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* PTES background
* PTES variants

* PTES example: ideal-gas cycle with two-tank liquid storage
* Choice of storage liquid
* Heat exchanger design
* Cost and value

* PTES example: supercritical CO, cycle
* Integrating solar heat with CSP
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Pumped Thermal Energy Storage (PTES)

* Basic premise: E
‘ >

Hot
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Electricity [ E

Cold

* Charge: heat pump or electric heater
» Discharge: some kind of heat engine (Brayton cycle, Rankine cycle etc.)
* Based on established thermodynamic cycles
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Th e Hca 'N Ot Batte ry” Charging Discharging

e Carnot cycles are:

— Reversible W
— Isentropic (no entropy generation)

Sadi Carnot .
(1796 — 1832) Maximum Carnot
Battery round-trip PHUE|C|T|> EL'Z’I";E
efficiency = 100 %
Q; =Wi, xCOP Wy =Q2 X7
However .... ™
* A Carnot efficient engine has never been demonstrated X = Wo_ut =mn X COP
mn
* A “non-Carnot” Battery has a round-trip efficiency of 40 —-70 %
x=1
(for a Carnot cycle)

[1] A. White, G. Parks, and C. N. Markides, “Thermodynamic analysis of pumped thermal electricity storage,” Applied Thermal Engineering, vol. 53, pp. 291-298, May 2013.

[2] J. D. McTigue, A. J. White, and C. N. Markides, “Parametric studies and optimisation of pumped thermal electricity storage,” Applied Energy, vol. 137, pp. 800-811, Sept. 2015. NREL | 4



Many possible power cycle / thermal storage
combinations
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Brayton cycle Transcritical Rankine
* High energy density *> Can operate at low temperatures * High work ratio (>20)
> Sensible heat storage (water, ice) > Latent heat storage
> Low work ratio (2~3) > Variable ¢, * Very low vapour pressure at cold
side (problem for heat pump)
Solid stores goey
& ngon . Hot store Liquid stores
*> Cheap storage materials
Y Hot store > \Wide temperature ranges - > [Easy to operate
A Nitrogen > i
> High energy densities Y Low self-discharge losses

Cold store

But...

> Difficult operation and high self-
discharge losses

» High power density (pressurised cycle)
But...

» Heat exchangers can be expensive

[3] A. Olympios et al., “Progress and prospects of thermo-mechanical energy storage — A critical review”, manuscript accepted by IOP Progress in Energy, 2020 NREL | 5



PTES efficiency

What are the advantages/challenges of going to high temperatures?

Material costs? Turbomachinery design?

80 ‘ ‘ ‘ ‘ To what extent is the improved
efficiency ‘worth it’?
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PTES with molten salt liguid storage

700 T I I T T
—e— charge

600 + ----m-- discharge §

Hot store =00

400

Heat 300

rejection &

A 4

Comp 200

100

g
Temperature [°C]

Cold storage

-100

T
1

6 6,‘2 6j4 6I.6 6i8 7
Specific Entropy [kJ/kg.K]

[4] J. D. McTigue, P. Farres-Antunez, K. Sundarnath, C. N. Markides, and A. J. White, “Techno-economic analysis of recuperated Joule-Brayton Pumped Thermal Electricity Storage (PTES)
systems”, manuscript in preparation, 2020 NREL | 7



PTES with molten salt liguid storage

Consider heat exchanger efficiency:
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Performance and cost are very dependent on heat exchanger design
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PTES with molte
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n salt liquid storage

Higher top temperatures:

Increased efficiency

Increased costs — more expensive metals for heat exchangers
Balance out in LCOS?

Some design optimization required
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PTES with molten salt liquid storage

Cost of power
components

Cost of energy
components

Cost per unit energy [$/kWhe]
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How to reduce power costs?

Novel, low-cost heat exchangers?
Alternative heat exchangers (packed beds, fluidized beds)
Reversible turbomachinery?
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PTES with supercritical CO,
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Numerous layouts and temperatures possible:

Low temperatures vs high temperatures

Supercritical vs transcritical
Recuperation or storage?
Recompression?
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PTES with supercritical CO,

Turbomachinery efficiency Heat exchanger efficiency
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sCO,-PTES performance is more
sensitive to heat exchanger
efficiency than ideal-gas PTES.

