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ABSTRACT The penetration of distributed energy resources (DERs) on the electric power system is
changing traditional power flow and analysis studies. DERs may cause the systems’ protection and control
equipment to operate outside their intended parameters, due to DERs’ variability and dispatchability. As this
penetration grows, hosting capacity studies as well as protection and control impact mitigation become
critical components to advance this penetration. In order to conduct such studies accurately, the electric
power system’s distribution components should be modeled correctly, and will require realistic time series
loads at varying temporal and spatial conditions. The load component consists of the built environment
and its load profiles. However, large-scale building load profiles are scarce, expensive, and hard to obtain.
This article proposes a framework to fill this gap by developing detailed and scalable synthesized building
load profile data sets. Specifically, a framework to extract load variability characteristics from a subset of
buildings’ empirical load profiles is presented. Thirty-four discrete wavelet transform functions with three
levels of decomposition are used to extract a taxonomy of load variability profiles. The profiles are then
applied to modeled building load profiles, developed using the energy simulation program EnergyPlus R©,
to generate synthetic load profiles. The synthesized load profiles are variations of realistic representations
of measured load profiles, containing load variabilities observed in actual buildings served by the electric
power system. The paper focuses on the framework development with emphasis on variability extraction and
application to develop 750 synthesized load profiles at a 15-minute time resolution.

INDEX TERMS Load profile, building energy modeling, electric power system, distributed energy
resources, wavelet functions, discrete wavelet transform.

I. INTRODUCTION
The penetration of distributed energy resources (DERs) on
the electric power system, especially the distribution system
segment, is changing the energy landscape (see Fig. 1 [1])
as well as traditional power flow and analysis studies. DERs
may cause the systems’ protection and control equipment
to operate outside their intended parameters, due to DERs’
predictability, variability, and dispatchability [2]. As this
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penetration grows, hosting capacity studies and protection
and control impact mitigation become a critical compo-
nent to advance this penetration. IEEE Std 1547.7 iden-
tifies conventional distribution studies and special system
impact studies that should be considered as needed when
considering DER interconnection on the distribution sys-
tem [2]. Conventional distribution studies include: steady
state simulation; system protection studies; short-circuit anal-
ysis; protective device coordination; automatic restoration
coordination; area electric power system grounding; syn-
chronization; unintentional islanding; arc flash hazard study;

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 217483

https://orcid.org/0000-0002-3417-5592
https://orcid.org/0000-0002-7107-810X


A. Parker et al.: Framework for Extracting and Characterizing Load Profile Variability Based on a Comparative Study

FIGURE 1. The changing landscape of electric power system components
(IEEE Std 1250-2018, Page 10).

and operational characteristics—loading, load shedding, etc.
Special system impact studies include: quasi-static simula-
tion; dynamic simulation; dynamic stability; system stabil-
ity; stability analysis interpretation; voltage and frequency
ride through; electromagnetic transient simulation; ferrores-
onance; interaction of different types of DER; temporary
overvoltage; system grounding; DC injection; harmonics and
flicker; harmonic analysis; harmonic problems; harmonic res-
onance; and flicker.

In order to conduct such studies accurately, the distribution
systems’ components should be modeled correctly, and will
require actual time series loads at varying temporal and spa-
tial conditions. This is part of IEEE Std 1547.7, which identi-
fies the need for actual load conditions and conditions under
various load levels when conducting specific impact stud-
ies [2]. The load component at the secondary distribution sys-
tem consists of the built environment, comprising residential,
commercial, and industrial buildings. Buildings’ electrical
load profile data captured by advanced metering infrastruc-
ture (AMI) and similar data loggers are nonstationary time
series data. This is because the time series contain trends
(daily, weekly, and seasonally) and changes in level and
slope [3]. These varying temporal and spatial time series load
profiles and variability characteristics provide critical infor-
mation for use with demand-side management, quasi-static
simulation, DER planning, tools for short-term load forecast-
ing, and synthetic load profile development, among others.
In [4], the authors discuss the need for end-use load profiles
to conduct an accurate analysis and understand the impact
of DER and electric vehicles on the distribution system.
They compare two methods for generating end-use load
profiles, the ZIP model and the physical model. They develop
models for residential load profiles using both approaches
and analyzed them on the IEEE 8500-node distribution
system. Their result shows the need for a physical model
that shows the variability that takes place in actual building
load profiles.

As such, buildings’ load profiles at multiple time resolu-
tions are critical to determine the impact of building loads on
a given distribution system and understand the baseload of the
distribution system. This baseload is then used for compari-
son when DERs are integrated onto the system. As stated in
IEEE Std 1547.7 (2013), ‘‘power flow simulations including
time series or quasi-static simulations may be needed to fully

study the impacts of DER on Area EPS [electric power sys-
tem] voltage’’ ([2], page 8). Furthermore, the IEEE standard
describes quasi-static simulations: ‘‘Quasi-static simulation
refers to a sequence of steady-state power flow conducted at
a timestep of no less than 1 second but that can use a time
step of up to one hour’’ ([2], page 77).

