V )2 + max(0, V − V nt )2] in which Nb is the set of all buses,
V nt is the voltage magnitude of bus n at time t, [V , V ] are
the normal voltage boundaries (e.g., ANSI C.84.1 limits) and
λ is the unit penalty, typically a large positive number.

B. Constraints

While maximizing the control credit C, the following op-
eration constraints should be satisfied for all t ∈ T :

1) Fuel based DERs: Power, energy and power factor angle
limit should be satisfied; specifically, ∀g ∈ Dfuel, there are:

pg ≤ pgt ≤ pg,
∑
t∈T

pgt · τ ≤ Eg, αgt ∈ [αg, αg], (2)

in which τ is the control interval (unit: hour), Eg is the known
maximum energy limit (e.g., limited by fuel quantity) and αgt
is the operating power factor angle (αgt = arctan(qgt /p

g
t )).

Ramping rate limits are not considered.
2) Storage: Storage output/state of charge (SOC) feasibility,

charging/discharging state transition, initial storage and power
factor angle, ∀θ ∈ DES , are constrained by:

−pθ,ch ≤ pθt ≤ pθ,dis, Sθt+1 = Sθt − ηt · pθt · τ
Sθ ≤ Sθt ≤ Sθ, Sθ0 = s0, αθt ∈ [αθ, αθ],

(3)

Fig. 1. Illustration of the IEEE 13-bus test system with added DERs.

in which ηt is the energy storage efficiency and ηt = 1/ηdis

when battery is discharging (pθt > 0) and ηt = ηch when it is
charging (pθt < 0). Sθt and s0 are the current and initial SOC.

3) Renewable DERs: Renewable generation are limited by
available natural resources, and the power factor angle should
satisfy limits of the inverter; specifically, ∀r ∈ R, there are:

0 ≤ prt ≤ prt , αrt ∈ [αr, αrt ], (4)

in which prt is the time-variant available natural resources, and
gaps between prt and prt represents renewable curtailment.

4) Loads: Load pick-up decision should satisfy:

0 ≤ Pt ≤ P, 0 ≤ Qt ≤ Q, pit/q
i
t = pi/qi. (5)

5) Network constraints: Power flow relationship among all
electrical values should be satisfied (e.g., constraints instanti-
ated using an AC power flow model); details are omitted here
in the interest of space.

Concretely, in this paper, we consider a modified IEEE 13-
bus test system with four DERs: a micro-turbine Dfuel =
{µ}, an energy storage DES = {θ}, a wind turbine and a
photo-voltaic (PV) generation R = {ω, ρ}, see Fig. 1. These
notations for DERs will be used for the rest of the paper.

III. THE CURRICULUM LEARNING FRAMEWORK

In this section, we will transform the above-mentioned
optimal control problem into a Markov Decision Process
(MDP) and then show how to use RL in a CL framework
to effectively train a CLR controller.

A. Markov Decision Process (MDP) Formulation

Three key MDP elements (state, action and reward) corre-
sponding to the optimal control problem are defined below.

State reflects the system status of the current step and is
used by an RL agent for decision-making. In this study, the
MDP state and the state space (st ∈ S) are defined as:

st := [Pρt ,P
ω
t , P̃t, S

θ
t , E̊

µ
t , t] ∈ S ⊂ R2/τ+N+3, (6)

in which Pρt ∈ R1/τ and Pωt ∈ R1/τ are the PV and wind
generation forecast for the next hour (recall Assumption 4 in
Section II); P̃t := diag{P}−1Pt ∈ RN shows the fractional
load restoration level. Sθt and E̊µt are the current SOC for the
storage and remaining fuel for the micro-turbine, revealing the
remaining load supporting capability. Current step index t is
also included to inform the progress.
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Action represents the decision on control variables the RL
agent needs to make at t ∈ T . Here, action and the action
space (at ∈ A) are defined as:

at := [Pt, p
θ
t , α

θ
t , α

ω
t , α

ρ
t ] ∈ A ⊂ RN+4, (7)

in which Pt is the load pick-up decision; pθt is the storage
power output and αit for i ∈ {θ, ω, ρ} are the generator/inverter
power factor angles for the energy storage, wind turbine and
PV system, respectively. Note the micro-turbine is used for
power balance and thus its control (pµt and αµt ) is not included
in (7). In addition, renewable generation (pρt and pωt ) are also
not included in at because these renewable energy resources
are encouraged to be used entirely by default, but the agent
can still decide to curtail renewables (in case of voltage issue)
implicitly as shown in Section IV-B.

