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Reduced-order manifold models: lower computational cost by projecting the thermochemical state onto a manifold with !! ≪ !" dimensions. Both physics-based 
(Flamelet Generated Manifolds, FGM) and data-driven (Principal Component Analysis, PCA) approaches share the same three major steps:

The proposed approach can flexibly incorporate thermochemical data from any source, yielding optimized versions of physics-based models in the 
appropriate limits, but also enabling accurate predictions by including additional data when physics-based manifold descriptions are not available

Proposed Neural Network Structure Case 1: 1D Premixed Flame Data
CH4 (DRM19 mech.), ! = 0.5-1.5, 1 atm, ## = 400 K

Case 2: Jet-A Ignition Kernel DNS Data
Data from Krisman et al., CNF, 2021

Co-optimized Machine-Learned Manifolds Approach: extend the neural network used for nonlinear mapping to allow simultaneous learning for all three steps

LES closure of filtered quantities
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Definition of manifold variables
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Mapping to output variables – often using a neural network 
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More efficient representation of 
thermochemical state than PCA

Accurate prediction of 
filtered DNS source terms

Manifold structure comparison: 
Co-optimized is similar to FGM,

with improved prog. variable

More accurate nonlinear 
mapping than FGM (6+ = 0.992) 

or PCA (6+ = 0.957)

Co-optimized
,! = 0.997
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