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Abstract

This paper presents the second version of the efficiency tables of materials considered as emerging
inorganic absorbers for photovoltaic solar cell technologies. The materials collected in these tables
are selected based on their progress in recent years, and their demonstrated potential as future
photovoltaic absorbers. The first part of the paper consists of the guidelines for the inclusion of the
different technologies in this paper, the verification means used by the authors, and
recommendation for measurement best practices. The second part details the highest world-class
certified solar cell efficiencies, and the highest non-certified cases (some independently confirmed).
The third part highlights the new entries including the record efficiencies, as well as new materials
included in this version of the tables. The final part is dedicated to review a specific aspect of
materials research that the authors consider of high relevance for the scientific community. In this
version of the efficiency tables, we are including an overview of the latest progress in quasi
one-dimensional absorbers, such as antimony chalcogenides, for photovoltaic applications.

Abbreviations

Eff. (%) conversion efficiency obtained under AM1.5 illumination in percentage

Voc (V) open circuit voltage in volts

Jsc short circuit current in milli-Amperes by square centimetre

(mA cm™?)

FF (%) fill factor in percentage

Eg (eV) bandgap in electronvolt

AZO ZnO:Al

ITO In203:Sn02

Spiro- 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9’-spirobifluorene (Cs; HesN4Os)

OMeTAD

TBAI tetrabutylammonium iodide

EDT 1,2-ethanedithiol

PTB7 poly[[4,8-bis[(2-ethylhexyl)oxy]benzo|1,2-b:4,5-b’]dithiophene-2,6-diyl][3-fluoro-2-[ (2-
ethylhexyl)carbonyl]thieno|3,4-b]thiophenediyl]] ((C41Hs3FO4S4)n)

ARC anti-reflection coating

CuPc™ copper phthalocyanine
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PTAA poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine ((C21Hi9N)y)
PCBM [6,6]-phenyl C61 butyric acid methyl ester (C72H140,)
mp-TiO; mesoporous TiO;

TiO,-BL TiO; blocking layer

PCPDTBT poly[N-9’-heptadecanyl-2,7-carbazole-alt-5,5-(4,7-di-2-thienyl-2,1’,3’-benzothiadiazole]
((C43Ha7N3S3)nCr2Hio)
PEDOT:PSS  poly(2,3-dihydrothieno-1,4-dioxin)-poly(styrenesulfonate)

P3HT poly(3-hexylthiophene-2,5-diyl) ((CioH14S)n)
PEG poly(ethylene glycol)

F8 poly(9,9-di-noctylfluorenyl-2,7-diyl)

Q-1D quasi one-dimensional

1. Introduction

1.1. Scope of the paper

Several photovoltaic technologies have now reached the point where they are mature enough, to reach the
market and the progress in their power conversion efficiencies are summarized regularly in ‘Solar Cell
Efficiency Tables’ [1]. Crystalline and multi-crystalline Si modules are the industrial standard but a-Si,
Cu(In, Ga)(S, Se),, CdTe, organic photovoltaic, dye-sensitized solar cells, etc have all been commercialized to
varying degrees of success. Whilst these technologies could feasibly cover the majority of photovoltaic
applications, increasing the diversity of viable photovoltaic materials will allow for greater adaptability as the
technology continues to expand and develop. Additionally, most of the established platforms face challenges
related to either the use of critical raw materials, toxic elements, long-term stability, conversion efficiency
limitations, cost or low technological flexibility (e.g. incompatibility with flexible substrates, or transparent
concepts). These are all important considerations that must be taken into account as the field begins to look
towards an era of terawatt level photovoltaic power generation.