Rewards are returned to the RL learning agent at each step,
given st and at, to provide an immediate evaluation of the
control. Corresponding to the optimal control problem, the
reward is straightforwardly defined as rt = CLRt + CV Vt .

B. Reinforcement Learning (RL)

In general, training an RL agent is to learn a control policy
at = πψ(st) parameterized by a vector ψ that determines a
control behavior which will maximize the expected cumulative
reward J(ψ) = Eπψ (

∑
t∈T rt) = Eπψ (C). Policy gradient

methods, a category of RL algorithms, use gradient ascent to
update policy at each learning iteration by ψk+1 = ψk +
κ∇̂ψJ(ψ), in which κ is the step size and ∇̂ψJ(ψ) is the
gradient estimated using experience collected in each learning
iteration. Typically, in deep RL, πψ(st) is instantiated using a
neural network (called policy network). In this study, our goal
is to learn a policy πψ(st) (i.e. train a policy network that
maximize J(ψ) = Eπψ (C)) and use it to solve the optimal
CLR problem proposed in Section II.

C. Curriculum Learning (CL) and Knowledge Transferring

Due to the complexity of the grid control problem and
large continuous search spaces (i.e., S and A), in practice,
optimal policy searching oftentimes end up at poor-performing
local optima. To ameliorate this, CL, which is expected to
find a better local/global optimum of a non-convex training
environment [8], is utilized. Specifically, instead of training an
RL controller for a difficult problem directly, CL is phased by a
curriculum with problems of gradually increased difficulty. By
learning to solve these problems and accumulate knowledge
progressively, an RL controller can eventually solve the orig-
inal hard problem with better performance, when compared
with a directly trained RL controller.

Originally, as shown in (7), an RL agent must learn entirely
from experience the control strategy for both generation dis-
patch and load restoration in a non-linear and stochastic envi-
ronment, which is considered hard. Therefore, we introduce a
curriculum with two stages: 1) in Stage I, an RL controller only
learns DERs dispatch (aIt = [pθt , α

θ
t , p

µ
t , α

µ
t , α

ω
t , α

ρ
t ] ∈ AI )

and loads are restored using rule-based greedy restoration
(i.e., given available generation, higher priority load always

Fig. 2. A two-stage curriculum learning procedure.

restored first). 2) in Stage II, warm-started with the DERs
control knowledge learned in Stage I, the RL controller now
learns to solve the original CLR problem by improving control
strategy for generation and load restoration simultaneously
(aIIt = at ∈ A). With such a curriculum, the introduction of
Stage I breaks down the learning task and provides a stepping
stone for the RL agent to learn the harder problem.

In contrast to existing CL practices, in our case, policy
networks for the two stages are heterogeneous (different output
dimension due to AI 6= A). To achieve knowledge transfer
between them, we propose two special steps: 1) After Stage I,
using the trained Controller I, an adequate number of control
trajectories are simulated, from which state-action pairs reflect
the controller’s behavior are obtained (i.e. (st,a

I
t ) ∈ B). Then

aIt are transformed to the format of aIIt to get (st, âIIt ) ∈ B̂,
where Pt in âIIt reflects greedy restoration behavior. 2)
Using B̂ as training data set, a neural network is trained via
supervised learning. Such network contains the knowledge of
Controller I and is then used for warm-starting Controller II
given the shared network structure (see Fig. 2).

