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Abstract--Power distribution systems are more prone to 
disruptions and cause most power system outages. We propose a 
service restoration technique to recover the system service 
(electricity delivery) following an extreme event-triggered 
substation outage. The proposed technique considers the problem 
of controlling distributed energy resources (DERs) of a 
distribution system with the objective of achieving maximum load 
pick up while satisfying network flow and voltage constraints. 
The problem is formulated as a model predictive control (MPC), 
where a linearized optimal power flow (OPF) model is employed 
to describe the network. The formulation is augmented with a 
ramping (up) reserve product for the DERs to ensure an upward 
monotonic load restoration as time evolves. We perform 
simulations considering the IEEE 13-bus test feeder integrated 
with wind, solar, microturbine, and energy storage devices. We 
demonstrate the efficacy of the devised technique in restoring the 
system loads monotonically, without shedding previously 
restored loads. We also show the benefit of co-optimization of 
power and reserve products for DERs on service restoration. In 
addition, the capability of the technique in regulating nodal 
voltages and reducing renewable power curtailment is 
demonstrated. 

Index Terms--Distribution system, DER, extreme event, service 
restoration, MPC, OPF, optimization, resiliency, reserve. 

I. INTRODUCTION 
Incidences of extreme events are rising globally due to the 

changes in weather conditions and socio-political threats [1]. 
Data collected by power utilities show that about 90% of power 
outages in the U.S. initiated from distribution grids [2], [3]. 
Hence, research efforts have focused on resiliency in the 
context of distribution grids, see, e.g. [2] - [9]. Most of these 
studies consider single-step decisions (i.e., no look-ahead) and 
they did not consider the integration of renewable energy 

resources (RESs) into the distribution network [9]. 
Furthermore, the uncertainties from RES power outputs were 
not managed. Even in the few of studies that considered multi-
step decisions to ensure sustainable system resilience over 
longer operating periods, they did not consider the underlying 
power flow and voltage constraints of the distribution network 
[4]. Additionally, none considered the co-optimization of 
power and reserve products of DERs in the restoration process. 

This paper proposes an OPF-driven, ramping reserve-
augmented, MPC-based critical service restoration technique 
for resilient operation of power distribution systems through the 
control of DERs following the incidence of an extreme event. 
The service restoration problem is formulated as a look-ahead 
(multi-step) sequential decision process that employs 
renewable power forecasts and includes ramping reserve 
requirements, power flow constraints, and voltage regulation. 
The effectiveness of the proposed technique is validated using 
the IEEE 13-bus distribution test system.  

The novel contributions of this paper include: 1) 
application of MPC for load restoration problems with joint 
formulation of active power balancing, reactive power 
management, and voltage regulation; 2) co-optimization of 
power and reserve products of DERs for monotonic load 
restoration, i.e., no shedding of prior picked up loads, which 
helps distribution grids sustain electricity supply; 3) shrinking 
horizon MPC formulation that enables distribution systems 
effectively utilize their DERs and reduce propagation of 
uncertainty in the system operation. 

The paper is organized as follows. The proposed control 
framework is presented in Section II.  Section III discusses the 
problem formulation. Section IV presents the simulation results 
and discussion. The paper conclusion and description of future 
work are given in Section V. 

II. CONTROL FRAMEWORK 
There has been extensive research focus on using MPC for 

controlling distribution systems containing DERs [10]. The 
MPC framework proposed in this paper for the service (load) 
restoration problem has a dynamic control horizon that 
decreases as time evolves. The system states are updated, and 
the control problem is solved at each control interval to obtain 
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the control actions for the future control intervals. However, 
only the first control interval action is taken to steer the system, 
and the rest are discarded. The control period then recedes 
forward one step and the process rolls until the end of the 
control horizon. Fig. 1 illustrates the sequential control action 
execution by the devised MPC with six o’clock outage 
occurring time, a six-hour initial control horizon (outage 
duration) and a five-minute control interval [9], [11].  

The initial control horizon is set as the restoration time. We 
assume the restoration time is known. 

 
Fig. 1. Sequential control action execution by the devised MPC. 

