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Non-technical summary.We summarize some of the past year’s
most important findings within climate change-related research.
New research has improved our understanding of Earth’s sensi-
tivity to carbon dioxide, finds that permafrost thaw could release
more carbon emissions than expected and that the uptake of car-
bon in tropical ecosystems is weakening. Adverse impacts on
human society include increasing water shortages and impacts
on mental health. Options for solutions emerge from rethinking
economic models, rights-based litigation, strengthened govern-
ance systems and a new social contract. The disruption caused
by COVID-19 could be seized as an opportunity for positive
change, directing economic stimulus towards sustainable
investments.
Technical summary. A synthesis is made of ten fields within cli-
mate science where there have been significant advances since
mid-2019, through an expert elicitation process with broad dis-
ciplinary scope. Findings include: (1) a better understanding of
equilibrium climate sensitivity; (2) abrupt thaw as an accelerator
of carbon release from permafrost; (3) changes to global and
regional land carbon sinks; (4) impacts of climate change on
water crises, including equity perspectives; (5) adverse effects
on mental health from climate change; (6) immediate effects
on climate of the COVID-19 pandemic and requirements for
recovery packages to deliver on the Paris Agreement; (7) sug-
gested long-term changes to governance and a social contract
to address climate change, learning from the current pandemic,
(8) updated positive cost–benefit ratio and new perspectives on
the potential for green growth in the short- and long-term per-
spective; (9) urban electrification as a strategy to move towards
low-carbon energy systems and (10) rights-based litigation as
an increasingly important method to address climate change,
with recent clarifications on the legal standing and representa-
tion of future generations.
Social media summary. Stronger permafrost thaw, COVID-19
effects and growing mental health impacts among highlights
of latest climate science.

1. Introduction

From mental health distress to severe water crisis, societies around
the world are experiencing the impacts of human-induced climate

change. In 2020, alongside these impacts, we experienced the
COVID-19 pandemic. COVID-19 has served to expose our soci-
etal vulnerabilities while also providing unique opportunities to
act for a fair and climate-friendly world. With research supporting
the need to develop carbon-neutral societies by 2050 to safely
achieve the goals of the Paris Agreement, the need for transforma-
tive change is urgent (Head, 2020; Otto et al., 2020). Enhanced
understanding of the challenges facing Earth’s systems – and of
the social and economic consequences – contributes to identify-
ing appropriate action.

In this paper, we carry out a horizon scan of important
insights emerging from advances in integrated research related
to climate change over the past year (focusing on findings pub-
lished in 2019–2020). The objective of this horizon scan is two-
fold. First, through expert elicitation we attempt to identify the
10 most important new scientific insights over the past year.
Second, this horizon scan constitutes an effort to provide an inte-
grated synthesis of key research outputs and how these add up
into broader science-based insights that should guide climate pol-
icy. This scientific horizon scan forms the basis of a wider
research synthesis report on the 10 New Insights in Climate
Science (10NICS) produced annually and officially handed over
to the United Nations Framework Convention on Climate
Change Secretariat in connection with the Conferences of
Parties. Taken together, we are not claiming this to be a top-10
climate science ranking, but rather an effort of scanning the
wide interdisciplinary arena of climate research and identifying
key insights – and which provide evidence that is of critical
importance for evidence-based policymaking.