The limitations of the mature technologies encourage a continued search for new materials, as none of
the established technologies represent the ‘perfect’ photovoltaic material. The purpose of continued
exploratory research is to identify absorbers that can bring additional benefits and/or may allow the
development of novel applications. New inorganic materials including chalcogenides (sulphides, selenides,
tellurides), oxides, pnictides (nitrides, phosphides), halides (mainly bromides and iodides) and mixed-anion
compounds (e.g. sulfo-iodites) have proved a fruitful area of research and attracted a lot of attention. There
are numerous examples published in recent years showcasing the capability of these materials to act as
photovoltaic absorbers. Respectable device efficiencies have been reported for numerous cell platforms
despite their typically being only limited attempts at fabrication and often with only specific groups
contributing to their progresses. Several of these emerging cell structures have shown enough development
to identify them as potential future technological solutions. As a result, there has been a resurgent interest
from the scientific community in emerging photovoltaic solar cell absorbers, as is shown in figure 1, where
the number of papers published on this topic has increased significantly in the past decade. Notably, starting
from around 300 papers published in this topic in 2011, almost 2000 were published in 2020 in total in the 4
main emerging inorganic photovoltaic technologies, implying an impressive annual growth rate close to 25%
in the last 10 years. Even faster increase in number of publications has been happening in organic and hybrid
materials, as discussed in the recent publication on ‘Device Performance of Emerging Photovoltaic Materials
(Version 1) [2].

Given the continually developing nature of the research field and the large number of emerging inorganic
photovoltaic materials, this paper was conceived to collate information on the current status of the most
promising materials in form of efficiency tables, collecting and summarizing the most relevant information
available in the literature. This includes certified efficiencies in one of the six special centres available in the
world, as well as independently measured examples with a description of the means of efficiency verification
(or lack thereof). The main aim of these tables is to provide researchers working on emerging inorganic
technologies with a valuable information resource by condensing all the spread information about these
fascinating materials, but also to establish a forum for the discussion moving forward. It is hoped that these
tables will evolve with the field and with input from the researchers in the community, informing future
versions to include new champion devices or emerging technologies of note. This second edition of the tables
[3] aims to support and inspire future research in the emerging inorganic solar cells.

1.2. Structure of the paper
The paper is structured in four sections, with the following details:

Section 1 is the present section, giving an overview of the paper, a description of its structure, an
explanation about the criterion used to select the materials included in the different efficiency tables, and a
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Figure 1. Number of published papers in the last 10 years referring to emerging photovoltaics, including kesterite, inorganic
perovskite (CsPbls, CsPbB3 and related materials), Sby(S,Se)s; and Cu,O (extracted from Scopus in January 2021).

description of the recommended procedures for the correct J-V in-house illuminated curve measurement,
extraction of corresponding optoelectronic parameters, as well other additional devices information that the
authors consider of high relevance for emerging photovoltaic technologies.

Section 2 contains the efficiency tables split into two categories. The first table summarizes all the
world-class certifications available in the literature, and compiled by the authors. For this table we consider
certified devices with efficiency higher than 5% and area larger than 0.1 cm?. Exceptions of these
considerations are summarized at the end of the table. The second table collects all the devices that are
non-certified but can be confirmed using specific procedure, with efficiency higher than 1% and area larger
than 0.1 cm?. Exceptions of these considerations are also summarized at the end of the table. In each of these
two tables, the materials are organized firstly depending on the type of compounds (oxides, chalcogenides,
pnictides, halides, etc), and then in terms of complexity from less to more atoms in the structure.

Section 3 provides a brief description of new entries in terms of new efficiency records but also new
materials included in the tables, with a brief review of the last and most impacting progresses reported in
these technologies.

Section 4 aims to bring to the scientific community a perspective review of a specific topic that the
authors have identified as very timely and with high relevance. In this second edition of the efficiency tables,
the authors have invited Professor Jiang Tang from Huazhong University of Science and Technology (HUST),
China, to review the last progresses in Q-1D materials for photovoltaic applications, including the impressive
achievements in Sb,(S,Se); compounds.

1.3. Criterion for technology selection
For selecting the materials included in the efficiency tables, the authors have defined the following criterion:

Table 1 (World class certification): fully inorganic technologies with certified materials in one of the six
world class certifying centres, with efficiency higher than 5% and area larger than 0.1 cm?. Exceptions to
these rules are collected separately at the end of the table.

Table 2 (Non world class certification or in house measurements): fully inorganic technologies of
non-certified materials with efficiency higher than 1%, verification through external quantum efficiency
(EQE) measurement, or independent confirmation by a second organization, and area larger than 0.1 cm?.
Exceptions to these rules are collected separately at the end of the table.