The devised MPC framework contains two cascaded 
modules, a forecasting module and an optimization module. 
The forecasting module includes wind and solar power 
forecasting, while the optimization module solves the control 
problem and returns control actions based on input information 
from the forecasting module and other system operating 
conditions. To obtain updated estimates of renewable 
generation at each control interval we have implemented simple 
forecasting methods, employing a 24h-ahead recursive multi-
step time series forecasting technique to predict the power 
output of the wind turbine (WT), and a retrospective method for 
the PV power forecast (output from the previous day is used to 
model the output for the next day with an adjustment factor) [9]. 
In addition, the distribution system contains several spot loads, 
and we assume constant-power (PQ) load model and constant 
time series for these loads. 

Due to the recent advent of faster (lower latency) 
communication technologies (such as 5G) and the Internet of 
Things (IoT) devices, the input data can be passed to the 
forecasting and optimization modules in the range of few 
seconds [12] and the decisions can be readily available. The 
proposed approach can thus be applicable in practice. Besides, 
while the proposed mixed integer linear program (MILP) may 
practically be intractable with the size of the network, 
techniques such as using a coarse time-discretization at later 
intervals and stopping at a sub-optimal solution should keep the 
control framework operable within the five-minute control 
framework, even for larger distribution networks. 

The control actions of the devised MPC are the magnitude 
of load restored (active and reactive), active and reactive power 
dispatch of the controllable distribution generators (DGs) and 
energy storage devices (with inverters), and reactive power 
dispatch and active power curtailment of renewables (with 
inverters). 

III. PROBLEM FORMULATION 
In this section, we present the mathematical formulation of 

the optimal load restoration problem we aim to solve. 
A. Objective Function 

To guarantee resilient operation of the distribution system, 
the devised MPC targets to maximize the objective function 
given in (1). The first summation term of (1) is the total 
prioritized restored load (active and reactive), the second and 
third terms are penalties for shedding previously restored loads 
in the prior time (active and reactive respectively), the fourth 
summation term is a penalty for not utilizing the system 
ramping (up) reserve resources to meet the system-wide 
ramping reserve requirements, and the fifth summation term 
includes penalties for wind and PV power curtailments. 

In (1), 𝑁 is the number of nodes, 𝑇 is the control horizon, 𝑖 
is the node index, 𝑡 is the control interval (time) index, 𝜔 is the 
load priority weight at node 𝑖, 𝜓! and 𝜓" are the penalties for 
shedding active and reactive restored loads respectively, 𝜙 is 
penalty for matching required and provided reserves, a and b 
are penalties for wind and solar power curtailments 
respectively. 

𝑴𝒂𝒙:	 &''𝜔! . *𝑃!,#$ + 𝑄!,#$ .
#∈&!∈'

−	𝜓(' ' 𝜔! . 𝑚𝑎𝑥 4*𝑃!,#)*$ − 𝑃!,#$ ., 07
#∈&∖{*}!∈'

− 𝜓.' ' 𝜔! . 𝑚𝑎𝑥 4*𝑄!,#)*$ − 𝑄!,#$ ., 07
#∈&∖{*}!∈'

− 𝜙'𝑚𝑎𝑥 9:𝑅# −'*𝑃!,#
/,0123 + 𝑃!,#

45,0123.
!∈'

< , 0=
#∈&

−':𝛼'𝑃!,#
6#,72#

#∈&

− 𝛽'𝑃!,#
38,72#

#∈&

<
!∈'

@ . ∆𝑡 

Variables 𝑃#,%&  and 𝑄#,%&  are respectively the active and reactive 
restored loads at node 𝑖 and time 𝑡, 𝑅% is the system-wide 
ramping (up) reserve requirement at time 𝑡, 𝑃#,%

',()*+ is the 
ramping reserve product of the dispatchable generator 𝑔 at node 
𝑖 and time 𝑡, 𝑃#,%

,-,()*+ is the ramping reserve product of the 
energy storage device 𝑒𝑠 at node 𝑖 and time 𝑡,  𝑃#,%