However, large-scale load profile data sets and load pro-
file variability characteristics at varying temporal and spatial
intervals are scarce, expensive, hard to obtain, and may create
user privacy issues. To overcome this lack of data, building
energy use/consumption at various levels of detail can be
modeled, via mathematical models, using computer-based
simulation software. The approach is referred to as building
energy modeling (BEM). BEM can be used to model new
buildings and/or evaluate existing building performance and
the effect of new renovations to its subsystems to quantify the
impact in terms of energy efficiency, capital cost, savings,
and other parameters of interest [5]. One such simulation
software program is EnergyPlus R©, a U.S. Department of
Energy (DOE) open-source software, that contains more than
500,000 lines of code to accomplish various modeling objec-
tives for buildings [6]. EnergyPlus models whole-building
energy consumption and water usage at different time-scale
resolutions [7]. For example, EnergyPlus is used in [8] to
develop a building energy model for a university adminis-
tration building in Brazil. A total of 54 days are used in
the simulation. The results are then compared with actual
energy measurement, showing that 80% of the time Ener-
gyPlus agrees well with the measured energy, even though
the parameters used to build the simulated building were
simplified. BEM has also been proposed as a tool that could
be used for creating synthetic load profiles [9]. However,
as noted, BEM does not currently represent variability well.

DOE, in collaboration with its national laboratories, devel-
oped the commercial reference building model (CRBM).
CRBM is a reference building for the 16 most common
commercial building types in the United States and repre-
sents about 70% of all commercial building stock in the
United States [10]. The benchmark buildings are classified
as: Large Office; Medium Office; Small Office; Warehouse;
Stand-Alone Retail; Strip Mall; Primary School; Secondary
School; Supermarket; Quick Service Restaurant; Full Ser-
vice Restaurant; Hospital; Outpatient Health Care; Small
Hotel; Large Hotel; and Midrise Apartment [10]. In addi-
tion, researchers at the National Renewable Energy Lab-
oratory (NREL) are currently developing ResStockTM and
ComStockTM tools that investigate large-scale residential and
commercial building energy analysis [11], [12]. EnergyPlus
can then be used to generate energy models for these bench-
mark buildings to represent a specific building in each spa-
tial location at a given temporal resolution for a given U.S.
weather data set and climate zone. Furthermore, EnergyPlus
can provide yearly whole-building and building end-use cat-
egories (subsystems) time series load profile data at various
timescales, ranging from 1-minute to 60-minute time res-
olutions, for the U.S. building stock. However, these load
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profiles represent building and occupant energy behaviors
based on set schedules and parameters, yielding load profiles
that contain less variability than what is encountered in actual
buildings.

The lack of large-scale measured data sets for buildings,
the availability of EnergyPlus, the availability of CRBM’s
benchmark building stock, and the proposed generation of
taxonomy of load variability in this article present a com-
pelling case for large-scale data set generation of synthetic
yet accurate representations of building energy profiles for
benchmark buildings that can be used for a variety of applica-
tions, including hosting capacity studies. This article provides
a framework for generating such data sets by combining the
low-frequency information in modeled load profiles from
EnergyPlus with high-frequency variability extracted from
measured data to create synthetic load profiles.

Although several approaches are possible to isolate the
high-frequency variability in measured data, this article
utilizes discrete wavelet transform (DWT)—an established
technique most commonly used in load profile analysis and
other applications to remove high-frequency fluctuations, but
used here to isolate, analyze, and reintegrate this informa-
tion. The extracted load variability profiles are then inte-
grated with modeled building load profiles, generated using
EnergyPlus, to develop detailed and scalable synthetic load
profiles at varying temporal resolutions for the built envi-
ronment for use by the scientific community for distribution
system analysis. Description for the generation of 750 syn-
thetic building load profiles at a 15-minute time resolution
is presented to demonstrate the application of the proposed
framework.

The major contribution and novelty of this work and the
proposed framework is to generate synthetic load profiles
with realistic variability resembling actual measured load
profiles. This is an improvement to existing modeled load
profiles that contain a limited amount of variability. While
other literature work focuses on decomposition of the time
series signal to remove variability (noise), our proposed work
focuses on this variability and uses it to generate realistic
models from modeled load profiles. The proposed frame-
work is developed via the application of the following novel
features:

1. Selection of DWT decomposition over other decom-
position techniques such as empirical mode decom-
position, discrete Fourier transform, and variational
mode decomposition VMD, in part because DWT
defines variability based on fixed frequencies (levels of
decomposition).

2. Application of 34 different DWT functions with vary-
ing decomposition levels. These parameters provide
different amounts of variability from the same under-
lying measured load profile data set, allowing for the
generation of a taxonomy of load variability.

3. Normalization and scaling of the extracted variability
to generate synthetic load profile data sets with realistic
high-frequency behavior.

The paper is organized as follows: Section 2 discusses
the current state of load variability characteristic extraction
and the principle operation of DWT. Section 3 provides a
framework for the proposed approach and description of the
framework components. Section 4 provides detailed informa-
tion on the application of the framework to generate synthetic
yet realistic building load profiles, and describes the imple-
mentation of the framework to generate 750 synthetic load
profiles. Section 5 provides a summary and conclusions, and
Section 6 provides future work discussion.

II. LOAD VARIABILITY CHARACTERISTICS AND FEATURE
EXTRACTION USING WAVELETS
Wavelet analysis has been used for feature extraction in mul-
tiple time series research domains, including power systems,
image compression, pattern recognition, voice coding, signal
processing, and hydrological time series data, among other
fields [13]. It provides localized details in time and frequency
and can detect changes and provide tools to extract these
features. During the decomposition process of a given time
series signal, wavelet functions provide an approximation
signal and a detailed signal. These signals are then utilized
depending on the objectives of the research analysis. The fol-
lowing subsections provide a synopsis of wavelet application
in various domains and the principle operation of the DWT.