1.4. General guidelines for efficiency measurement

There are several important documents and organization that define solar cell efficiency measurements,
including IEC 60904-3:2008 by International Electrotechnical Commission for general standards and ASTM
G-173-03 by ASTM International for Test Methods and Reference Cells. Certification measurements
following these standards are usually performed by one of the internationally recognized institutions, such as
NREL (USA), AIST (Japan), CSIRO (Australia), Fraunhofer ISE (Germany), CNIM and NPVM (China) or a
few commercial organizations (e.g. Newport), and the records certified by five of them (i.e. NREL, AIST,
CSIRO, Fraunhofer ISE, and Newport) are published bi-annually in ‘solar cell efficiency tables’ [1] for
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well-established solar cell technologies. However, for the emerging solar cell technologies that are developing
very quickly, such certification is not always practical, so only in-house measured photovoltaic (PV)
efficiencies are often reported. Thus, it is important to review here common best practices for in-house solar
cell efficiency measurements. The most basic requirements for lab-based solar cell efficiency measurements
include:

(a) using the air mass 1.5 spectrum (AM1.5) for terrestrial cells by choosing the highest-quality solar simu-
lator available;

(b) applying one-sun of illumination with intensity of 1000 W cm ™2 by adjusting the cell/simulator distance
to match the expected current of the reference cell;

(c) controlling cell temperature during the measurement to 25 °C using active cooling or heating;

(d) using four-point probe geometry to remove the effect of probe/cell contact resistance.

In addition, there are several other best practices to follow.

(a) Areas of the measured solar cells have to be carefully defined using device isolation and/or light masking;
this is particularly relevant to absorbers with large carrier diffusion lengths.

(b) Current density—voltage measurements have to be performed in both forward and reverse directions,
which is especially important for emerging absorbers with tendency for hysteresis.

(c¢) EQE measurement has to be reported to assist with spectral correction, and integrated with the AM1.5
reference spectrum to obtain the current, to be compared to reported J..

(d) Statistical analysis results, including the number of the solar cells measured, and the mean values have to
be mentioned.

(e) Short-time evolution of the reported deficiency has to be verified at the maximum power point or with
the photocurrent at maximum power point.

(f) Long-time stability analysis is encouraged, under light and electrical bias, with measured temperature
and humidity.

(g) For multi-junction solar cells, the illumination bias and voltage bias used for each cell have to be reported.

Finally, we reemphasize that these are just guidelines for in-house solar cell measurements, when external
certification is not practical. However, researchers working on emerging solar cell technologies are strongly
encouraged to strive towards perfection and consider submission of their devices to one of the
internationally recognized institutions.

2. Efficiency tables

Table 1 presents the list of materials that have been identified for the authors as certified solar cells, and are
considered as the highest reported conversion efficiency in their class of technology. The last part of table 1
collects the technologies that being certified, do not fulfil some of the criteria used for including them in the
principal section. Table 2 contains the list of materials and device performance for non-certified solar cells.
The combined data from both tables is plotted in figure 2, where it is separated into three categories: metal
pnictides (e.g. ZnSnP;), chalcogenides (e.g. PbS), and halides (e.g. Bil3).

3. New entries

3.1. Oxides

There have been no new records reported for solar cells with oxide absorbers, but several important advances
have been made. For Cu,O absorbers with Ga, O3 buffer layers grown by chemical vapour deposition, the
Ve of 1.78 V has been achieved albeit with small photocurrent of 2 mA cm~2 [65]. This demonstrates the
ability of Cu, O to reach >80% of V. entitlement based on Shockley—Queisser limit (E; = 2.2 V), and
achieve in the future >13% efficiency for thicker absorber layers based on numerical models [66]. A low
damage magnetron sputtering method for fabrication of ZnO contacts to Cu,O solar cells has been also
recently demonstrated [67]. The progress in Cu,O and other oxide solar cells has been summarized in a
recent roadmap article [67] and a book chapter [68].

As of the more exotic oxide absorbers with perovskite structure and ferroelectric properties, up to 4.2%
efficiency has been reported in mixed-phase BiMnOj3 and BiMn,Os thin film absorbers [18]. The reported
Voc of 1.5V, Jo. of 7 mA cm™2 and fill factor of 0.58 have been reported (table 2). This report comes from the
same group that published on 3.3% efficiency in single layers and 8.1% in multilayers of Bi, FeCrOg 6 years
ago [41]. Neither of these exciting results published high profile journals have been replicated by other
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Figure 2. Efficiency (a), Voc (b), Jic (c) and FF (d) of the most relevant thin film inorganic PV technologies, from tables 1 and 2.
Their performance is compared to the full Shockley—Queisser (SQ) limit for the AM1.5 spectrum (solid grey line) and 50% of the
SQ limit (dashed grey line).

groups, which is somewhat concerning. The progress in BiFeOs derivatives [69] and other perovskites as
photoferroic materials has been recently reviewed [70].