.%,/*% is the 
wind power curtailed at node 𝑖 and time 𝑡, and 𝑃#,%

+0,/*% is the PV 
power curtailed at node 𝑖 and time 𝑡. Note that as indicated in 
Fig. 1 the control horizon 𝑇 in (1) decreases as the MPC recedes 
forward in time.   
B. Constraints 

While maximizing (1), the objective function is subjected to 
the following constraints: 

1) Network constraints (LinDistFlow equations): 

(1) 
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𝑃!",$ = 𝑃",$% − $𝑃",$
& + 𝑃",$'$ − 𝑃",$

'$,()$ + 𝑃",$
*+ − 𝑃",$

*+,()$ − 𝑃",$
,-,(. + 𝑃",$

,-,/(.&

+' 𝐴"0
0∈2

𝑃"0,$	, ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝑁, 𝑖 = 𝑟(𝑗) 

𝑄!",$ = 𝑄",$% − $𝑄",$
& + 𝑄",$'$ + 𝑄",$

*+ − 𝑄",$
,-,(. + 𝑄",$

,-,/(.&

+' 𝐴"0
0∈2

𝑄"0,$	,			∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝑁, 𝑖 = 𝑟(𝑗) 

𝑉!,# = 𝑉$,# − 2%𝑟$!𝑃$!,# + 𝑥$!𝑄$!,#+, ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝑁, 𝑖 = 𝑟(𝑗)               (4) 

2) Voltage constraints 
𝑣%$&' ≤ 𝑉!,# ≤ 𝑣%()'                                          (5) 

𝑉!,#(𝑡) = 	 %𝑣!,#+
'                                              (6) 

𝑣!,# = 	1	, ∀𝑡 ∈ 𝑇, 𝑗 = 𝑠𝑙𝑎𝑐𝑘	𝑏𝑢𝑠                     (7) 

3) Generator power and reserve limits 
0 ≤ 𝑃!,#

* ≤ 𝑃!,%()
*                                                                   (8) 

0 ≤ 𝑄!,#
* ≤ 𝑄!,%()

*                                                                (9) 

0 ≤ 𝑃!,#
*,+(,- ≤ 𝑃!,%()

*                                                               (10) 

𝑃!,#
* + 𝑃!,#

*,+(,- ≤ 𝑃!,%()
*                                                              (11) 

4) Generator fuel (total energy production) constraint 

BC𝑃!,#
* + 𝑃!,#

*,+(,-D∆𝑡 ≤ 𝐸!,%()
*,-

#∈/

 

B𝑄!,#
* ∆𝑡 ≤ 𝐸!,%()

*,0

#∈/

 

5) Restored load limits 

0 ≤ 𝑃!,#1 ≤ 𝑃!,#
1,23%(&2                                                          (14) 

0 ≤ 𝑄!,#1 ≤ 𝑄!,#
1,23%(&2                                                         (15) 

6) Power factor consistency constraint 

	
𝑄!,#1

𝑃!,#1
G =

𝑄!,#
1,23%(&2

𝑃!,#
1,23%(&2G                        

7) Energy storage power and reserve limits 

0 ≤ 𝑃!,#
34,56 ≤ 𝑏!,#

34,56𝑃!,%()
34,56                                                       (17) 

0 ≤ 𝑄!,#
34,56 ≤ 𝑏!,#

34,56𝑄!,%()
34,56                                                 (18) 

0 ≤ 𝑃!,#
34,256 + 𝑃!,#

34,+(,- ≤ 𝑏!,#
34,256𝑃!,%()

34,256                         (19) 

0 ≤ 𝑄!,#
34,256 ≤ 𝑏!,#

34,256𝑄!,%()
34,256                                              (20) 

𝑏!,#
34,56 + 𝑏!,#

34,256 = 1	, 𝑏!,#
34,56, 𝑏!,#

34,256 ∈ {0,1}                    (21) 

8) Energy storage state of charge (SOC) limits 

𝑆𝑂𝐶!,%$&34 ≤ 𝑆𝑂𝐶!,#34 ≤ 𝑆𝑂𝐶!,%()34                                            (22) 

9) SOC dynamics 

𝑆𝑂𝐶!,#34 = 𝑆𝑂𝐶!,#7834 + M
9!
"#,%&:!,'

"#,%&

;!
"# −

:!,'
"#,(%&

9!
"#,(%&;!

