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Abstract: Highly accurate and precise heave decay tests on a sphere with a diameter of 300 mm
were completed in a meticulously designed test setup in the wave basin in the Ocean and Coastal
Engineering Laboratory at Aalborg University, Denmark. The tests were dedicated to providing
a rigorous benchmark dataset for numerical model validation. The sphere was ballasted to half
submergence, thereby floating with the waterline at the equator when at rest in calm water. Heave
decay tests were conducted, wherein the sphere was held stationary and dropped from three drop
heights: a small drop height, which can be considered a linear case, a moderately nonlinear case, and
a highly nonlinear case with a drop height from a position where the whole sphere was initially above
the water. The precision of the heave decay time series was calculated from random and systematic
standard uncertainties. At a 95% confidence level, uncertainties were found to be very low—on
average only about 0.3% of the respective drop heights. Physical parameters of the test setup and
associated uncertainties were quantified. A test case was formulated that closely represents the phys-
ical tests, enabling the reader to do his/her own numerical tests. The paper includes a comparison of
the physical test results to the results from several independent numerical models based on linear
potential flow, fully nonlinear potential flow, and the Reynolds-averaged Navier–Stokes (RANS)
equations. A high correlation between physical and numerical test results is shown. The physical test
results are very suitable for numerical model validation and are public as a benchmark dataset.

Keywords: physical tests; sphere; benchmark dataset; heave decay; wave energy converters; linear
potential flow; fully nonlinear potential flow; CFD; RANS; fluid–structure interaction
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1. Introduction

Numerical models with complex fluid–structure interactions are often developed to
simulate motions of floating bodies in the ocean, which can be applied to assess the perfor-
mances of wave energy devices; see, e.g., [1,2]. Despite the complexity of such models, the
discretization and assumptions needed to formulate the numerical model mathematically
inevitably introduce errors, for many of which the influences are unknown. Engineers may
struggle to identify whether linear wave theory can be applied with sufficient accuracy or
more advanced computational fluid dynamics (CFD) methods should be used. Physical
tests of high accuracy and reproducibility are paramount for validation and calibration
purposes when using such advanced methods; see, e.g., [3,4].

The International Energy Agency Technology Collaboration Programme for Ocean En-
ergy Systems (OES) has initiated the OES Wave Energy Converters Modelling Verification
and Validation working group (formerly OES Task 10). Here, multiple research institutions
and R&D companies from 12 countries collaborate with the focus on the development of
numerical models for simulating wave energy converters (WECs) [5]. A floating sphere was
chosen as a practical representation of a simple wave energy convertor buoy, and numerical
modelling of the decay of a sphere was completed as an initial test case [6–8]. The resulting
simulations from the different members showed widespread simulation results, which
highlighted the need for knowing the true, real-world results for the considered test case
together with the associated measurement uncertainties. In order to validate and calibrate
numerical models, a high-quality benchmark dataset was needed. Such datasets were
lacking, so during a Danish-granted EUDP project [9] a sphere model was built, and tests
were performed in the wave basin in the Ocean and Coastal Engineering Laboratory at
Aalborg University in Denmark. The test design, namely, the release mechanism and the
construction of the sphere, was optimized through several stages to mitigate sources of
uncertainties. A 300 mm diameter aluminum sphere model with changeable ballasts—see
Figure 1—was chosen as the most practical and accurate representation of a sphere for
physical heave decay tests dedicated to producing a highly accurate benchmark dataset.
The benchmark dataset is publicly available in the Supplementary Materials of the present
paper; see Appendix A. The iterations in the design and construction process of the physical
test setup are described in [10], which is also included as Supplementary Materials in the
Descriptions folder. In [10], the tests are referred to as the Kramer Sphere Cases.
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Figure 1. The sphere model used in the heave decay tests.

A new test case was formulated to accurately represent the performed tests and allow
for numerical replications for model validation against the benchmark. Three different
drop heights were investigated. The aim of the present study was to estimate the precision
and accuracy of the physical decay tests using uncertainty analysis and comparisons to
state-of-the-art hydrodynamic numerical models for all three drop heights. Using this
approach, the applicability of the benchmark dataset to validation of numerical modelling
of the presented test case is accounted for. The presented uncertainty analysis is based
on the ASME Performance Test Code Test Uncertainty [11], which is in accordance with
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the methodologies and nomenclature of the ISO/IEC Guide 98-3 Guide to Expression of
Uncertainty in Measurement (GUM) [12], but contains a more technical treatment.

In Section 1.1, the test case is presented. All physical parameters are given to mimic
the setup of the conducted heave decay tests. The reader can set up his/her own numerical
model based on the information given herein, and thereafter apply the generated bench-
mark dataset for comparison/validation. Dedicated measurements of certain physical
parameters, such as air pressure and viscosity, are not included in the test case. These are
instead considered in the uncertainty analysis in Section 3.

The test case was given to participants of the OES working group, who indepen-
dently formulated numerical models to simulate the decay tests utilizing miscellaneous
modelling approaches. In the order of descending fidelity, these models included finite
volume method (FVM) 3D unsteady Reynolds-averaged Navier–Stokes (URANS) models,
boundary element method (BEM) fully nonlinear potential flow (FNPF) models, and BEM
linear potential flow (LPF) models. The utilized numerical modelling approaches are
presented in Section 1.2.

1.1. The Test Case

Consider an ideal sphere with a diameter D and a mass m. In a local Cartesian
coordinate system, the origin coincides with the geometrical center of the sphere and with
the z-axis vertical oriented upwards. The center of gravity is CoG. The local acceleration
due to gravity is g.

The sphere floats between an air and a water phase, when at rest (equilibrium). The
water phase has the density ρw, while the density of air is disregarded. A fixed global
Cartesian coordinate system is defined from the still water level; the xy-plane coincides
with the plane of the free water surface, and the z-axis is vertical oriented upwards towards
the air phase; see Figure 2. The sphere is half-submerged when at rest, and with the CoG
on the z-axis (underneath the center of buoyancy), the local and global coordinate system
axes will coincide when the sphere is at rest; see Figure 2. The seabed is horizontal with a
depth of d = 3D.
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Initial conditions of zero velocity and zero acceleration are applied in all test setups.
Under the assumption of a rigid body, the sphere has six degrees of freedom (DoF). Trans-
lations relative to the rest condition in the directions of the local x, y, and z-axes are defined
as surge x1, sway x2, and heave x3, respectively. Rotations relative to the rest condition
around the local x, y, and z-axes are defined as roll x4, pitch x5, and yaw x6, respectively.
Three initial test setups are investigated with displacements of the sphere in positive heave
given by the drop height H0 = {0.1D, 0.3D, 0.5D}; see Figure 3.
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The sphere is released, and around eight natural periods in heave should be captured
for comparison to the benchmark dataset. The physical parameters of the test case are
presented in Table 1. The utilized initial conditions match those of previous tests carried
out under the OES working group.