3.2. Chalcogenides

Five new results are reported in the present version for chalcogenides, with two new results from kesterite
and antimony chalcogenide respectively, and three new entries from kesterite. The first new result is 12.5%
efficiency pure selenide kesterite (Cu,ZnSnSey) solar cell fabricated on glass shown in table 1. This highest
efficiency pure selenide CZTSe solar cell also demonstrates the smallest V. -deficit (given by Eg/q — V) of
any reported kesterite family devices. The reported efficiency improvement is realized by engineering the
local chemical environment (i.e. proper chemical composition and complete oxidation of Sn to Sn**) during
the growth of kesterite thin-film, particularly at the point in time when the formation of kesterite initiates.
With this defect control method, the reported electrical properties (i.e. mobility, carrier concentration) of
kesterite are improved and the detrimental intrinsic defects are suppressed. One of three new entries for
kesterite in table 2 is the magnesium-alloyed kesterite. The introduction of small amount of Mg into kesterite
results in the 7.2% efficiency Cu,Zng.06Mgo.04Sn(S,Se)4 solar cells. Such small amount Mg can lead to the
change in lattice constant and carrier concentration of kesterite, which seems to play a similar role to alkaline
Lithium. Notable substitution of group III elements of In and Ga in Cu,ZnSn(S,Se)4 were also reported to
improve the efficiency even though the reasons for improvements are not thoroughly investigated [31].
Cd-substituted CZTS is recently reported with a new record of 12.6% [30] by engineering the charge
extraction layers. We also note that a significant numbers of groups have reported efficiencies exceeding 12%
[8, 30, 71] and closing the gap with world record efficiency reported by IBM in 2013 [6]. Most of these
reports, however, have not completely eliminated the origin of the deep defects which are widely believed to
cause band tailing and the significant V. deficit in this class of materials. Recent theoretical analysis and
experimental evidence seem to indicate that a major contribution to the band tails is from the deep

2Cuyz, + Snz, defect clusters [72, 73]. The latest experimental evidence is demonstrated in the Cu, CdZnS,
(CCTS) where Cd substitution of Zn in Cu-poor CCTS suppress the deleterious 2Cuy,, + Snz, defect clusters
and significantly reduces bandgap fluctuations [21]. This work sets a new efficiency record in Cu,CdZnS,
with 7.96%, which is the highest efficiency among the novel compounds derived from Cu—Zn-S/Se.
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Another two new entries in table 2 are from simple chalcogenides, i.e. 5.1% efficiency Cu,SnS; and 6.73%
efficiency Ge-alloyed Cu,SnSs. Notable that Sn/Ge gradient is realized in the latter Cu,Sn; _,Ge,S; (CTGS).

3.3. Pnictides

There have been several recent reports on ZnSnP, based solar cells [74]. The highest 3.4% efficiency reported
to date is for ZnSnP, single crystal absorbers with (Cd, Zn)S buffer layers [17], with J,. of 12 mA cm™2, Vo
of 0.47 and a fill factor of 0.59 (table 2). Thin film ZnSnP; solar cell with CdS buffer layers prepared by
phosphidation of Zn/Sn stacks had much lower efficiencies (0.02%) [75] compared to crystal based
ZnSnP2/CdS solar cells (2%) [76]. All-phosphide ZnSnP, single crystal devices with CdSnP, buffer layers
showed clear rectification behaviour but no photoresponse [77].

3.4. Halides

The number of published papers reporting halide materials for PV (mainly perovskite halides), are increasing
quickly, and in consequence several progresses have been reported. Most of the high efficiency absorbers
becomes from the Cs—Pb perovskite halide family, and have shown 1%—-3% record efficiency improvement in
the last year. Some of these progresses are related to the use of additives for the best control of growth
procedure and crystallization process.