A. APPLICATIONS OF WAVELET TRANSFORM IN TIME
SERIES DATA DOMAINS
In the hydrological field, wavelets are used extensively for
prediction and forecasting. In [13], the authors propose DWT
to reduce the dimension of hydrological time series data
and then apply a clustering technique for a more efficient
approach. Specifically, they decompose the daily precipi-
tation of a yearly data sequence to use the approximation
signal and discard the detail signal because the detail signal
is considered the noise in the sequence. Clustering on the
approximation signal is then carried out for a yearly precip-
itation series data from 1963–2001 to generate three clus-
ters. The authors in [14] used the combination of a wavelet
transform function and neural network to develop a multi-
model combination for rainfall-runoff modeling. Specifically,
a db8 wavelet function with nine levels is used to decompose
the input data. By using nine levels, the eighth and ninth
details provide the seasonal variation on an annual basis.

In [15], multiple types of wavelet families and subclasses
are investigated, similar to the approach applied in this article,
for hydrologic forecasting. The authors discuss the chal-
lenges in selecting the right wavelet to the application being
addressed. Two main properties of wavelets are discussed,
the region of support and the number of vanishing moments.
The region of support indicates whether a wavelet is com-
pact supported or supported at a longer span. Longer span
will result in a higher averaging. The number of vanishing
moments refers to the wavelet ability to represent the signal’s
polynomial structure that the wavelet is trying to decom-
pose. Six different wavelet functions are used in the study:
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Daubechies db1 (Haar), db2, db3, db3, Sym4, and B-spline.
Analysis conducted on synthetic time series shows how a
wavelet with a reasonable support and good time-frequency
localization property is able to capture the underlying trend
and short time variability in the time series signal. In [16],
a total of 32 wavelet functions from 6 wavelet families are
applied as part of a methodology to predict sewage sludge
parameters from a given sewage sludge data set. With respect
to determining the decomposition level (L), the authors indi-
cate that the number of data points (N) in the time series signal
determines the maximum decomposition level based on the
following equation: L = int(Log(N)).

In the field of load forecasting, wavelet transform func-
tions have been used for short-term load forecast predication
using dynamic features of the load characteristics. In [17],
the authors propose a combination of Daubechies db4 with
2 decomposition levels and a committee of 13 recurrent neu-
ral networks to forecast 1 hour ahead, 1 day ahead, and 1week
ahead load forecasting. Various subclasses of the Daubechies
db family, namely db2, db3, db4 and db5 at levels two and
three, are investigated. Furthermore, the author of [17] indi-
cated that the weather does not have any impact on the details
of the db4 level two wavelet. The weather data is used with
the approximation signal that represent the smoothed version
of the load series. In [16], the authors use multiresolution
analysis (MRA) to extract load characteristics and use for
precise forecasting and provide tools for short-term load
forecasting. The forecasting analysis is based on predicting
the load’s future behavior by independently forecasting the
subseries of the load that is generated using wavelets.

In [18], the authors address the limitations of the time
domain analysis and traditional load profile characteristics
using typical load profiles with the proliferation of advanced
metering infrastructure (AMI) and their different time domain
profiles. Two spectral analysis techniques are thus intro-
duced to address the limitation of the time domain analysis,
including discrete Fourier transform and DWT. The authors
compare the performance of each technique focusing on load
characterization and low-order approximation; this shows the
superior performance of the DWT when considering data
with granular details. With respect to DWT, a Haar mother
wavelet with three decomposition levels is selected because
it articulates the on-off operation of typical appliances in a
residential setting. For the smart meter data, 30-minute time
resolution for 1 year for 6,369 customers is used in the study.

In [19], wavelet decomposition is used for feature extrac-
tion of load profile data of customers in order to identify
nontechnical losses, specifically to identify fraudulent and
nonfraudulent customers. The method is used to identify
abrupt changes in the customer’s load profiles. The time
resolution of the data is the daily power consumption data
collected between 2014 and 2016 for a total of 881 days
for 2,271 customers. The accumulated data set is prepro-
cessed to remove any outliers using the smoothing splines
method. Then the change in the daily power consumption is
computed by taking the difference between two successive

days. A three-level maximal overlap discrete wavelet-packet
transform is used to extract the features.

The authors in [20] propose a two-dimensional DWT to
model customer load profiles. They discuss using wavelet to
compress large amount of AMI data. The authors propose
two wavelet-based load models, a multiresolution wavelet
load model for each customer that uses DWT to transform
the original load profile to the wavelet domain, and a classi-
fied wavelet load model where a single load model is used
for customers with similar load behavior. The authors use
1-hour time series AMI data for 323 customers (residential,
commercial, and other type customers) on a feeder of a
distribution system. The measurements were recorded from
May 27, 2013, to December 29, 2013 (31-week time window,
5,208 hourly kWh measurements for each customer). For the
wavelet load model, the approximation signal from the last
level DWT is used. The performance of the signal is then
compared with the original AMI data using the following
three parameters: the synthesized load profile’s total energy
content, the distribution of the absolute value of the hourly
error, and the hourly percentage error. To classify the cus-
tomers, a proposed two-dimensional DWT is used to generate
a classified load model. The authors then perform a time
series power flow analysis using the three models (original
AMI data, the load profile generated from the approximation
signal, and the classified wavelet model) as input into the
distribution system. Their results show that the classified
load model provides better results than the wavelet load
model [20].