"#N∆𝑡                         (23) 

𝑆𝑂𝐶!,#34 ≥ 𝑆𝑂𝐶!,%$&34 + 𝑃!,#
34,+(,-∆𝑡	                                            (24) 

10) Renewable power curtailment limits  

0 ≤ 𝑃!,#
<#,5,# ≤ 𝑃!,#<#                                                          (25) 

0 ≤ 𝑃!,#
-=,5,# ≤ 𝑃!,#

-=                                                          (26) 

11) Inverter operation 

−P𝑆!' − 𝑃!,%()' ≤ 𝑄!,%() ≤ P𝑆!' − 𝑃!,%()'                    (27) 

12) Reserve requirement  

𝑅# = 𝑐B%𝑃!,#<# + 𝑃!,#
-=+

!∈>

 

where 𝑃#1,% and 𝑄#1,% are respectively the active and reactive 
power flows from node 𝑖 to node 𝑗 at time 𝑡, 𝑃1,%

' and 𝑄1,%
'  are 

respectively the active and reactive power outputs of the 
dispatchable generator, 𝑃1,%.% and 𝑃1,%

+0 are respectively the wind 
and solar power forecasts, 𝑃1,%

,-,/2 and 𝑃1,%
,-,3/2 are respectively 

the charging and discharging power of the energy storage 
device, 𝑄1,%.% and 𝑄1,%

+0 are respectively the reactive power 
injections/absorptions of the wind turbine converter and PV 
inverter, and 𝑄1,%

,-,/2 and 𝑄1,%
,-,3/2 are respectively the reactive 

power absorption and injection by the energy storage device 
converter, A is an adjacency matrix which represents the grid 
topology, 𝐴#1 is 1 if node 𝑖 is the root node of node 𝑗 and 0 
otherwise, 𝑟#1 and 𝑥#1 are respectively the resistance and 
reactance of the line from node 𝑖 to node 𝑗, 𝑣1,% is the node 
voltage, 𝑣4#5 and 𝑣4)6 are respectively the lower (LB) and 
upper (UB) bounds of the node voltages, 𝑃1,4)6

'  and 𝑄1,4)6
'  are 

respectively the rated active and reactive power of the 
generator, 𝐸1,4)6

',+  and 𝐸1,4)6
',7  are respectively the allowable peak 

total active and reactive energy productions associated with fuel 
availability, ∆𝑡 is the length of one control interval, 𝑃1,%

&,3,4)53 
and 𝑄1,%

&,3,4)53 are respectively the active and reactive power 
demanded prior to the extreme event, 𝑃1,4)6

,-,/2  and 𝑃1,4)6
,-,3/2 are 

respectively the maximum charging and discharging power 
limits of the energy storage, 𝑄#,4)6

,-,/2  and 𝑄1,4)6
,-,3/2 are respectively 

the maximum reactive power absorption and injection by the 
energy storage device inverter, 𝑏1,%

,-,/2 and 𝑏1,%
,-,3/2 are binary 

variables indicating the status of the energy storage and take a 
value of 1 respectively if the energy storage is charging and 
discharging at time t, and 0 otherwise, 𝑆𝑂𝐶1,%,- is the SOC of the 
energy storage, 𝑆𝑂𝐶1,4#5,-  and 𝑆𝑂𝐶1,4)6,-  are respectively the 
allowable minimum and maximum SOCs of the storage, 𝜂#

,-,/2, 
𝜂1
,-,3/2and 𝐶1,-	are respectively the charging efficiency, 

discharging efficiency and rated storage capacity of the storage, 
𝑆1 represents the rated capacity (apparent power) of the 
generators and inverters, and 𝑐 is the ramping reserve 
requirement coefficient, at node 𝑗 and time 𝑡. 