Table 1. Values of the test case physical parameters.

Parameter D m CoG g H0 ρw d

Unit mm kg mm m/s2 mm kg/m3 mm

Value 300 7.056 (0, 0, −34.8) 9.82 {30 90 150} 998.2 900

1.2. Numerical Modelling Blind Tests of the Test Case

Participants of the OES working group independently developed numerical models to
simulate the test case presented in Section 1.1 and to compare results against the benchmark.
Only the governing physical parameters of the test case, given in Table 1, were shared
with the participants, and the numerical modelling of the test case was thus carried out
in blind without any shared information on domain geometry, resolution, turbulence
modelling, etc. Various types of numerical models were developed by the participants.
The specifications of the numerical model developed by each participant are presented
in Appendix B. In general, three categories of numerical models were used: (i) FVM-
based Reynolds-averaged Navier–Stokes (RANS) models, (ii) BEM-based fully nonlinear
potential flow (FNPF) models, and (iii) BEM-based LPF models. These are introduced in
the following subsections.

An analytical solution of the Navier–Stokes (N–S) equations would yield an exact
model of the fluid flow of any Newtonian fluid, such as water. In their most general form,
the N–S equations are the formulation of conservation of mass, momentum, and energy into
a set of nonlinear partial differential equations. Currently, no analytical solutions to the N–S
equations exist, but several numerical solutions have been established, introducing various
simplifying assumptions and levels of inaccuracies. In general, decreasing the complexity
of the mathematical problem by simplifying assumptions will yield less accurate numerical
models, but increase the computational efficiency creating more feasible models. The
influences of the errors introduced by the numerical model are strongly case-specific, and
no generic model with a perfect balance of accuracy and efficiency is currently available.

1.3. RANS Models

Within high-fidelity CFD modelling of WECs, RANS models have become the model
of choice [13]. The RANS equations are based on Reynolds decomposition and ensemble-
averaging of the N–S equations. This reformulation of the N–S equations introduces a
term referred to as the Reynolds stress, which accounts for the contribution of turbulent
fluctuations to the fluid momentum. Turbulence structures are not resolved in RANS
models, and thus computational effort is significantly decreased relative to, e.g., direct
numerical simulations (DNS). Larger unsteady mean flow structures are captured from
the unsteady RANS (URANS) formulation (see, e.g., [14]), to the extent allowed by the
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temporal resolution. In the present paper, URANS models are developed from the open-
source framework of OpenFOAM (versions 5.0, 7, and v1912) [15] and the commercial
code StarCCM+ 13.06 [16]. The numerical models utilize the FVM to discretize the RANS
equations. The interface between the two fluid phases is tracked by a volume of fluid (VOF)
advection scheme; see, e.g., [17]. The models further assume incompressible, isothermal,
immiscible flows.

1.4. FNPF Models

In the FNPF category of CFD models, further assumptions for the second-order non-
linear N–S equations are made; i.e., the fluid domain is assumed inviscid and irrotational,
thereby introducing potential flow theory, which reduces the governing equations of the
fluid domain to Laplace’s equation [18]. The boundaries of the fluid domain evolve in
time, to be able to capture finite-amplitude waves and have a time-varying wetted body
surface. The boundary conditions of the fluid domain are fully nonlinear in the sense that
the velocity potential satisfies the nonlinear kinematic and dynamic boundary conditions
at the free surface. No-flow boundary conditions are satisfied at solid boundaries [19]. In
this study, the FNPF commercial code SHIPFLOW-Motions 6 [20] was applied. Here, a
mixed Eulerian and Lagrangian (MEL) scheme [21] is utilized to capture the nonlinear free
surface. The positions of free surface particles are then tracked in time in a Lagrangian
representation of the flow problem, allowing for the advection of mesh nodes [22]. A rigid
six-DoF model is included to update the position of the wetted surface at each time step.

1.5. LPF Models

At the low-fidelity end of CFD models to simulate WECs are the LPF models, which
despite rather gross assumptions of linearity in both the governing equation (Laplace)
and the boundary conditions, produce useful simulations for engineering purposes and
indeed are very time-efficient; see, e.g., [23]. The dynamic response of marine structures
is commonly analyzed in the frequency domain using LPF theory [23–26]. Time-domain
models are based on hydrodynamic coefficients solved in the frequency domain and
inserted into the Cummins equation [27,28]; see Appendix C for further information. In
the present paper, hydrodynamic coefficients are calculated in the frequency domain from
the BEM-based LPF software WAMIT [29]. Five models of various levels of accuracy
are considered. The LPF0 model is based on the solution to a traditional one-DoF mass-
spring-damper system with constant hydrodynamic coefficients; i.e., the added mass, the
hydrodynamic damping, and the hydrostatic stiffness are merely evaluated at a single
frequency (damped natural frequency). Furthermore, the draft-dependency is disregarded
in the calculation of the hydrodynamic coefficients, in which the sphere is considered static
at the neutrally buoyant position (submergence to the equator). The LPF1–4 models are
based on the Cummins equation, allowing the description of arbitrary motions (multiple
frequencies) rather than a regular motion (single frequency). For LPF1, the hydrodynamic
coefficients in the frequency domain are calculated for the neutrally buoyant position and
are assumed as linear. Various levels of nonlinearities (draft-dependencies) are added as
extension of each other to LPF2, 3, and 4: Respectively, the hydrostatic stiffness, the added
mass at infinite frequency, and the convolution part of the radiation force are nonlinearized.
The utilized LPF models are thoroughly presented in Appendix C.

2. Materials and Experimental Setup

In the present section, the materials and setup of the physical heave decay tests
conducted at Aalborg University are presented. Four repetitions were carried out for each
drop height.

2.1. The Sphere Model

The sphere model was constructed using computer numerical control (CNC) machin-
ing of two aluminum blocks into two hemisphere shells of equal outer radii. A thread
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was cut internally at the equator of the sphere to be able to assemble and disassemble the
two hemisphere shells; see Figures 4 and 5a. A thin rubber gasket was installed to seal
the model when assembled; see Figure 5b. The sphere was designed with an adjustable
internal ballast system. A thread was tapped internally at the bottom of the model to fix
ballast weights; see section view A-A in Figure 4.
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Additional threads were tapped externally at the top and bottom of the sphere to
allow attachment of lines for decay tests and future tests, including mooring and power
take-off (PTO). For line attachment to the sphere model, custom-made M8 nuts were used;
see Figure 6a. In the presented tests, a line was merely mounted to the top of the sphere
to displace it in the positive z-direction as the initial condition. A nut was installed at the
bottom external thread with a cover of polyvinyl chloride (PVC) tape; see Figure 6b,c. The
sphere model was marked with thin lines to have a reference system of x and y, as also
seen in Figure 6b,c.