IV. CASE STUDY

A. Experiment Settings

In the modified IEEE 13-bus system, we created N = 15
critical loads distributed in the three-phase system with total
loads of 228.9 + j124.8, 208.7 + j120.4 and 290.3 + j140.8
(unit: kW and kvar) for each phase respectively (Specific
power for each load and their corresponding bus number are
omitted here due to limited space). Importance factors H> =
[1.0, 1.0, 0.9, 0.85, 0.8, 0.8, 0.75, 0.7, 0.65, 0.5, 0.45, 0.4, 0.3,
0.3, 0.2] are used. The restoration duration is assumed to be 6
hours with 5-min control intervals (τ = 1/12 and |T | = 72).
For any load i, there is εi = 100, and since εi > |T |,
it means shedding any previously restored load will be
penalized. To avoid voltage violation, λ = 106 is used. DERs’
maximum capacities are pω = 400, pρ = 300, pµ = 400
and pθ,ch = −pθ,dis = 250 (unit: kW). The power factor
angle should follow αi ∈ [0, π/4],∀i ∈ {ω, ρ, θ, µ}, assuming
they can generate, not consume, reactive power. Fuel reserve
for micro-turbine can provide 1200 kWh energy; storage’s
initial SOC is sampled from a truncated Gaussian distribution
s0 ∼ T N (1000, 250) and there is [Sθ, Sθ] = [160, 1250]kWh.

B. Learning Environment Design

In this study, OpenDSS [9] is the simulator encapsulated
by an RL learning OpenAI Gym [10] environment, providing
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power flow solution at each step. Considering the system is
islanded, there should be

∑
g∈D

⋃
R p

g
t ≈ 1>Pt,∀t ∈ T (not

strict equal due to losses). However, both generation output
and load restoration are determined by the RL agent as shown
in (7) (we focus on Stage II environment in this section),
and the corresponding power balance constraint cannot be
guaranteed as enforcing constraints on neural network outputs
is in general hard. As a result, we enforce power balancing in
the learning environment, using logic shown in Algorithm 1,
before power flow computation in each time step. Reactive
power is also balanced in the similar manner. In practice,
we add a Vsource to the same bus with micro-turbine (as a
requirement for OpenDSS to simulate islanded system), and it
serves as a slack bus but can only compensate small amount
of system losses. Regarding renewable DERs, wind and PV
generation profile from two months (July and August) are
collected, July data is used for RL controller training and
August data is for performance evaluating.

Algorithm 1 Active power balancing in simulation

Input: Pt, p
ρ
t , pωt , pθt , pµ, pµt

1: Get feasible generation range:
Gt = pρt + pωt + pθ,gt + pµ, Gt = pρt + pωt + pθ,gt + pµt
Define pθ,gt = max(0, pθt ), pθ,lt = max(0,−pθt )

2: if 1>Pt + pθ,lt ≥ Gt (Insufficient gen) then
3: if pθ,lt ≥ Gt (e.g., pρt = 0, pωt = 0 and E̊µt is low) then
4: pµt = pθ,lt ,P∗t = 0
5: else
6: Start from lower ζi, sequentially making pit = 0 from

Pt to get P∗t , until 1>P∗t + pθ,lt ≤ Gt
7: pµt = 1>P∗t + pθ,lt −Gt
8: end if
9: pω,∗t = pωt , p

ρ,∗
t = pρt , p

θ,∗
t = pθt

10: else if 1>Pt + pθ,lt ≥ Gt (sufficient gen) then
11: P∗t = Pt, p

µ
t = 1>P∗t + pθ,lt −Gt

12: pω,∗t = pωt , p
ρ,∗
t = pρt , p

θ,∗
t = pθt

13: else if pθ,gt ≤ 1>Pt + pθ,lt < Gt (excessive gen) then
14: Curtail renewable generation by

χ∗ = argminχ∈[0,1) |χp
ρ
t +χpωt +pθ,gt −1>Pt|, and let

pµt = 0, pθ,∗t = pθt , p
ρ,∗
t = χ∗pρt , p

ω,∗
t = χ∗pωt

15: else
16: pµt = 0, pθ,∗t = 1>Pt, p

ρ,∗
t = 0, pωt = 0

17: end if
18: return P∗t , pρ,∗t , pω,∗t , pθ,∗t , pµt

C. Curriculum Learning Necessity

Controller training is conducted on the NREL high-
performance computing (HPC) system. We choose the evolu-
tion strategy RL (ES-RL) algorithm [11] for Stage I and then
use proximal policy optimization (PPO) [12] for Stage II, with
a similar rationale as the two-stage policy search proposed in
[5]. The policy network used in both stages has hidden layers
of [256, 256, 128, 128, 64, 64, 38]. The learning progress is
shown in Fig. 3, it can be seen that by using CL (orange and