In the field of coherent structures, the authors in [21]
use DWT and empirical mode decomposition for the extrac-
tion of coherent structures from a chaotic time series data.
The authors compared the performance of the empirical
mode decomposition method against DWT. A Daubechies
db4 wavelet function is used in the analysis for three sepa-
rate experiments. Furthermore, various decomposition levels
from level 1 to level 12 are investigated, and the log-variance
of thewavelet coefficient vs. levels are used to identify certain
features. However, the authors identified that the selection of
an appropriate DWT plays a critical role in the results. In [22],
a Haar DWT is used for time series data dimension reduction
and in content-based search and retrieval.

In the field of electricity price forecasting, [23] uses
wavelet transforms coupled with machine learning for elec-
tricity price load forecasting. A Daubechies db5 wavelet
function with combinations of decomposition levels 1 to 5 are
used to provide details of the electricity price series signal
and make it smoother. The authors considered this db wavelet
function because it provides a compromise between the elec-
tricity price signal wavelength and smoothness. Similar work
is carried out in [24] and [25]. Specifically, in [24], constitu-
tive series generated by a Daubechies db5 with three levels is
used with an ARIMA model for a day-ahead electricity price
prediction. In [25], similar wavelet functions are used with an
ARIMA and a neural networkmodel for day-ahead electricity
price and demand forecasting.
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In the field of load characterization and load vari-
ability, the authors in [26] developed load variability mod-
els for residential loads using DWT. Specifically, 12-level
Daubechies db2 is used to decompose a high-resolution
time series load (1 second time resolution) into different
frequencies to extract periodicity and bias components. The
authors indicated that load profile characterization of less
than 1 minute is not required because this data is well char-
acterized by noise characteristics. In their study, the detail
coefficients between the 7th and 11th levels are used to
capture the 1-minute to 30-minute load variability changes.

In [27], the authors present a DTW method to gener-
ate time series load profiles for residential loads at vary-
ing time resolutions (1 second to 30 minutes) from actual
utility transformer databases. The transformer is connected
to 10–12 residential homes. This database contains 3 years’
worth of data at 1-second time resolution intervals. The actual
and modeled data are tested on two feeders to evaluate four
critical metrics for the distribution system, namely voltage
ramp distribution, minimum voltage, maximum voltage, and
the number of regulator tap changes. The test result on the
IEEE-123 feeder shows the modeled data accurately matched
the real data in determining the number of voltage regulator
operations in the time resolution of 5 minutes to 30 minutes.
However, in the 1-second and 1-minute time resolution there
was approximately a 27% and 23% error rate, respectively.
This highlights the need of actual load profiles in the 1-second
timescale to accurately model the distribution system to
capture key component operations such as the number of
regulator tap changes. The test result on an actual feeder in
California with 619 load nodes and three regulators show
similar performance in the 5-minute to 30-minute timescales.
However, at 1-second and 1-minute time resolution, the error
rate is approximately 5% and 10%, respectively. Test results
for both feeders considering the other metrics show clear
success in the modeled data to capture the influence.

B. WAVELET FUNCTIONS AND THEIR OPERATION
In this work, DWT functions are proposed to decompose time
series data into a series of detail and approximation signals in
the time and frequency domain to extract features at different
timescales. Localizing key features of the signal at different
timescales is a property of the applied mother wavelet and
on the number of decomposition levels each selected mother
wavelet allows.

The proposed approach uses the extracted detail signals to
generate synthetic load profiles with more realistic variabil-
ity. These synthetic profiles become critical to applications
that are sensitive to high-resolution power variation. One
application, for example, is the optimization formulation for
unit commitment and economic dispatch (UC/ED). Because
unit commitment and economic dispatch are optimization
problems to minimize the cost associated with grid and
generation, these load profiles containing more variability
reflecting real systemswill providemore accuracy addressing
the optimization formulation in UC/ED [28]. Furthermore,

when the variability that is extracted from the measured data
is used to generate the synthetic load profiles, any gross errors
in the measured data will carry over and affect the profiles.
To address this shortcoming, robust estimation methods can
be used to process the measured data before the application
of the proposed method in this work. The work described
in [29] and [30] proposed a novel method that provides
improvements over other similar methods and can be applied
to the measured data to remove any error data.

In this work, multiresolution analysis (MRA-DWT) is
used, in which the scaling and position of the mother wavelet
signal is based on the power of 2. The approximation signal
output of the analysis is a low-frequency signal that captures
the base load and holds general trends of the signal. The
details signal output is a high-frequency signal that captures
abrupt changes in the load profile at different timescales.
Fig. 2 shows a three-level DWT. To generate the first level of
information, the original time series signal is passed through a
low-pass filter to generate the first level approximation signal
(A1), and passed through a high-pass filter to generate the
first level of details (D1). The approximation signal is then
passed through a low-pass and a high-pass filter to generate
A2 and D2, and so forth.

FIGURE 2. A three-level discrete wavelet transform.

To reconstruct the original time series signal, all the details
and the last approximation level are used, as shown in equa-
tion (1).

Signal = D1+ D2+ D3+ A3 (1)

The general form of this equation is shown in equation (2),

Signal =
∑

Dj + AJ (2)

where Dj and Aj are the details and approximation at the
j level, and J is the total levels of the decomposition. The
principle of operation consisting of a mother wavelet function
ψ(t) is described mathematically as follows:

f (t) =
∑
ij

ai,jψi,j(t)(3) (3)

where ψi,j(t) stands for wavelet expansion functions.
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The coefficients of DWT are determined as follows:

ai,j =
∫
+∞

−∞

f (x) ψi,j(x) (4)

where ψi,j(x) can gain its parameters through:

ψi,j(x) = 2
−i/2ψ(2−jx − j (5)

The DWT coefficients are decomposed into two groups
(low-pass and high-pass filter coefficients), corresponding to
the details and approximation signals. They are determined
in the following equations.