An optical 3D motion capture system was utilized to track four reflective markers
installed on top of the model. In order to minimize the reflections from the model itself,
the upper hemisphere shell was painted matte black. Ballast weights were CNC machined
from stainless steel and mounted internally at the bottom of the lower hemisphere; see
Figure 7.
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Figure 7. The sphere model after installation of reflective markers, ballasts, and rubber gaskets.

The machined components (i.e., the hemisphere shells and the ballast weights), were
constructed with a precision of 0.1 mm. The dimensions of the additional components
(i.e., nuts and reflective markers), were known with the same precision. The weight of each
of the individual components of the sphere model was measured on precision scales with a
precision of 0.1 g. A 3D computer-aided design (CAD) drawing of the sphere model was
created in which densities were ascribed to the individual components from the measured
weights. The total mass, total center of gravity (in the local coordinate system defined
in Section 1.1), and total moments of inertia of the sphere model installed with ballast to
generate half-submergence are given in Table 2. In the Supplementary Materials under
the Descriptions folder, the dimensions, weights, and centers of gravity are given for all
individual components.
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Table 2. Inertial specifications of the sphere model (in the local coordinate system).

Parameter M CoG Ixx Iyy Izz Ixz Ixy, Iyz

Unit g mm gmm2 gmm2 gmm2 gmm2 gmm2

Value 7056 (0, 0, −34.8) 98251·103 98254·103 73052·103 0·103 10·103

2.2. Experimental Setup and Equipment

The decay tests were carried out in the wave basin in the Ocean and Coastal En-
gineering Laboratory at Aalborg University in Denmark. The wave basin measured
13.00 × 8.44 m, and a water depth of 900 mm was used for all tests. The wave basin had
vertical wavemaker pistons and vertical passive wave absorber elements installed. The
wavemaker pistons were inactive during the tests. The sphere model was released in the
middle of the basin; see Figure 8. A camera was mounted for documentation purposes,
and three wave gauges were installed to measure the radiated waves from the decays and
reflected waves; see Figures 8 and 9. Wave gauge data were collected, partly to assess
reflections, and partly to analyze radiated waves in further work. The position of the
sphere model was tracked by a Qualisys Motion Capture System; four Oqus7+ cameras at
300 fps with invisible, infrared strobes were mounted in the air phase, pointing towards
the model; see Figures 9 and 10.
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The release of the sphere model was initiated by a mechanical system consisting of a
pushrod and a small electrical actuator; see Figure 11. A line was mounted to the top of the
sphere model at the one end and to a small nut at the other end. The nut was supported
by the pushrod preceding the initialization of the tests. A trigger signal was sent to the
actuator which displaced the pushrod backwards (towards the actuator), thereby removing
the support of the sphere model. The release time was measured by highspeed cameras
(960 fps) to less than 1/960 s [10]. The line connecting the sphere model to the pushrod
was a Suffix® 832 line with 8 braided fibers and 32 weaves per inch (thickness 0.30 mm,
weight 0.18 g/m).
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Figure 11. Release system consisting of a pushrod and an electrical actuator.

The sphere model was displaced in positive heave to approximately match the test
case drop heights H0, as given in Table 1. The sphere model was kept at a given drop
height, until the model and the free water surface were at rest; see Figure 12. The initial
calmness of the sphere model (measured drop heights, velocities, and accelerations) and
the free water surface are quantified in Section 3.
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3. Results

The measured heave decay time series and the associated systematic and random
uncertainties are accounted for in the present section. Furthermore, deviations between the
ideal test case and the physical tests are quantified and considered. Heave x3 of the sphere
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was measured as the displacement of the sphere in the global z-axis. The influences of
rotations in roll and pitch on the heave measurements of the sphere model were included
in the uncertainty analysis.

3.1. Decay Measurements and Expanded Uncertainty

The measured heave decay time series are presented for the three investigated drop
heights in Figure 13. To mitigate the effect of small variations in the drop height between the
repetitions, the heave decay time series were normalized with the respective measured drop
heights H0,m. Time was normalized with the damped natural period in heave Te0 = 0.76 s;
see Appendix C.
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The measured heave decay time series included with 95% confidence intervals (CIs)
around the sample mean are presented for each of the investigated drop heights in Figure 14.
To be able to distinguish the 95% CIs from the sample mean, a zoom of the first trough
is included in Figure 14. Both the normalized and raw heave decay time series can be
found in larger formats in Appendix D, where the 95% CIs are upscaled to be able to
visualize the time-dependency of the CIs. The 95% CIs were calculated from the Taylor
series method (TSM) in accordance with the recommendations in [11]. The calculation
of both the random and systematic uncertainties in the physical heave decay tests are
described in the present section.

The time-dependent, two-sided 95% CI on the sample mean X(t) was established
from expanding the combined standard uncertainty uX3

(t) by the value tCv following the
Student’s t distribution [30]. C refers to the confidence level and v is the number of degrees
of freedom (not to be confused with the previously introduced rigid body motions, but
rather the independent variables in the calculation of uX) given by v = N − 1 with N being
the number of repetitions.

X(t)± t0.95,3 uX(t) = X(t)±UX(t), (1)

where UX(t) is referred to as the expanded uncertainty, and t0.95,3 = 3.182 [30].
The combined standard uncertainty uX(t) was calculated as the root-sum-square of

the random standard uncertainty sX and the systematic standard uncertainty bX as per
TSM [11]:

uX(t) =
√

bX(t)
2 + sX(t)

2. (2)

The random standard uncertainty of the sample mean was directly calculated from
the sample standard deviations at each instant of time (ISO Type A) as

sX(t) =
sX(t)√

N
. (3)
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The systematic standard uncertainty was calculated as the root-sum-square of the
elemental systematic standard deviations; see Table 3. The quantification of the elemental
systematic standard deviations is accounted for later in the present section.
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Table 3. Classification and quantification of systematic errors.