[5] J.D. McTigue, P. Farres-Antunez, K. Ellingwood, T. Neises, A.J. White, “Pumped Thermal Electricity Storage with Supercritical CO2 Cycles and Solar Heat Input”, in: SolarPACES, Daegu, S.
Korea, 2019. NREL | 12



Cost vs value

Effect of PTES start costs

- . $85/MW
. 542/MW
| - $21/Mw

e System cost is only one side of the coin
e Quantify the value of PTES
* PTES services:

Value ($3M / GWe capacity)

o Ca paCity Value _ Including PTES start cost Excluding PTES start cost
* Grid inertia
* Reducing renewable curtailment

* Arbitrage
e Practical PTES limits:
e What are start costs? T eatengine tat Heat punp starts

 What are ramp rates?

* What is the local generation mix, transmission constraints, etc.?

* Optimize system sizing/design for these constraints rather than cost and
efficiency?

* These all affect operational profiles and value
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Integrating PTES and solar heat

* PTES is suitable for hybridization
* Electricity, and hot and cold thermal energy

Heat pump
Heat pump Refrigerator Refrigerator ; ; i
A Heat engine A Heat ngine A Heat ongine 1. Provide multiple services
Q, 7% a. Renewable power
\ \ b. Electricity storage
" T 2. provid h ired
. Provide power when require
: — : : e e
‘.é Qs E § ° 3 I d 't
3 2 Q;> 2 Q;> . Improve energy density
(0] (0] (0]
= = 1w, = 1w, 4. Reduce thermal storage costs
A X
o) o) 5. Heat or cold to other loads
E ntropy g E ntropy g E ntropy g

[6] J.D. McTigue, P. Farres-Antunez, A.J. White, “Integration of heat pumps with solar thermal energy”, in: Encyclopedia of Energy Storage, edited by Luisa F. Cabeza, manuscriptin

preparation . NREL | 14



Integrating PTES and solar heat

* An example from SolarPACES:

* “Technical Assessment of Brayton Cycle Heat Pumps for the Integration in Hybrid PV-CSP Power Plants”, Zahra Mahdi
(mahdi@sij.fh-aachen.de), SolarPACES 2020

S1J | SOLAR-INSTITUT JOLICH ¥ I
A Heat pump Comparison of Different CSP-PV-HP Configurations ‘
Heat engine PV field Power : I

[ g
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[7] Z. Mahdi, “Technical Assessment of Brayton Cycle Heat Pumps for the Integration in Hybrid PV-CSP Power Plants”, SolarPACES, 2020
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Integrating PTES and solar heat

* Retrofit an existing CSP system
 Thermal storage and power block already in place
e Grid connection, transmission lines, permits, etc.

700 ‘ | | | | |
Heat pump r Grid __+ charge
1 Heat engine ﬁ ol |
; S Rankine cycle |-~ Backup |
( h 5 y “--* fuel/CSP o5 o0
z Y A "~ 4001
° —
- £ 300
=1 A :
% ~ Molten & 200 L
g- salt =
. é‘o 100
S \ 4 .
A & <
a) 5 Brayton cycle ool
5.8 6 62 64 66 68 7
> ~ Grid .
ecific Entropy |kJ/kg.K
E ntropy b py[ / . ]

Heat pump also creates cold storage
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Integrating PTES and solar heat
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[8] P. Farres-Antunez, J.D. McTigue, A.J. White, “A pumped thermal energy storage cycle with capacity for concentrated solar power Turbine inlet temperature, °C

integration”, in: Offshore Energy Storage Conf., Brest, France, 2019.

Steam turbine efficiency, %
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Integrating PTES and solar heat

Cold storage system One or more

_-(advanced config.) expansion and
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[9] P. Farres-Antunez, A.J. White, C. N. Markides, J.D. McTigue, “Analysis of a Brayton heat pump for bulk electricity storage in steam power plants”, manuscript in preparation, 2020



Summary

* Numerous PTES designs — each may have a niche

* Some priorities
* Heat exchanger design
* Turbomachinery design
* Novel approaches to reduce costs
e Quantifying various value streams

* PTES suitable for hybridization
* Benefits to integrating with CSP
* Hybrid systems can be complex
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Thank you
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