φ(x) =
√
2

∑
k

h(k)φ(2x− k) (6)

ψ(x) =
√
2

∑
k

g(k)φ(2x − k) (7)

where h in (6) and g in (7) can be considered to be filters
of the wavelet of the low-pass filter and high-pass filter,
respectively.

ADWTdecomposition process corresponding to Fig. 2 can
be mathematically shown as follows:

f0(x) =
∑
k

a0,kφ0,k (k) =
∑
k

[aJ+1,kφJ+1,k (x)

+

J∑
j=0

dj+1,kψj+1,k (x)] (8)

where a0,k , aj+1,k , dj+1,k are the coefficients at scale j+1 and
can be determined as follows:

aj+1,n =
∑
k

aj,kh(k − 2n) (9)

dj+1,n =
∑
k

aj,kg(k − 2n) (10)

where aj+1,nis the approximation coefficient, and dj+1,n is the
detailed coefficient.

Fig. 3 shows the application of a three level MRA-DWT
function on a load profile time series signal. The time series
signal is measured at a 15-minute time resolution for a pri-
mary school building type for one day, February 7, 2018. The
following figure highlights the different detail and approxi-
mation signals at each level.

III. FRAMEWORK DEVELOPMENT AND
EXPERIMENTAL SETUP
Fig. 4 shows a block diagram of the proposed framework. The
following subsections and further discussion in Section 4 will
provide a description of the process and working principles of
the framework.

A. SELECTION OF DWT FUNCTIONS
DWT operates by decomposing a time series signal (a load
profile) into a detail signal that contains the high-frequency
components of the signal (load variability signal) and an
approximation signal that contains the low-frequency content

FIGURE 3. Application of a three-level decomposition function on a time
series load profile using a Daubechies-4 wavelet.

FIGURE 4. A block diagram of the proposed framework.

of the signal (base load signal in some applications). For
the proposed framework in this research project, the focus
is on capturing different detail signals, because they con-
tain the sudden changes that take place when the building
and/or the occupant(s) interact with the electrical system to
start/stop/alter the energy consumption behavior.

The variability signal that is extracted is dependent not only
on the underlying data, but on the parameters chosen for the
DWT process, including level of decomposition and choice
of wavelet function. There are many DWT families with sub-
classes for selection along with customwavelet functions that
can be designed and developed to address a given research
task.

A total of 34 wavelet families with subclasses, available
in MATLAB software, are selected for feature extraction
to develop a taxonomy of load variabilities. The type and
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number of wavelet functions applied to each measured build-
ing load profile are: (11) Daubechies: db 1-11; (5) Coiflets:
coif 1-5; (1) Discrete Meyer; (6) Fejer-Korovkin filters: fk
4,6,8,14,18,22 and (11) Symlets: sym 1-11. Each of these
wavelet functions has different configurations, parameters,
scaling, and levels, and they operate differently.

Within each DWT function, there are multiple levels of
decomposition that can be used. The level of decomposition
depends on the application and number of data points avail-
able in the measured time series load profile data set. Each
decomposition level extracts a fixed frequency range of vari-
ability. For example, for a measured data set with a 15-minute
time resolution, the first level contains the 15- to 30-minute
high-resolution variability, whereas the second level contains
the 15- to 60-minute variability. The highest level of decom-
position to apply in a given application is the time-resolution
abovewhich the extracted signal is considered part of the base
load profile. In practice, the decomposition level selection
will vary for different applications.

B. MEASURED BUILDING LOAD PROFILE DATA SET
A 15-minute time resolution measured building load profile
data set with five primary/secondary schools (commercial
buildings) and five residential buildings is used to describe
the framework for extracting load variability features using
MRA-DWT. Fig. 5 shows the total daily kWh load profile
usage for each of the five commercial buildings for the
entire year. The data is measured starting at 12:00 AM,
January 1, 2018, to 11:45 PM on December 31, 2018, for a
total of 35,040 data points for each building. The commercial
buildings are located in a Midwest state in the United States.

FIGURE 5. Total daily electricity usage for each of the five measured
commercial buildings for an entire year.

Fig. 6 shows a typical load profile for one day for each
building on September 12, 2018. Although all the mea-
sured building types come from one building sector (pri-
mary/secondary school), diversity and variability in the load
exists, as shown in Fig. 6 and in Fig. 7 for July 9, 2018.

FIGURE 6. Measured 15-minute time series load profiles for each
building on September 12, 2018.

FIGURE 7. Measured 15-minute time series load profile for each building
on July 9, 2018.

FIGURE 8. Total daily electricity usage for each of the five residential
buildings for an entire year.

Fig. 8 shows the total daily kWh load profile usage for the
five residential buildings (homes). The data is measured from
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FIGURE 9. Measured 15-minute time series load profile for each
residential building on July 9, 2012.

FIGURE 10. Measured 15-minute time series load profile for each
residential building on December 01, 2012.

12:00 AM on April 13, 2012, to 11:45 PM on April 12, 2013,
for a total of 35,040 data points for each home. Fig. 9 shows
a typical load profile for one day for each home on July 9,
2012. Although all the measured building types come from
one geographical location (U.S. Northwest), diversity and
variability in the load exists as shown in this figure and in
Fig. 10.