Systematic Error Source k Elemental Systematic Standard
Uncertainty bX,kH0,m [mm] ISO Types

Calibration of motion capture system (Oqus7+) 0.01 A
Vibrations of bridge (reference frame) 0.01 B

Vibration of support rods for reflective markers
(for ascending H0) 0.02, 0.06, 0.10 B

Influence on heave measurements from roll
and pitch Time-dependent, <0.02 A

By multiplying the expanded uncertainty time series UX(t) for each drop height with
the respective averaged measured drop heights H0,m, each expanded uncertainty (with a
confidence level of 95%) was given a physical dimension (length in mm); see Figure 15.
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The precision of the motion capture system (incl. calibration) was assessed from
displacements of the sphere model in heave with high-precision blocks 50.0 mm in height.
By comparing position time series, the systematic standard uncertainty of the motion
capture system setup was found to be 0.01 mm (ISO Type A); refer to [10] for further
information. The systematic standard uncertainty introduced by vibrations of the bridge
(reference frame for the motion capture system) after release of the sphere model was
conservatively assessed through a simple supported beam analogy to be less than 0.1 mm
(ISO Type B). The systematic standard uncertainties from the deflections of the support rods
of the reflective markers were estimated from the magnitude of the change in acceleration of
the decaying sphere from time zero to the first trough in the heave time series (~16.5 m/s2

for H0 = 0.5D), which is in the same order of magnitude as g, allowing the deflection to
be assessed by including the weight of an additional reflective marker. Conservatively,
the systematic standard uncertainties introduced from deflections in the global z-direction
of the support rods of the reflective markers were included as 0.1 mm (ISO Type B) for
H0 = 0.5D. The systematic standard uncertainties for the lower drop heights were linearly
scaled down.

Rotations in roll and pitch resulted in small deviations between the measured heave of
the sphere model (global coordinate system) and the actual heave, as the reflective markers
were placed at a certain distance from the center of rotation (305 mm on average). The
motions in heave resulting from the time-dependent roll and pitch were calculated, and the
systematic standard uncertainty on the measured heave was found by the root-sum-square
(ISO Type A). The maximum measured rotation in pitch or roll is 0.5◦—see Figure 16
—corresponding to an approximately 0.01 mm decrease of the global z-coordinate of the
reflective markers.
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The mean values of the expanded uncertainty time series for 0 < t/Te0 < 8 multiplied
with H0,m are 0.44, 0.24, and 0.09 mm for the target drop heights of 0.5D, 0.3D, and 0.1D,
respectively, which correspond to about 0.3% of the drop height for all cases.

3.2. Six DoF Motions

In Figure 16, time series of the six-DoF rigid body motions of the sphere model mea-
sured from the optical motion capture system are presented for H0 = 0.5D. The measured
six-DoF motions for H0 = {0.1D, 0.3D} are presented in Appendix D. The influences on
the heave measurements from roll and pitch of the sphere model were included in the
uncertainty analysis; see Table 3.
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3.3. Initial Calmness of the Sphere Model

The test case imposes zero velocity and zero acceleration as initial conditions on the
sphere. To investigate the initial calmness of the sphere model, the heave (position) time
series and time derivatives preceding the drop (i.e., for −0.3 < t/Te0 < 0), were assessed;
see Figure 17. The position time series were subtracted with the respective measured drop
heights to get zero as reference value. A moving average filter with a size of 21 samples
was utilized to filter the acceleration time series.
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Figure 17. Position (a), velocity (b), and acceleration (c) time series with zooms of the limits −0.3 < t/Te0 < 0.

The mean and standard uncertainty of the position, velocity, and acceleration time
series for all repetitions and drop heights averaged over −0.3 < t/Te0 < 0 were calcu-
lated. The mean and standard uncertainty of the position time series are both 0.0000 m
(0.0 mm). The mean and standard uncertainty of the velocity time series are 0.0000 m/s
and 0.0004 m/s, respectively. The mean and standard uncertainty of the acceleration time
series are −0.0002 m/s2 and 0.0097 m/s2, respectively.

3.4. Frequency Content

The three normalized heave decay time series (Figure 13) with 0 < t/Te0 < 8 were
converted to a periodic signal by mirroring about t/Te0 = 0; see Figure 18a. The one-sided
spectral densities were calculated through FFT analysis; see Figure 18b.
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3.5. Reflections and Initial Calmness of the Water Phase

The measured surface elevation time series at the three wave gauges can be seen for
the highest drop height (four repetitions) in Figure 19. Reflective walls (wave maker) were
at 4.22 m from the sphere model location; see Figure 8. A radiated wave needed to travel
to the reflective wall and back (i.e., 2·4.22 = 8.44 m), before reaching the sphere model.
The time tr0 = 8.44/c, where c is the celerity of a linear wave with period Te0, is included
in Figure 19. Reflected waves propagated past the locations of wave gauges 1, 2, and 3
for around 2.0, 1.3, and 0.7 periods before tr0, respectively. Decay time series presented
up to t/Te0 = 8 are not under the influence of reflections from waves with the period Te0;
see Figure 19. This can be considered a conservative estimate, as the main wave front of
radiated waves would have propagated with the group velocity rather than the phase
velocity. The measured surface elevations from the other drop heights are included in
Appendix D.
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Figure 19. Decay and surface elevation time series for H0 = 0.5D.

The initial calmness of the free water surface was assessed by the surface elevation
time series prior to the release of the sphere model; see Figure 20.
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Figure 20. Surface elevation time series with a zoom of the limits −1 < t/Te0 < 0 for H0 = 0.5D.

The mean and standard uncertainty of the surface elevation time series for all repeti-
tions and wave gauges over −1 < t/Te0 < 0 are both 0.0000 m.

3.6. Uncertainties of Physical Parameters

The values and standard uncertainties of the physical parameters from the test case
in Section 1.1 are presented for the physical tests in Table 4. Standard uncertainties were
calculated from the sample standard deviations; see Equation (3). Physical parameters
not included in the test case—the influences of which were found to vary insignificantly
between indoor laboratories of about 20 ◦C—are also included in Table 4 to easily be
available to the reader (for inclusion in high-fidelity numerical models).

Table 4. Values and standard uncertainties for physical parameters in the test setup.