The 10 insights begin by considering climate modelling
advances and the improvements in our understanding of climate
sensitivity, and regional climate predictability. In doing so, we are
better placed to understand future risks and to plan for change.
We then draw attention to evidence on thawing permafrost in
the Arctic, which stores one-third of the world’s soil carbon in
a location that is responding quickly to climate change. We
turn to carbon uptake by land sinks, which respond to anthropo-
genic change with consequences for their potential to mitigate
carbon emissions. We consider how climate change will exacer-
bate the water crises already felt in many places, underlining
how impacts depend on and contribute to social inequality. We
also bring to the fore growing evidence that changing climatic
conditions are adversely affecting mental health, an issue garner-
ing attention in 2020 as it is exacerbated by the COVID-19 pan-
demic. We reflect on the most urgent task for a post-COVID-19
era, namely making 2020 a turning point for reduction in global
greenhouse gas (GHG) emissions. How our economies and soci-
eties contribute to emissions and the changes that can occur has
been brought into stark relief by the lockdowns initiated to con-
trol spread of the pandemic. Following that, again in response to
the pandemic, we consider the potential for COVID-19 to catalyse
a new social compact for a just and climate-friendly world
through strengthening inclusive forms of governance. We also
underline how greening the economy through sustainable invest-
ments is cost effective and gives substantial co-benefits. This is
vital given evidence showing that a primary focus on economic
growth, which puts climate mitigation as a secondary goal, jeopar-
dizes our last chance of achieving the Paris Agreement. From this
we turn to energy, outlining evidence that shows how urban elec-
trification provides a strategy to move towards low-carbon sus-
tainable energy systems. Finally, our last insight draws attention
to rights-based litigation, which clarifies the international legal
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standing and representation of the rights and interests of future
generations in a healthy environment.

2. Methodology

The horizon scan has been overseen by an expert panel ‘Editorial
Board’ with 10 researchers appointed by Future Earth, The Earth
League and World Climate Research Programme (WCRP). The
10 ‘insights’ were identified through an expert elicitation process
beginning with an open call for inputs, through an open-ended
questionnaire for suggesting new topics. A link to the form was
sent directly to 221 international experts covering a broad array
of disciplines. It was also distributed to members of The Earth
League, WCRP (Secretariat, Joint Scientific Committee, Core
Project Chairs and Grand Challenge leaders), to international
project offices and development teams of Future Earth Global
Research Projects and Future Earth Knowledge-Action
Networks, to Future Earth National Committees and Networks
and posted on the Future Earth Open Network and Future
Earth website. The questions posed to questionnaire respondents
were: ‘What [do] you think are the 1–3 most important new dis-
coveries or advancements in your overarching field of research
since 1st July 2019 and the key articles and reports highlighting
them[?]’.

The questionnaire resulted in 73 individual responses suggest-
ing 128 topics. Additional 18 topics were suggested by 11
researchers via email, of which eight were unique respondents
who had not answered the questionnaire. The suggested topics
were summarized in 20 candidate ‘insights’. The Editorial Board
identified the 10 insights that best satisfied the requirements for
novelty, relevance and sufficient scientific evidence. Each insight
was written by two or more experts selected from the question-
naire and the Future Earth, The Earth League and WCRP net-
works, based on qualifications and quality of topic suggestions.
All authors were approved by the Editorial Board.

Further details on methodology can be found in
Supplementary materials.

3. New insights

3.1. Climate sensitivity and predictability are now better
understood

At the centre of international climate change negotiations are the
rising concentration of carbon dioxide (CO2) in the atmosphere.
CO2 is the most significant anthropogenic GHG being emitted
into the atmosphere, reducing emissions of terrestrial radiation
to space and causing global temperatures to rise. Although this
understanding pre-dates the 20th century, the quantitative rela-
tionship between CO2 levels and global warming has remained
uncertain for decades, hampering efforts to understand future
risks and plan for change.

The ‘likely range’ (at least a 66% chance of being within this
range) of equilibrium climate sensitivity – the long-term global
rise in air temperature expected as a result of doubling atmos-
pheric CO2 concentrations – was estimated to be 1.5–4.5°C by
Intergovernmental Panel on Climate Change (IPCC, 2013) in
its Fifth Assessment Report (AR5); these figures remained
unchanged since the Charney report of 1979.