C. MEASURED LOAD PROFILE DECOMPOSITION AND
FEATURE EXTRACTION
The process to extract various levels of load variabilities from
the measured data from both building types starts with data
preprocessing to clean the data by isolating missing and null
data, and using interpolation to calculate and replace it. For
contiguous missing data, scaled data from another building
(the most similar) is used to substitute, ensuring the start
and end of the substitutions took place at low-load nighttime
points to avoid large discontinuities. After preprocessing, all
34 DWT functions listed in the previous section are applied

to each building’s load profile for the entire year. For each
DWT function, three decomposition levels (level 1, 2 and 3)
are applied. Equations (11)–(16) show the details and approx-
imation when applied to the measured signal Pmeas, where
Pmeas = [P0,P1,P2. . .PN−1] where N = sample size =
35,040 (see Algorithm 1 for more info) and i is the index for
ith mother wavelet function among the 34 DWT functions.

D1i(n) =
∑
k

Pmeas (2n-k) gi (k) (11)

A1i(n) =
∑
k

Pmeas (2n-k) hi (k) (12)

D2i(n) =
∑
k

A1i (2n-k) gi (k) (13)

A2i(n) =
∑
k

A1i (2n-k) hi (k) (14)

D3i(n) =
∑
k

A2i (2n-k) gi (k) (15)

A3i(n) =
∑
k

A2i (2n-k) hi (k) (16)

The type and number of wavelet functions applied to each
measured building load profile are: (11) Daubechies: db 1-11;
(5) Coiflets: coif 1-5; (1) Discrete Meyer; (6) Fejer-Korovkin
filters: fk 4,6,8,14,18,22; and (11) Symlets: sym 1-11. Each
of these wavelet functions produces different details and
approximations.

This will generate a taxonomy of 102 unique load vari-
ability profiles (34 unique load variability signals at level 1,
34 unique load variability signals at level 2, and 34 unique
load variability signals at level 3) for each building, for
each day of the year. These load variability profiles are the
detail components of the decomposed load profile signals.
The level 2 and level 3 details are the total details, meaning
at level 3 the load variability profile consists of the sum
of the level 1, 2, and 3 details, or equivalently, the differ-
ence between the measured load profile signal and the level
3 approximation signal. Once the load variability profiles are
extracted, a normalization process is applied by finding the
maximum daily load of the level 3 approximation for each
day, then dividing the load variability profile by that amount,
yielding a pseudo-normalized variability profile represented
as a percentage of the peak daily ‘‘base’’ load. The process
is summarized in Algorithm 1. The following subsections
provide examples of feature extraction from the 10 measured
buildings.

The computational efficiency of this algorithm is O(N),
where N is the number of data points in the measured load
profile, meaning the cost scales linearly with N. This cost is
multiplied by the number of total levels and wavelet functions
to be considered.

1) EXAMPLES OF VARIABILITY FEATURES EXTRACTED
FROM THE FIVE COMMERCIAL BUILDINGS
As stated earlier, 34 wavelet functions are applied to each of
the five buildings to extract 102 load variability profiles each
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Algorithm 1 Generate daily load variability profile from
measured data
1: Given a measured load profile P as a function of time,
measured at T timesteps, let Pt denote the load at time t:

P = [P1,P2, . . .PT ]
2:Decompose the signal using waveletw (w = db1-11, coif1-
5, etc.) at level L (L = 1,2,3. . . )
3: Let D and A denote the time-domain detail and approxi-
mation components of P, such that for any level L, wavelet w,
and time t

Pt =
L∑
l=1

Dl,w,t + AL,w,t

4: Define variability V at level L as the sum of details up to
level L

VL,w,t =
L∑
l=1

Dl,w,t

5: At each timestep, calculate the peak daily value of the
approximation signal A, denoted as dailymax(AL,w,t )
6: Normalize the variability by the peak daily value of the
base load A

ṼL,w,t =
VL,w,t

dailymax(AL,w,t )
The final normalized variability is a function of time, and is
also dependent on wavelet choice w and level of decomposi-
tion L.
7: Repeat the above steps for all wavelets w and levels L of
interest.

FIGURE 11. Measured commercial building load profile for one week,
Feb 5–12, 2018.

day. For example, consider the load profile for one measured
building, at a 15-minute time resolution, during the week of
February 5, 2018, shown in Fig. 11. Fig. 12 shows the original
load profile, the approximation, and the total details signal as
a result of using a Daubechies-4 wavelet function with level
3 decomposition.

The following examples illustrate single-day analysis with
the application of different wavelet functions for clarity and
ease of interpretation. Fig. 13 shows a measured load profile
from another measured building on February 8, 2018. The
highlighted areas are the variability features to be extracted

FIGURE 12. Measured profile, level 3 Daubechies-4 approximation, and
cumulative level 1–3 details for a measured building on Feb 5–12, 2018.

FIGURE 13. Measured commercial building load profile: February 8, 2018,
sample day.

as they represent realistic consumption behavior. Fig. 14,
Fig. 15, and Fig. 16 show extracted variabilities using various
wavelet types and levels of decomposition from this load
profile.

2) EXAMPLES OF VARIABILITY FEATURES EXTRACTED
FROM THE FIVE RESIDENTIAL BUILDINGS
Similar approaches are applied to extract load variability from
the five measured residential buildings. Fig. 17 shows the
load profile for a residential building on November 17, 2012.

Fig. 18, Fig. 19, and Fig. 20 show extracted variabilities
using various wavelet types and levels of decomposition.