Parameter Value Standard Uncertainty Unit ISO Type

Te
st

ca
se

va
lu

es

Diameter of sphere 300 0.1 mm B

Mass of sphere 7056 1 g B

Centre of gravity (0.0, 0.0, −34.8) (0.1, 0.1, 0.1) mm B

Acceleration due to gravity 9.82 0.003 m/s2 B

Drop heights (mean);
H0 = {0.1D,0.3D,0.5D} {29.16, 89.18, 150.06} {0.8, 0.5, 0.3} mm A

Density of water [31] 998.2 0.4 kg/m3 B

Water depth 900 1 mm B

Initial velocity in heave 0.0000 0.0004 m/s A

Initial acceleration in heave −0.0002 0.0097 m/s2 A
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Temperature of air and water 20 2 ◦C B

Kinematic viscosity of water [31] 1.0·10−6 0.1·10−6 m2/s B

Density of air [31] 1.20 0.012 kg/m3 B

Kinematic viscosity of air [31] 15.1·10−6 0.2·10−6 m2/s B

Surface tension water-air [31] 0.07 0.004 N/m B

Moments of inertia of the sphere model;
I = {Ixx,Iyy,Izz,Ixy,Ixz,Iyz}

{98251, 98254, 73052, 0, 10,
0}·103 {37, 37, 1, 0, −77, 96}·103 gmm2 B

Initial surface elevation 0.0 0.01 mm A

3.7. Comparison of Decay Measurements to Numerical Modelling Blind Tests

In the present section, the numerical heave decay time series are presented that were
obtained from the numerical models of the test case by modelling approaches of various fi-
delity, as introduced in Section 1.2, and with the properties outlined in Appendices A and B.
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Comparisons of the full time series for all drop heights are shown in Figure 21. In Figure 22
the initiation of the decay for H0 = 0.5D is shown. The first trough and crest of the decay
time series are shown in Figures 23 and 24, respectively. In Figure 25, the comparison of
decay time series is shown merely for the numerical models of higher fidelity, i.e., FNPF
and RANS models.
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4. Discussion

The measured heave decay time series are seen in Figure 14. The repeatability between
the test repetitions is very high for each of the three drop heights, as seen both from
Figure 14 and from the random standard uncertainties of the heave decay time series. On
average, these are around 0.07, 0.03, and 0.01 mm, respectively, for the three drop heights
in descending order, corresponding to less than 0.1% of the initial respective drop heights.
However, the random standard uncertainty is largely time-dependent, and the maxima are
factors of 4–7 times larger than the average. In general, the random uncertainty decreases
when the sphere model decreases in speed and vice versa. This is both visible over time
and over the three investigated drop heights. Over time, two maxima (in magnitude)
are expected in the speed time series per natural period, and these maxima damp out
over time (to less than 10% of the first maxima after ~5Te0); see Figure 17b. This broadly
correlates with the time-variation of the expanded uncertainty in Figure 15, for which
the time-variation is governed by the random uncertainty (over the systematic). Over
the three drop heights, the random uncertainty decreases with the drop height, where
obviously the sphere model will oscillate with lower speeds for lower drop heights; see
Figures 15 and 16b. The observations of dependence between the random uncertainties and
the speed of the sphere model are ascribed to marker-image-shape-distortions increased by
higher relative speeds between the optical motion capture system and the test specimen, as
reported in [32].

Apart from the systematic uncertainty modelled from the influences of roll and pitch
on the heave measurements, the systematic uncertainty is modelled as a time-invariant.
The systematic standard uncertainty stemming from the roll and pitch time series does not
exceed 0.02 mm, and as the total systematic standard uncertainty is taken as the root-sum-
square of elemental systematic standard uncertainties of significantly higher values, the
total systematic uncertainty is practically modelled as a time-invariant. As the random
uncertainty largely is dictated by the sphere model speed (equal to zero twice per natural
period), the dominating nature of the time-varying uncertainty is alternately systematic
and random. As the sphere model damps out, it will eventually be dominated by the
systematic uncertainties, seen as the offsets in Figure 15. The reader should note that
systematic uncertainties are not directly modelled from the test measurements as with
random uncertainties, but rather on estimates and engineering judgment. This is indicated
by the ISO Type categorization in Section 3; see [11] for further information.

In Figure 13, the normalized heave decay time series for the three drop heights can
be seen relative to one another. Most notably, for increasing drop heights, the initial
damped natural period in heave increases. This is in accordance with the spectra shown in
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Figure 18, where the peak in the spectrum for the highest drop height is shifted to a slightly
lower frequency.

The ideal heave decay tests described as the test case in Section 1.1 only allow os-
cillations in heave (one-DoF system). Naturally, imperfections will activate additional
DoF, which under the assumption of rigid body motions are quantified in Figure 16 for
H0 = 0.5D. As reflective markers are mounted on the upper hemisphere of the sphere
model, rotations in pitch and/or roll influence the measurement of the position of the
sphere model in the global coordinate system. These influences were accounted for in the
uncertainty analysis; see Table 3. Slight drifts occur in surge, sway, and yaw during the
decay. The drifts have a negligible influence on the heave decays.

The physical parameters from the test case are listed in Table 4; associated standard
uncertainties and values of additional physical parameters are not given for the test case.
The values given in Table 4 quantify the certainty with which the governing physical
parameters of the test setup are known. All physical parameters from the test case comply
very well with the values given in Table 4. The relative deviations between the measured
drop heights are the largest, but are basically without influence on the presented results,
since normalizing with respect to the measured drop height in each repetition practically
eliminates deviations between repetitions. The initial calmness of the sphere model and
water phase are analyzed from time series preceding the drop; see Figures 16 and 20.
Both the sphere model and the water phase are considered completely calm for practical
applications.

Comparison to Numerical Modelling Blind Tests

Numerical models have successfully been formulated to represent the test case pre-
sented in Section 1.1. The majority of the numerical models depict the heave decay time
series from the physical tests very well; see Figure 21. The largest deviations between
physical and numerical tests occur for the LPF models, where the deviations are more pro-
nounced for higher drop heights. This was expected, as nonlinearities increasingly govern
the heave decay as the drop height is increased. The LPF0 and LPF1 models, introduced in
Appendix C, have a significant negative phase shift within the first natural period relative
to the physical tests and the models of higher fidelity; see Figures 21–24. As a result of
the phase shift, large deviations from the 95% CI from the physical tests of around 50 mm
(i.e., 33% of H0), occur for the LPF0 and LPF1 models at H0 = 0.5D. Not considering the
phase shifts, but merely the magnitudes of troughs and crests, the LPF0 and LPF1 models,
respectively, deviate with around 12–13 and 1–5 mm (i.e., 9% and 1–3% of H0) at the first
trough and crest; see Figures 23 and 24. The LPF0 model oscillates with the damped
natural frequency of a one-DoF spring-mass-damper system with constant hydrodynamic
coefficients, and thus is not capable of including broader frequency contents, which may
explain the larger phase shifts for larger drop heights; see Figure 21. The linearization of
the hydrostatic force in the LPF1 model spuriously increases the acceleration, as discussed
in Appendix C. As the drop height is decreased, the heave decay will oscillate with Te0 and
the assumption of linear hydrostatics will become more accurate. Consequently, the LPF0
and LPF1 models become increasingly accurate in both amplitude and phase for lower drop
heights; see Figure 21. The inclusion of nonlinear hydrostatics in the LPF2 and 3 models
significantly reduces the phase shifts; see, e.g., Figure 23. The constant a∞

33 term in the
LPF2 model, however, spuriously delays the decay at initiation—see Figure 22—and in
general increases the deviation from the physical tests when the sphere is displaced from
its rest condition at which the constant a∞

33 term is evaluated; see Figures 21 and 24. Only
including the draft-dependency of the a∞

33 term in the radiation force as in the LPF3 model
(see Appendix C) introduces large deviations at the first trough at H0 = 0.5D; see Figure 23.
The inclusion of draft-dependency of the convolution part of the radiation force, as done
in the LPF4 model (refer to Appendix C for further information), does not yield more
accurate results. Despite the large deviations at the first trough, the LPF3 model captures
all subsequent crests and troughs in the H0 = 0.5D case with an accuracy close to those
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of the RANS models, and is thus significantly more accurate than the LPF2 model with
constant a∞

33. At H0 = 0.1D, the LPF2 and 3 models perform with maximum deviations of
around 1 mm, which are comparable to the deviations of the models of higher fidelity.