Fig. 3. Learning curves showing average episodic reward C (scaled by 10−3)
v.s. training steps. Direct learning and CL Stage I training utilize ES-RL on
10 HPC nodes for two and one hour(s), respectively (direct learning is trained
for a longer period to show its convergence). CL Stage II training uses PPO
on one HPC node for 20 hours. Each curve is aggregated from three trials.

Fig. 4. Performance comparison on both training and testing scenarios (480
uniformly sampled scenarios for each group/month) using Controller II.

green curves), the average episodic reward of the converged
control policy is higher than that of the direct learning (blue
curve), which get trapped in a local optimum, even with an
appropriate learning rate. The drop of the reward between CL
learning stages is due to the required exploratory actions after
warm-start, but by the end of the Stage II learning, a higher
average reward is achieved, showing a load restoration strategy
better than the greedy restoration is obtained.

D. Controller Efficacy

To examine the trained controller, we first compare its per-
formance under training scenarios and unseen test scenarios.
As shown in Fig. 4, the similarity between reward distributions
for both scenario groups indicates RL controller’s performance
on unseen scenarios does not deteriorate, mainly because
the unseen scenarios have similar distribution of renewable
generation with the training scenarios as they are from two
adjacent months. In practice, this means an RL controller can
be trained using recent historical renewable generation data
and use it in the near future if CLR event occurs.

To further study the behavior of the learned controller, two
specific test scenarios are studied in depth as shown in Fig. 5.

Case 1: Though renewable generation is abundant in the
first two hours, the controller doesn’t rashly restore as many
loads as possible, but choose to charge the battery to hedge
against the renewable uncertainty. As a result, when pωt dras-
tically decreases later, almost no load is shed (though small
penalty incurs when restoring Load 8 is aborted considering
diminishing pωt ), providing a reliable and close to monotonic
load restoration. Understandably, due to the limited resources
in this scenario, not all critical loads are restored.

Case 2: We discovered that when Load 10 is still partially
restored, lower priority loads are already restored (see Case
2(a) in Fig. 5). Such control behavior is due to the concern
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(a) Case 1 (a) (b) Case 1 (b) (c) Case 1 (c)

(d) Case 2 (a) (e) Case 2 (b) (f) Case 2 (c)

Fig. 5. CLR case study for two testing scenarios (unseen during RL controller training). First column sub-figures show the load pick-up process: brighter
color means higher percentage of a load is restored (Yellow: 100%, black: 0%). Second column sub-figures illustrate generation profiles during restoration.
Last column sub-figures shows voltage profiles for all buses.

of voltage violation: as shown in Case 2(c) in Fig. 5, several
buses in Phase C (the most heavily loaded phase) have voltage
close to the lower bound already. Fully restore Load 10, the
least important load on Phase C, will cause voltage violation
in six buses, as we tested in retrospect.

In both examples, the remaining energy in D are minimum
at the final step and no renewable curtailment is observed.
This shows the trained RL controller has successfully learned
to fully take advantage of the renewable DERs but not being
influenced by their intermittency. Finally, we compare two RL
controllers trained via CL and direct learning in testing sce-
narios: average rewards (C) are 25.90 and 17.66 respectively.
This demonstrates CL can facilitate the RL policy search
in a complicated environment and eventually learn a better-
performing controller for the CLR problem.

V. CONCLUSION

In this paper, we show that compared with direct RL, CL
enables RL to learn a better policy for the CLR problem. The
trained controller, upon examination, demonstrates proper be-
havior for optimal system restoration even for unseen scenarios
with renewable uncertainty. These results are expected to show
RL’s capability for solving grid control problems using state-
of-the-art algorithms, techniques and computing platforms,
allowing future research to study the practical feasibility of
using an RL controller for fast online optimal control. In future
work, we will thoroughly compare the proposed RL controller
and an up-to-date stochastic optimization-based controller.
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