D. TAXONOMY OF LOAD VARIABILITIES AND
VARIABILITY INDEX
A taxonomy of 37,230 daily load variability profiles are
extracted from each of the five commercial buildings, yield-
ing a total of 186,150 daily load variability profiles with
510 unique variability profiles for each day. The selection
of a certain load variability profile to apply to a modeled
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FIGURE 14. Various Daubechies level 1 details extracted from load profile
for February 8, 2018.

FIGURE 15. Comparing across detail levels for a single wavelet; details
extracted from measured load profile for February 8, 2018, using db4.

FIGURE 16. Various wavelet families at level 3; details extracted from
measured load profile for February 8, 2018.

building load profile depends on the application and objec-
tives. Possible approaches to consider include day-by-day
selection (where machine learning techniques via clustering

FIGURE 17. Measured residential building load profile: November 17,
2012, sample day.

FIGURE 18. Various Daubechies level 1 details extracted from measured
load profile for November 17, 2012.

FIGURE 19. Wavelet Db4 details at various levels extracted from
measured load profile for November 17, 2012.

and classification are used to select one of the 510 daily load
profiles based on a set criterion) and year-by-year selection
(where a measured building load profile is matched to a
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FIGURE 20. Comparing level 3 details for different wavelet families
extracted from measured load profile for November 17, 2012.

FIGURE 21. Standard deviations of various wavelet functions and levels
extracted from a measured commercial building load profile for one day:
February 8, 2018.

modeled building load profile, in this case one of the 102 pro-
files are then selected for each day). This year-by-year
approach is used in Section 4.

Furthermore, investigating the characteristics of the load
variability signal itself reveals several findings to help in
the selection process. All 34 wavelets functions with dif-
ferent levels are applied on a given one-day load profile
to extract 102 load variability signals, and the standard
deviations of each signal are shown in Fig. 21. The stan-
dard deviation of a variability signal is effectively a simple
measurement of how much variability the signal contains.
It is clear from the figure that for a given wavelet func-
tion, higher level decompositions yield a greater amount of
variability.

Additionally, at a fixed level of decomposition, the choice
of wavelet function can also greatly affect the amount of
variability extracted. Fig. 22 shows the standard deviations
of each wavelet function at level 1, sorted by increasing
variability. Which wavelets yield more variability is different

FIGURE 22. Increasing amounts of variability extracted with various
wavelet functions at level 1, extracted from a measured commercial
building load profile for one day: February 8, 2018.

for each level of decomposition. These figures can aid in
selecting one or more of the 510 or 102 profiles, depending on
whether a day-by-day or year-by-year approach is used and
on the level of desirable variability.

Determining how much of a signal should be considered
variability, and how much is the base load, is an important
decision that will differ with every profile and application.
A multiwavelet, multilevel analysis such as this, however,
can provide effective bounds for the variability signal as well
as an effective index of variability from which to choose a
wavelet function and level that provides a given magnitude
of realistic variability. Of note from the previous figures,
and highly consistent when examining any time period of
the measured data available, is that the Daubechies-db1 level
3 decomposition yields the highest amount of variability.
As this is one of the coarsest wavelet approximations, this can
be considered a gross overestimation of the variability, thus
providing a safe upper bound of variability for any application
of this data.

IV. M SYNTHETIC BUILDING LOAD PROFILE
GENERATION
EnergyPlus is used to generate modeled building load pro-
files for a primary/secondary building type at 15-minute time
resolution. Synthetic building load profiles at the same time
resolution are generated by applying a day-by-day or year-by-
year approach, as discussed in the previous section. For the
discussion in this section, year-by-year is selected to match a
modeled building load profile type to one of the fivemeasured
building load profiles. Fig. 23 shows a graphical description
of the general process. As discussed previously, with the
application of the 34 wavelet decompositions at three levels
to one measured school building, a total of 102 synthetic,
unique, and realistic building load variability profiles are
generated, then pseudo-normalized. The selection of any of
these 102 synthetic load profiles depends on the application
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FIGURE 23. Graphical representation of the synthetic building load
profile generation process.

FIGURE 24. Sample of a modeled building load profile and five measured
load profiles.

purpose and level of variability desired. Fig. 24 shows the
load profile for the modeled building on September 13, 2018,
along with the load profile for the five measured buildings on
the same day.

The general process to generate a synthetic load profile for
one modeled school building starts by finding the maximum
daily load for each day, then choosing the pseudo-normalized
variability profile to be added (D1, D2, or D3) to the
modeled data. After this selection, for each day, multiply
the normalized daily variability profile by the maximum
daily load of the modeled data and add this scaled vari-
ability profile to the modeled profile to obtain the final
synthetic building load profile. The process is summarized
in Algorithm 2.

Fig. 25 shows the modeled load profile building with a
sample of five different variability profiles for the application
of the above process to select one profile and add it to generate
the synthetic profile.

Algorithm 2 Generate daily synthetic load profiles
1: Given a modeled load profile M as a function of time,
measured at T timesteps, letMt denote the load at time t:

M = [M1,M2, . . .MT ]
2: At each timestep, calculate the peak daily value of the
modeled load profile, denoted as dailymax(Mt )
3: From Algorithm 1, select the normalized variability ṼL,w,t
using a chosen wavelet w and level of decomposition L.
4: At each timestep, scale the normalized variability by the
peak daily value of the modeled loadMt

VL,w,t = ṼL,w,t · dailymax(Mt )
5: At each timestep, add the scaled variability to the modeled
load profile to generate the synthetic load profile SL,w,t

SL,w,t = VL,w,t +Mt
The final synthetic load profile is a function of time, and is
also dependent on wavelet choice w and level of decomposi-
tion L.