We reformulated the "max" penalty terms in the objective 
(1) with proper slack variables and obtained its convex version. 
Therefore, together with constraints (2) – (28) the formulated 
problem is a mixed integer linear program (MILP) and open-
source MILP solvers can be leveraged to obtain (near) global 

(12) 

(16) 

(13) 

(2) 

(3) 

(28) 
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solution to the problem. The decision variables are thus: 𝑃#1,%, 
𝑄#1,%, 𝑃1,%& ,  𝑄1,%& , 𝑃1,%

', 𝑃1,%
',()*+, 𝑄1,%

' , 𝑃1,%
,-,/2, 𝑄1,%

,-,/2, 𝑃1,%
,-,3/2, 

𝑃1,%
,-,()*+, 𝑄1,%

,-,3/2, 𝑄1,%
,-,3/2, 𝑆𝑂𝐶1,%,-, 𝑏1,%

,-,/2, 𝑏1,%
,-,3/2, 𝑃1,%

.%,/*%, 𝑄1,%.%,  
𝑃1,%
+0,/*%, and 𝑄1,%

+0. 

IV. RESULT AND DISCUSSION 
To demonstrate its effectiveness, we apply the proposed 

MPC-based service restoration method to the IEEE 13-bus 
distribution test system with integrated wind turbine (WT), 
photovoltaic solar (PV), microturbine (MT) and energy storage 
(ES) device, as shown in Fig 2. We call this system as the case 
study system, henceforth. We consider nine spot loads (𝐿8	– 𝐿:) 
with constant power load models. We assume an extreme event-
caused substation outage, shown in Fig. 2, that occurred at time 
𝑡 = 𝑡; and the system is then seamlessly switched to islanded 
operation. The utility outage time is set as six hours. The system 
parameters are given in Table I. 

 

Fig. 2. Modified IEEE 13-bus system with DERs. 

TABLE I 
SYSTEM PARAMETERS 

Parameter Value Parameter Value 
ω [1.0, 1.0, 0.9, 0.85, 0.8, 0.65, 

0.45, 0.4, 0.3] 
T 6h 

α 0.2 ∆t 1/12 
β 0.2 P9:;	

=  300kW 
ψ 100 S= 350kVA 
ϕ 50 E9:;

=,>  1000kWh 
P?,@A9:B@ [115, 85, 49.75, 200, 85, 

199.75, 85, 324, 64] kW 
E9:;
=,C  750kvarh 

Q?,@A9:B@ [66, 52, 29, 115, 40, 109, 45, 
141, 43] kvar 

P9:;
AD,EF 200kW 

t [1, 2, …, 72] P9:;
AD,@EF 200kW 

WT rating 150kW SAD,GBH 250kVA 
PV rating 300kW SOCIAD 90% 
CAD 800kWh 		SOC9GBAD  20% 

LB, UB 0.95, 1.05pu SOC9:;AD  100% 
ηAD,EF 95% 	ηAD,@EF 90% 

We implemented the MPC using JuMP [13] in Julia 1.5 and 
the renewable power forecasting, data analytics and the 

execution of the MPC were implemented in Python 3.7. The 
computation was performed on a Mac Pro with Intel Core i7 
Quad-Core Processor (2.80GHz) and 16GB RAM, and the 
problem was solved by the GLPK open-source solver. 

We discuss the simulation results obtained from our 
experiments based on the following three cases: 

• Case I: System operation without reserve; 
• Case II: System operation with different levels of 

reserve requirements; 
• Case III: System operation under renewable shortfall 

and over-generation. 
Figs. 3 through 5 show the operation of the system in Case 

I following the occurrence of the extreme event at 𝑡 = 𝑡; =
12: 00 on a specific day (August 3, 2019). Fig. 3 illustrates the 
active and reactive power dispatch and total restored load. Fig. 
4 shows the active and reactive individual restored loads. Fig. 5 
depicts the node voltages. 

 
Fig. 3. Active (kW) and reactive (kvar) power dispatch and load restoration. 

As shown in Fig. 3, the MPC operates the DERs 
interactively to restore the distribution system load after the 
substation outage. The MT and ES sometimes operate 
complementary and produce their rated power when the 
renewable production is low. It is also shown in Fig. 3 that the 
MPC manages to utilize all the available renewables without 
curtailment.  

 
Fig. 4. Restored loads (active and reactive). 
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We only set the MT and ES inverter to inject/absorb reactive 
power. It is seen in Fig. 3 that the reactive power production 
from the MT and the ES inverter restores the reactive power 
demand of the system.  