The FNPF and RANS models deviate with less than 1 mm for H0 = 0.1D, corresponding
to 3% of H0. At the first trough, the models FNPF1, RANS1 and RANS5 lie within the
95% CI of the physical measurements, while the RANS2 and RANS4 models deviate with
less than 0.3 mm (i.e., less than 1% of H0). Deviations at the first trough have the same
order of magnitude for H0 = 0.3D, whereas at H0 = 0.5D, the deviations increase to around
1–3 mm (i.e., 1–2% of H0), with the exception of the RANS2 and RANS3 models, which
are actually within the (narrow) 95% CI. The kinematics, and thus velocity gradients, are
largest within the first natural period, leading to high demands on the near-wall meshing
and treatment (mesh morphing, wall functions, etc.) in the RANS models. However, from
Figure 25, there is a general tendency of the largest deviations to occur at 1 < t/Te0 < 4
(even when taking into account the decrease of the CI width; see Figure 15). Assuming
the time-error of the motion capture system to be negligible, the reasoning behind the
tendency of largest deviations to not occur during the first natural period is two-fold: (i) in
a RANS model, errors from the numerical discretization and iterations accumulate, and
(ii) turbulence increases over the first periods and when the sphere changes direction. The
former includes numerical errors of turbulence parameters if calculated in a turbulence
model, while the latter refers to the increase of the complexity of the water phase over time
(emergence of high-frequency perturbations of the free surface and sub-grid vortices) and
how model errors of either not including a turbulence model (laminar simulations) or the
inaccuracies associated with a given model thus become more pronounced with time. The
deviations tend to reduce for 4 < t/Te0 which is ascribed to the low amplitudes themselves
rather than an increase in the accuracy, as the continued increase in the phase shifts (up
to around 0.04 s, i.e., 0.05Te0) also suggests. An increased accuracy from inclusion of a
turbulence model (k-omega-SST) can be seen by comparing the RANS2 and RANS3 models
in Figure 25.

Troughs and crests for the RANS models are calculated with deviations of maximally
1 mm, 2 mm, and 4 mm, respectively, for the three drop heights in ascending order. This
corresponds to deviations up to 3% of H0. The FNPF model has similar deviations for the
two lowest drop heights, while the deviations at H0 = 0.5D are up to 8 mm or 5% of H0.
For H0 = 0.5D, the maximum of deviations at troughs and crests are an order of magnitude
higher for the LPF models than the RANS models, which indicates the potential pitfalls of
LPF models for large-amplitude motions.

5. Conclusions

A sphere model was constructed to accurately represent the formulated test case.
Physical parameters of the test setup were quantified, and associated uncertainties were
generally found to be low. The precision of the physical test results is very high and was
quantified by time-varying systematic and random uncertainties of the heave time series.
At a 95% confidence level, the uncertainties were on average 0.09, 0.24, and 0.44 mm for
the target drop heights in ascending order, corresponding to about 0.3% of the respective
drop heights. The uncertainty of the optical motion capture system increased with larger
velocities of the test specimen, and for the largest drop height the uncertainty was less than
1.5 mm, corresponding to less than 1% of the drop height.

Strong correlations were found between the physical test results and the results from
independent numerical modelling blind tests for LPF, FNPF, and RANS models, ranged
with increasing fidelities. At the lowest drop height, the deviations are less than 1 mm for
all models, which corresponds to less than 3% of the drop height (disregarding the regular
motion model LPF0). Deviations of the LPF models increase for higher drop heights. The
performance of the FNPF model is in general better than the LPF models, but deviations are
larger than those of the RANS models for the highest drop height. RANS models produce
heave decay time series with deviations of 0–4 mm at troughs and crests for the highest
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drop height, which correspond to 0–3% of the drop height. Deviations are smaller for the
lower drop heights. It should be mentioned that the results from the RANS models have
a larger spread than the physical results, and various models are outside of the 95% CIs
at various periods during the decay. The comparison of the numerical and physical test
results suggests that the LPF and partly the FNPF models should be used with care in
applications with motions of very large amplitudes, whereas the RANS models, if proper
convergence is reached, are capable of producing accurate results for all drop heights.

The high correlations of multiple independent numerical modelling blind tests with
the physical tests demonstrate the use of the test case and the physical test results in
validating numerical models. Taking this into account, together with the high repeatability
and quantified uncertainties of the physical tests, the measured heave decay time series of
the sphere model provide a highly accurate solution to the test case, and are thus highly
appropriate for numerical model validation. The heave decay time series are made public
as a benchmark dataset in the Supplementary Materials of the present paper.

It is the intention of the authors to perform further tests in the future, including
motion of the sphere model in waves with PTO and motions in multiple DoF. If the reader
is interested in following the future work, he/she is encouraged to become a member of
the international working group by contacting the coordinator of the OES modelling task,
Kim Nielsen (please request his contact details from the authors of this paper).

Supplementary Materials: The benchmark dataset of the physical heave decay tests is publicly
available from the supplementary material of the present paper online at https://www.mdpi.com/
1996-1073/14/2/269/s1 and at the OES webpage [5]. In addition, all numerical modelling blind tests
of the test case are available. Refer to Appendix A for detailed information about the contents of the
supplementary material.
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Appendix A

The Supplementary Materials to the present paper is structured under the folder Datafile
with subfolders Descriptions, Experimental results, and Numerical results; see Figure A1. The
folder Descriptions includes technical descriptions of the sphere model and the test setup
(referred to in Sections 1 and 2). The folders Experimental results and Numerical results
contain the results from the heave decay tests performed physically and numerically,
respectively. Eleven numerical modelling approaches were performed on the test case, and
thus eleven subdirectories are located under Numerical results; see Figure A1. For further
information on the specifications of the numerical models, refer to Appendix B.