CsPbl;—the record efficiency has improved up to an impressive 19.03%. Wang et al [47] demonstrated
that the use of DMALI is very effective to manipulate the crystallization process of CsPbl3, confirming that the
DMALI additive would not alloy into the crystal lattice of CsPbl; perovskite. Furthermore, the use of
phenyltrimethylammonium chloride passivated CsPbl; inorganic perovskite, allowing for the impressive
efficiency improvement, although there is a debate if DMA and DMAI can sit at the A-sites of the perovskite
structure and these materials are non-fully inorganic.

CsPbBrs;—although more modest, CsPbBr; has achieved a new record of 10.91%. To do so, Tong et al
[46] developed a growth procedure induced by phase transition that makes the grain size of perovskite films
more uniform, and also lowers the surface potential barrier that exists between the crystals and grain
boundaries.

CsPbBrI, and CsPbIBr,—in the first case only limited efficiency improvement has been reported in the
last months, achieving 16.79% efficiency record with and impressive Vo of 1.32 V. This improvement was
again related to passivation effect and n-type doping by introducing CaCl,, observing also that the
crystallinity of the CsPbl,Br perovskite film was enhanced, and the trap density was suppressed through the
use of CaCl, treatment [48]. In the second case, a record efficiency of 11.10% has been reported with an
improved V. of 1.21 V, but with a large enhancement of the FF up to 74.82% [49]. This has been possible
thanks to the introduction of a Lewis base (PEG) as additive observing suppressed non-radiative
electron—hole recombination and a favourable energy band structure.

Other halide perovskites do not report important progresses in terms of conversion efficiency in the last
months.

3.5. Mixed-anion

Starting from this second edition of the efficiency tables, we are including a new class of PV absorbers based
on mixed antimony and/or bismuth chalcogenide-halides. Special mention merits the work of Neo and Seok
[55], where using a fast vapour process they developed SbSI and SbSI-interlayered Sb,S; solar cells,
demonstrating a TiO,/Sb,S3/SbSI/HTM device with a conversion efficiency of 6.08%. Efficiencies between
1% and 4% have been also reported for SbSI, (Sb, Bi)SI and BiSI systems, demonstrating the large potential
of these mixed chalcogenide-halide compounds and the increased interest that the scientific community is
putting in such materials for solar cells applications.

4. Latest progresses in selected topic: Q-1D absorbers for PV

Traditionally, absorber materials for PVs are limited to semiconductors with three-dimensional (3D) crystal
structure (i.e. GaAs, CdTe and Cu(In, Ga)Se;) thus enjoying the nearly isotropic film growth and carrier
transport. Recently, the previously abandoned low-dimensional absorber materials have attracted wide
attention because of their simple and Earth-abundant composition, and performance improvement

[4, 60, 78]. Specifically, the Q-1D binary antimony-based chalcogenide (Sb,Ss, Sb,Ses and Sb,(S,Se)s alloy)
solar cells are nontoxic and stable, and have achieved impressive power conversion efficiency of 7%—10%

[4, 12, 79]. Q-1D Sb-based chalcogenides are made up of covalently bonded [SbsS(e)¢], ribbons, and these
ribbons are stacked via weak Van der Waals force along a- and b-axis [80]. Based on device configuration,
Q-1D Sb-based chalcogenide solar cells can be divided into sensitized solar cells and planar (superstrate and
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substrate) devices. Next, we will briefly review the main efficiency improvement of Q-1D solar cells in each
configuration:

Sensitized-type solar cell. At the early age, Sb-based chalcogenide sensitized-type solar cells was led by
Seok group from Korea Research Institute of Chemical Technology. The typical device configuration is
TCO/bl-TiO,/mp-TiO,/Sb,S(e)s/HTL/metal (here, TCO = transparent conducting oxide; bl = block layer;
mp = mesoporous; HTL = hole transport layer). The current champion efficiency of Sb,Ss;, Sb,Se; and
Sb, (S, Se)s sensitized-type solar cells were achieved in 2014 as 7.5% [61], 3.21% [81] and 6.6% [82],
respectively. The absorber layers were exclusively based on the solution processing, and the device
configuration is relatively complex. No significant progress for sensitized solar cells has been reported since
2014.