In addition, as we observe from Fig. 3, the total active (kW) 
and reactive (kvar) restored loads follow the same pattern as the 
control time evolves due to the power factor consistency 
constraint we imposed in (16).  However, the restored load is 
not upward monotonic, there is shedding of previously restored 
load as it is observed in Fig. 3 in the periods 13:30–14:00, 
14:20–14:40 and 16:20–17:05. This problem can be addressed 
by augmenting reserve product to the MT and ES power 
products and will be discussed in this section in Case II results.  

As illustrated in Fig. 4, the first 3 higher priority (critical) 
loads (L1 – L3) were picked up with their full demand (100%) 
throughout the control horizon. However, the lower priority 
loads (L4 - L6) were not served with their full demands except 
in some control steps. The lowest priority loads (L7 – L9) were 
not served at all. This shows the efficacy of the proposed 
restoration technique for picking up the critical loads first when 
extreme event causes power deficiency in a power system. 

 
Fig. 5. Nodal voltages. 

As shown in Fig. 5, the MPC’s linearized power flow model 
is able to regulate the system node voltages well-within the 
allowable ANSI’s low-voltage distribution grid voltage range 
0.95 to 1.05 pu. While this model is an approximation, it is 
likely the voltages would be within limits should the set-points 
be implemented in a physical system. 

The operation of the system in Case II, with varying levels 
of reserve requirement, is demonstrated in Fig. 6. It is shown 
that as the system-wide reserve requirement 𝑐 increases, the 
aggregate restored load becomes more upward monotonic and 
there does not exist any shedding of previously restored load. 
As clearly seen in Fig. 6, the restoration curve with the highest 
value of reserve requirement (c=75) restored the loads 
conservatively with consideration of monotonic increase as 
time evolves. This confirms the benefit of having reserve in the 
system to ensure the restoration is sustainable without shedding 
previously restored loads. 

The system operation with under-forecasted (2019-08-04 
10:00 - 2019-08-04 16:00) and over-forecasted (2019-08-02 
00:00 - 2019-08-02 18:00) renewable power production, Case 
III, is depicted in Fig. 7. 

 
Fig. 6. Impact of ramping reserve level on load restoration. 

 
Fig. 7. Impact of renewable uncertainty on resource utilization.  

As we observe from Fig. 7 with under-forecasted (forecast 
< actual) renewable (wind + solar) case the MPC does not 
utilize all the available fuel of the MT and the stored energy in 
the ES. This is due to the MPC initially expecting that the 
system has less renewables and but later on realizing that this is 
not true and prefers to use the available renewable instead of 
feeding the system from the MT and ES. On the other hand, 
during the over-forecasted (forecast > actual) renewable case, 
the MPC uses all the available fuel of the MT (remaining energy 
= 0kWh at t=6:00) and stored energy of the ES (min SOC = 
20% = 160kWh at t=6:00). This is because initially the MPC 
expects the system has more renewable generation available but 
later on in real-time it realizes that this is not true and forced to 
feed more energy from the available MT and ES to restore more 
loads. Note that the renewable energy production at each time 
step is total energy production through the control horizon 
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starting at that step but with shrinking length as the MPC 
horizon. These findings in Case III confirm the importance of 
MPC-based restoration approach in handling the uncertainty of 
renewables through real-time realization and decision 
adjustment capability, and also demonstrate the potential of 
reserved energy to address such operational uncertainties. 

V. CONCLUSION AND PATH FORWARD 
Resiliency have become a vital property of critical systems 

and communities. To improve the resiliency of distribution 
systems against extreme events, we proposed an MPC-based 
service restoration technique and demonstrated its effectiveness 
using the IEEE 13-bus distribution test system with DERs. Our 
findings reveal that deployment of DERs and adopting robust 
distribution grid automations (such as automatic and critical 
service restoration algorithms) play significant roles in 
improving the resilience of power systems against extreme 
events. Our current research findings and capabilities will 
continue in the next phases of our research such as 
consideration of more complex power networks and advanced 
stochastic formulations to address the uncertainty of service 
recovery time and renewables.   
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