The results are given as text-files with columns containing time t [s] and heave x3 [m];
see Figure A2. The three columns WG1, WG2, and WG3 [m] contain the surface elevation
time series at three wave gauges locations, introduced in Section 2.2, and are included
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https://www.mdpi.com/1996-1073/14/2/269/s1


Energies 2021, 14, 269 24 of 36

for the experimental results and for certain numerical results. Four repetitions were
performed of the physical heave decay tests, all of which are included in the result files
under Experimental results. The heave decay time series are presented in a raw and in a
normalized format, as explained in Section 3. The normalized results are also represented
in a file containing the sample mean and the upper and lower bounds of the 95% CI around
the sample mean; see Section 3.
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Appendix B

As explained in Section 1.2, three categories of numerical models have been applied
to the test case: (i) Reynolds-averaged Navier–Stokes (RANS) models, (ii) fully nonlinear
potential flow (FNPF) models based on the boundary element method (BEM), and (iii)
linear potential flow (LPF) models based on BEM.
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Table A1. Numerical models from the participants in the OES working group.

Name Institution and
Authors Framework Description Comp. Effort

[CH] *

RANS1 Aalborg University;
C.E., J.A. OpenFOAM-v1912

3D URANS model. Incompressible, isothermal.
Volume of fluid method. Two vertical symmetry

planes. Reflective side walls. Mesh morphing using
SLERP method. Cell count of 6-9 M cells. No

turbulence model. Second-order accurate in time
and space. CFL criterion of 0.5

~3000–6500

RANS2 University of
Plymouth; E.R., S.B. OpenFOAM 5.0

3D URANS model. Incompressible, isothermal.
Volume of fluid. Two vertical symmetry planes.

Reflective side walls. Mesh morphing using SLERP
method. Cell count of ~12 M cells. No turbulence

model. CFL criterion of 0.5.

~1000–4200

RANS3 University of
Plymouth; E.R., S.B. OpenFOAM 5.0 Same as RANS2 except k-Omega SST turbulence

model. Only conducted for H0 = 0.5D. ~1800

RANS4
National Renewable
Energy Lab.; Y.-H.Y.,

T.T.T.
STAR-CCM+ 13.06

3D URANS model. Incompressible, isothermal.
Volume of fluid. Two vertical symmetry planes.

Cell count of 6 M cells. Mesh morphing with one
DOF. k-Omega SST turbulence model.

second-order accurate in time and space. CFL
criterion of 0.5. Max. time step of 0.1 ms.

~1000–2600

RANS5
Budapest University
of Technology and

Economics; J.D., C.H.
OpenFOAM 7

2D URANS model. Incompressible, isothermal.
Volume of fluid method. Axisymmetric wedge
geometry. Cell count of approx. 20 K cells. No

turbulence model.
second-order accurate in time and space. CFL

criterion of 0.25. Water depth changed to 1.8 m to
allow mesh morphing.

~0.5–2.5

FNPF1 Chalmers University
of Technology; C.-E.J. SHIPFLOW-Motions 6

Fully nonlinear potential flow BEM. 1600 panels
were used on the sphere and 4600 panels were used

on the free surface. The time step was 0.005 s.
~6

LPF0 Aalborg University;
M.B.K., J.A. WAMIT and MatLab

Analytical solution to one-DoF
mass-spring-damper system with hydrodynamic

coefficients from BEM (for ω = ωe0)
- **

LPF1 Floating Power Plant;
M.B.K.

WAMIT and
MatLab/Simulink

Model with linear hydrostatics and linear
coefficients from BEM. Time-step: 1 ms, solver:

ode4 (Runge-Kutta).
- **

LPF2 Floating Power Plant;
M.B.K.

WAMIT and
MatLab/Simulink

Model with nonlinear hydrostatics and linear
coefficients from BEM. Time-step: 1 ms, solver:

ode4 (Runge-Kutta).
- **

LPF3 Floating Power Plant;
M.B.K.

WAMIT and
MatLab/Simulink

Model with nonlinear hydrostatics, linear radiation
function from linear BEM but position dependent
infinity added mass. Time-step: 1 ms, solver: ode4

(Runge-Kutta).

- **

LPF4 Floating Power Plant;
M.B.K.

WAMIT and
MatLab/Simulink

Model with nonlinear hydrostatics and position
dependent radiation functions (based on linear
coefficients from BEM). Time-step: 1 ms, solver:

ode4 (Runge-Kutta).

- **

* Core-hours for one decay; ** order of seconds for MATLAB/Simulink simulations using precomputed WAMIT coefficients.

Appendix C

In the present Appendix, the utilized LPF models are presented. The principles of
the linearization of hydrostatics are presented first. Then, the formulation of the grossly
linearized, regular LPF0 model is presented. Subsequently, the time domain LPF1–4 models
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with various levels of nonlinearities are introduced. Physical test measurements of the
draft-dependency of the hydrostatics of the sphere model are presented and compared to
the linear and nonlinear analytical expressions of the hydrostatic force. Numerical results
of the draft-dependency of the added mass at infinite frequency and the convolution part
of the radiation force are presented. Lastly, a comparison of simulation results from the
LPF1–4 models is included.

Appendix C.1. Linearization of Hydrostatics

The exact nonlinear hydrostatic force is calculated using the analytical equation of the
submerged volume—i.e.,

fh = fb − fg = Vsρg−mg, (A1)

where Vs is the exact submerged volume of the sphere, calculated by

Vs =
((

πh2
)

/3
)
(3D/2− h), (A2)

where h = D/2− x3 is the draft with limits 0 and D. In the linear case the hydrostatic force
is linearized to

fh
∼= −ρgAWPx3, (A3)

where AWP = π(D/2)2 is the water plane area (i.e., the area of a circle with diameter D).
With C33 = ρgAWP being the hydrostatic stiffness in heave, the linearized hydrostatic force
can be written as

fh
∼= −C33x3. (A4)

Appendix C.2. The LPF0 Model

The dynamic one-DoF system can be considered as a traditional mechanical oscillator
composed of a mass-spring-damper system with constant mass, damping, and spring
stiffness; i.e., merely a regular motion (single frequency) is modelled. When restricted to a
regular motion, the linear equation of motion for a free oscillation in heave is written as

(m + A33(ω))
..
x3(t) + B33(ω)

.
x3(t) + C33x3(t) = 0, (A5)

where m is the mass of the sphere; A33, B33, and C33 are the added mass, hydrodynamic
damping, and hydrostatic stiffness in heave, respectively. Note that the right-hand side of
the equation is zero as there is no external forcing on the system; i.e., no incident waves and
no PTO forces. Drag forcing due to viscous effects are not included in any of the models
based on linear theory. The frequency dependent added mass and hydrodynamic damping
coefficients for the given water depth are calculated using traditional BEM theory utilizing
the commercial LPF code WAMIT.