FIGURE 25. Modeled building load profile with options to add one of the
five variability profiles shown.

Although these figures show the process applied to whole-
building data, it could also be applied to an end-use subset
(e.g., energy used by heating, cooling, or lighting) of the
whole-building data, with the resulting synthetic end-use
profiles then aggregated to a synthetic whole-building load
profile.

A. EXAMPLES OF MODELED LOAD PROFILES WITH
ADDED VARIABILITY
To illustrate the application of load variabilities to a modeled
building load profile, Fig. 26 shows the modeled building
load profile of another primary school on February 12, 2018.
This figure also shows a measured building primary school
profile on the same day, scaled to match peak loads. As dis-
cussed in Section 3.3, different amounts of variability can
be extracted from the measured profile, depending on the
choice of wavelet and decomposition level. Fig. 27 shows
the synthetic profile generated when a relatively low amount
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FIGURE 26. Modeled and (scaled) measured profiles for a primary school
on February 12, 2012.

FIGURE 27. Modeled and synthetic profiles using a Daubechies-4 wavelet
at level 1 (low variability).

of variability is extracted, using the Daubechies db4 wavelet
at level 1. Fig. 28 shows the synthetic profile with a
larger amount of variability, using the Coiflet-1 wavelet
at level 3.

When year-by-year match is used, in some cases, the
‘‘base’’ load profile of measured data may not match the
modeled profile well, presenting interesting findings and
additional steps and challenges to consider. Fig. 29 shows
a different modeled profile for a primary school on May 7,
2012, as well as measured data from a different primary
school in 2018. Here the on and off times of the modeled
andmeasured buildings do not match well, resulting in under-
and overestimation of the variability at various times of the
day. Fig. 30 shows the synthesized profile using a low esti-
mation of variability, the Fejér-Korovkin-8 wavelet at level 1.
This synthetic profile contains more variability than the case
in Fig. 27, because the measured data used exhibits more
variability. Finally, Fig. 31 shows the synthetic profile with
the highest amount of variability considered in this analysis,

FIGURE 28. Modeled and synthetic profiles using a Coiflet-1 wavelet at
level 3 (higher variability).

FIGURE 29. Modeled and (scaled) measured profiles for a primary school
on May 7, 2012.

using the Daubechies-1 wavelet at level 3. This is effectively
adding a ‘‘worst-case’’ estimate of variability to the modeled
data.

Fig. 32 shows the distribution of yearly standard deviations
for the 500 variability profiles applied to the commercial data
sets at 3 levels, as well as a ‘‘worst-case’’ scenario where
db1 level 3 is applied to each building. Fig. 33 shows this
same data for the residential set.

B. APPLICATION OF LOAD VARIABILITIES TO THE
750 MODELED BUILDING DATA SET
A total of 750 modeled buildings (500 commercial and 250
residential buildings) are generated using EnergyPlus to sim-
ulate a segment of U.S. building stock. The buildings are
composed of the DOE’s reference building types, but with
modified hours of operation and physical building character-
istics. A process is developed to apply the taxonomy of load
variability profiles extracted from the 10 measured building
data sets to these 750 buildings to demonstrate the application
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FIGURE 30. Modeled and synthetic profiles using a
Fejér-Korovkin-8 wavelet at level 1 (low variability).

FIGURE 31. Modeled and synthetic profiles using a Daubechies-1 wavelet
at level 3 (highest variability).

FIGURE 32. Standard deviation of 500 scaled commercial variability
profiles at each level of decomposition, using various wavelet functions.

of load variability and generation of synthetic load profiles
for a large data set. The year-by-year approach is applied and
repeated for the for the 750 modeled buildings, using all 34
wavelet functions at 3 different levels.

FIGURE 33. Standard deviation of 250 scaled residential variability
profiles at each level of decomposition, using various wavelet functions.

V. SUMMARY AND CONCLUSION
This article presents a framework to extract load variabil-
ity profiles from measured building load profiles. Feature
extraction is conducted using DWT functions. The extracted
load variabilities are then applied to modeled building load
profiles, generated using EnergyPlus, to generate synthetic
building load profiles. These synthesized load profiles can
then be used in distribution system analysis or any other
application that requires a large set of diverse load profiles.
This research focused on extracting load variability from five
measured commercial buildings and five residential buildings
at a 15-minute time resolution. The extracted load variabil-
ities are then applied to 750 modeled load profile building
models to demonstrate the application of the framework for a
large-scale data set.

VI. FUTURE WORK
Although the variability in the synthetic load profiles devel-
oped using the framework andmethodology described appear
realistic to human eyes, this realism has not yet been quanti-
fied. Quantification would require a larger set of real data and
would need to include buildings other than schools, which
the authors currently do not have access to. As part of this
quantification, it would be possible to evaluate and com-
pare the different DWT functions and decomposition levels
to determine which combinations create the most realistic
synthetic profiles. Additionally, because the realism of the
synthetic load profiles depends on both the measured vari-
ability and the accuracy of the modeled building load profile,
such an evaluation would either need to investigate the pieces
independently or determine a way to attribute results to either
DWT selection or the building energy model.

This work is part of a large project that is taking place at
NREL to generate end-use load profiles [11]. As larger mea-
sured data sets become available, the proposed framework
will be refined and applied to additional modeled data sets
generated as part of ResStock and ComStock. The generated
synthetic load profiles will be available for free online in
a to-be-determined location at the conclusion of the project
in 2021.
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