Superstrate solar cells. For superstrate Sb,S; solar cells, the first >5% efficiency was reported in 2014
through atomic layer deposition (ALD) [83]. Chen’s group from University of Science and Technology of
China obtained 6.35% efficiency using hydrothermally processed Sb,S; at 2018 [84]; they further improved
device efficiency to 6.5% via Cs-doped Sb,S; at 2019 [85]. For Sb,Se; solar cells, Tang’s group from
Huazhong University of Science and Technology led the progresses: they reported the first planar-type Sb,Ses
solar cells at 2014 using hydrazine solution processing [86]; they introduced rapid thermal evaporation to
obtain high-quality Sb,Se; film and achieved a certified efficiency of 5.6% at 2015 [87]; they further
employed vapour transfer deposition (VID) to fabricate Sb,Se; films and obtained a certified efficiency of
7.6% [12]. Very recently, Liang et al and Cheng at al. suppressed the deep defects (Vs and Sbs.) in Sb,Se; by
the means of postselenization or in situ selenium compensation. Consequently, a large Vo of ~0.5 V was
obtained; however, the efficiency was lower than 7% because of the inferior Js¢ [88—90]. For Sb,(S,Se); solar
cells, Tang’s group used the VID technique to fabricate Sb,(S, Se)s solar cells and obtained a champion
efficiency of 6.3% in 2019 [91]. Subsequently, Chen’s group adopted the hydrothermal method to fabricate
Sb, (S, Se)s solar cells, which lead to absorber film with less defects, and obtained a device efficiency of 7.82%
[79]. They further optimized the device to a certified efficiency of 10.0%, the current efficiency record for all
Q1-D Sb-chalcogenide solar cells. Device stability subjected to damp-heat, light-soaking, ultraviolet ageing
and thermal cycling testing is also satisfactory, nearly fully surpassing the IEC61646 standard for a
ZnO/Sb,Se; superstrate device [78].

Substrate solar cells. Research on substrate Sb-based chalcogenide solar cells lags behind superstrate
devices possibly because of their more complex configuration and time-consuming fabrication. Until now,
the champion efficiency of Sb,S; substrate solar cell is only 1.75% [92]; and no substrate Sb, (S, Se)s solar
cells is reported in literatures. Tang’s group reported the first substrate Sb,Se; solar cells in 2014 [93]. Then
Mai’s group from Hebei University made significant progress in this field and they successfully obtained a
certified record efficiency of 9.2% in 2019 employing the close spaced sublimation to fabricate Sb,Se;
absorber [4].

The Q-1D crystal structure of Sb-based chalcogenides result in some unique features as compared with
conventional 3D PV materials. Film orientation along the [SbsS(e)¢], ribbon direction is highly preferred for
high efficiency devices; otherwise photogenerated carriers have to hop between these ribbons leading to high
series resistance and low J. and FF. One additional benefit of proper orientation is benign grain boundaries
because of no dangling bond at the side of ribbons, and these advantages offer an opportunity for flexible
device [87]. Orientation engineering is thus intensively investigated: fast deposition to induce kinetic
controlled growth [94], carefully optimized substrate to enable strong bonding at the interface via (quasi)
epitaxy or reaction [95], and a pre-screening seed strategy [96], have proved to be effective in obtaining
preferred (hkl) 1 0 orientation.

There are a few challenges to be solved for further efficiency improvement, particularly the low V.: (a)
effective p-type doping to obtain ~10'® cm™—> doping density remains elusive; large atoms such as Pb and Sn
could be promising to induce substitutional p-type doping instead of interstitial n-type doping into the gap
between ribbons. (b) Complicated deep defects have recently been predicted by first-principle calculation
because of the non-equivalent Sb and S/Se sites and spacious volume in Sb-based chalcogenides [97].
Confirming and subsequent removal of these defects are required for V. and efficiency improvement. (c)
Spectroscopic results indicated that strong self-trapped exciton exist in Sb-based chalcogenides due to the
soft lattice and strong exciton—phonon coupling [98, 99], resulting in fundamental energy loss. Whether this
is true and universal for Q1-D Sb-based chalcogenides calls for further verification. (d) The carrier lifetime is
generally short for Sb-based chalcogenide solar cells [98, 99]; passivation of deep defects in the bulk and at
the surface (or interface) requires further efforts.

Opverall, the unique crystal structure and the rapid efficiency progress make Q-1D Sb-based chalcogenides
scientifically interesting and technologically promising. A further efficiency improvement, combined with
the proven features of outstanding flexibility, light weight, high stability, non-toxicity and low cost, promises
Q-1D Sb-based chalcogenide solar cells a bright future as the energy supplier for internet of things sensors.
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