The natural frequency, the damped natural frequency, and the logarithmic decrement
of the one-DoF system are calculated using the hydrodynamic coefficients for the statically
neutrally buoyant position [7]. From [28], the solution to the free oscillation is

x3(t) = (C1 cos ωe0t + C2 sin ωe0t)e−δt (A6)

As an initial check the reader is encouraged to compare the results of this equation
to his/her own simulation results. The hydrodynamic coefficients, the damped natural
frequency (and period), the logarithmic decrement, and the added mass and damping
coefficients at the damped natural frequency are given in Table A2.
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Table A2. Hydrodynamic coefficients and modal parameters utilized in the LPF0 model.

Te0 ωe0 δ A33(ωe0) B33(ωe0) C33 C1 C2

[s] [rad/s] [rad/s] [kg] [Ns/m] [N/m] [m] [m]

0.76 8.30 0.695 2.97 13.95 692.89 H0 0.0839H0

Appendix C.3. The LPF1–4 Models

Through the Cummins equation [27], the linear equation of motion is expressed in the
time domain as

(m + a∞
33)

..
x3(t) + fr,conv(t) + C33x3(t) = 0, (A7)

where fr,conv is the convolution part of the radiation force—i.e.,

fr,conv =
∫ t

0
K33(t− τ)

.
x3(τ)dτ. (A8)

WAMIT directly outputs the infinite frequency added mass coefficient a∞
33, and the

radiation impulse response functions (IRF) is calculated based on the damping coefficients:

K33(t) =
2
π

∫ ∞

0
B33(ω) cos(ωt)dω. (A9)

For a strictly linear model the coefficients are found for the structure located at rest
at its statically neutrally buoyant position in the water. The results of such a model are
given in the LPF1 model. However, one may try to extend the linear case by introducing
nonlinear coefficients. When doing this the effects of the motion of the structure (i.e., the
draft of the sphere) are included, but the water surface is considered calm. The easiest and
most common first step is to include nonlinear buoyancy, which is done in LPF2. Further,
the draft dependency of a∞

33 is included in LPF3, and finally, in addition, the radiation
convolution function is included in LPF4. The models are outlined in Table A3.

Table A3. Overview of the LPF1–4 models.

Model Hydrostatics C3 Added Mass a∞
33

Radiation Convolution
Function K33

LPF1 Constant Constant Constant function

LPF2 Draft-dependent Constant Constant function

LPF3 Draft-dependent Draft-dependent Constant function

LPF4 Draft-dependent Draft-dependent Draft-dependent functions

Appendix C.4. Measured Hydrostatics

Measurements were performed using a force sensor which was connected to the
mooring line. Two tests were performed, one test where the sphere was slowly lifted
out of the water and the sensor was mounted at the mooring line going upward, and
another test where the sphere was slowly submerged into the water and in this case the
sensor was mounted under the water at a mooring line going downward. Simultaneous
position and force measurements were recorded; see Figure A3. It is seen that the nonlinear
Equation (A1) represents the measurements accurately, whereas the linear Equation (A3)
is about 50% off when the sphere is fully submerged (x3/D = −0.5) or just lifted out
of the water (x3/D = 0.5). Equation (A1) is utilized in the models with a nonlinear
implementation of the hydrostatic force; i.e., LPF2, 3, and 4.
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Appendix C.5. Added Mass at Infinite Frequency

The added mass at infinite frequency coefficient a∞
33 was calculated in WAMIT using

different values of the draft of the sphere. The data were fitted to a fifth order polynomial;
see Figure A4. This fit was subsequently used in the models with nonlinear implementation
of a∞

33; i.e., LPF3 and 4.
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Appendix C.6. Radiation IRF

The radiation IRF K33, see Equation (A9), was calculated using WAMIT hydrodynamic
damping coefficients for different drafts of the sphere. The curves in Figure A5 show the
spread in the functions when going from zero draft (flat curve) to full submergence with
draft equal to the diameter D (largest curve). A resolution in draft of 1 mm was used
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(a total of 300 functions). The radiation impulse function to be used at a particular time
step during the simulation was thus pieced together of the radiation impulse functions
corresponding to the drafts of previous time history. Linear interpolation in the functions
was used to get the values corresponding to the actual drafts.
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Appendix C.7. Comparison of the LPF1–4 Models

A comparison of the simulation results from the LPF1–4 models with various levels
of nonlinearities is particularly interesting for the tests conducted with the highest drop
height—i.e., H0 = 0.5D. These are shown in Figure A6 for the first two natural periods
in heave. For these tests, the initial buoyancy force on the sphere is zero, as the draft is
zero. The LPF1 model, however, under-predicts the initial downward hydrostatic force, see
Figure A6, since in the linearized hydrostatics assumption, Equation (A1), the buoyancy of
a cylinder with a radius and a height equal to the spherical radius is subtracted from the
rest condition at x3 = 0 (zero hydrostatic force). In the LPF2 model, the initial downward
acceleration of the sphere is over-predicted due to the inclusion of a constant added mass
term (the added mass should ideally be zero at initiation). The LPF1 model weighs out
this error by the former mentioned error induced by the subtraction of the buoyancy of
the cylinder, where it ideally should be the buoyancy of half a sphere. The volume of a
cylinder is 1.5 times the volume of a sphere, causing the under-predicted hydrostatic force
to exactly balance out the extra added mass (a∞

33,LPF1 = 0.5m) at initiation. Hence, the
LPF1 model accelerates by g at initiation, as is the case with the models LPF3 and 4, where
the added mass at infinite frequency is calculated as a function of the draft. Regarding
the convolution part of the radiation force, the LPF4 model is predicting a different force
time series with higher frequency content. Consequently, the LPF4 model has a different
response in the heave decay when compared to the LPF3 model.

Not including any nonlinearities as in LPF1 model or only including nonlinear hy-
drostatics, as in the LPF2 model, produces large deviations from the more accurately
formulated models with draft-dependent radiation forces implemented; see Figure A6. It
is stressed that the comparison to physical tests or numerical models of higher fidelity is
needed to evaluate the accuracy of any of the LPF models; see Sections 3 and 4.
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Appendix D

Raw and normalized heave decay time series are presented in Figures A7 and A8,
respectively. The measured surface elevation time series for the drop heights H0 = 0.1D and
H0 = 0.3D are presented in Figure A9. The locations of wave gauges can be seen in Figure 8.
The measured motions in all six DoF for the drop heights H0 = 0.1D and H0 = 0.3D are
presented in Figures A10 and A11, respectively.
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