Larger climate sensitivity is suggested by global-scale climate
change experiments carried out using the latest Earth System
Models and coordinated under the Coupled Model

Intercomparison Project Phase 6 (CMIP6), which exhibit sensitiv-
ity values ranging from 1.8 to 5.6°C. The values of 10 models
exceeded the upper end of the aforementioned likely range. The
higher climate sensitivity seen in many models is due primarily
to stronger amplifying cloud feedbacks from low clouds at middle
and high latitudes (Flynn & Mauritsen, 2020; Zelinka et al., 2020).
This may be related to improvements in how models decide
whether cold clouds are made of liquid or ice water, a difficult
problem (Bodas-Salcedo et al., 2019; Gettelman et al., 2019).
But even though a priori these changes seem to be improvements,
many high-sensitivity models overestimate recent warming trends
(Nijsse et al., 2020; Tokarska et al., 2020), suggesting that the
higher sensitivity models should be treated with caution.

Indeed, the likely range of climate sensitivity has now been
narrowed to 2.3–4.5°C by a new, comprehensive WCRP analysis
of the broader evidence (Sherwood et al., 2020). This took a three-
pronged approach of examining climate feedback processes, the
historical record and the palaeoclimate record, which all provided
evidence against the high model climate sensitivities (Sherwood
et al., 2020). In particular, they find that sensitivities above 4.5°C
are hard to reconcile with palaeoclimate evidence, also noted by
Zhu et al. (2020). On the other hand, Sherwood et al. (2020)
find that the likely range does not extend below 2.3°C, which dis-
counts the lower end of the IPCC AR5 range. This conclusion was
supported by all lines of evidence and indicates that moderate emis-
sions reduction scenarios are less likely to meet the Paris tempera-
ture targets than previously anticipated (Figure 1).

On regional scales, climate models are also becoming better at
simulating temperature and hydrological extremes (Di Luca et al.,
2020; Kim et al., 2020), including the intensity of heavy rainfall
events (Kim et al., 2020) and hot and cold extremes (Di Luca
et al., 2020). Models are now able to simulate rainfall droughts
well, particularly at the seasonal scale and the projections of
drought duration and frequency are becoming more consistent

Fig. 1. Climate sensitivity ranges from recent sources. First entry shows 66% (thick
bar) and 90% (thin bar) probability ranges from Sherwood et al. (2020), with hatched
extensions bounding the span of these ranges under plausible alternative assump-
tions. The second bar shows the 66%-or-greater (thick bar) and 90%-or-greater
(thin bar) probability ranges from IPCCs AR5 report in 2013. The third and fourth
bars show the full span of values predicted by the previous and current generation
of global climate models respectively. All values are ‘effective’ climate sensitivities
except that IPCCs is formally given as an equilibrium value; the particular definition
has a 5%-or-less impact on probability ranges (Sherwood et al., 2020).
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over many regions (Ukkola et al., 2020). Although regional
changes in mean rainfall remain uncertain, this provides new
opportunities for water resource management.

In the near term, climate models are better able to predict the
observed evolution of regional climate than previously thought
possible, particularly around the Atlantic Basin. Decadal predic-
tions of the atmospheric circulation and regional temperature
and rainfall all now show encouraging levels of skill and this offers
great promise for the utility of regional climate predictions.
However, climate models also show a spuriously low ratio of pre-
dictable signal strength to internal noise variability. This means
that newfound decadal prediction skill can only be realized by
averaging large ensembles of hundreds of simulations and it
could affect the attribution and prediction of quantitative changes
in extratropical climate using current models (Scaife & Smith,
2018; Smith et al., 2020).

3.2. Greenhouse gas emissions from permafrost will be larger
due to abrupt thaw processes

Thawing permafrost in the Arctic is expected to release significant
quantities of GHGs over the coming decades, enough to merit
consideration in climate negotiations. Recent research shows it
will be larger than earlier projections due to abrupt permafrost
thaw processes (Turetsky et al., 2020).

Permafrost is a perpetually frozen layer beneath the seasonally
thawed surface layer of the ground. The northern permafrost
region covers 18 million km2 and stores 1460–1600 petagrams
of carbon (PgC) – one-third of the world’s soil carbon
(Meredith et al., 2019). The Arctic is responding quickly to cli-
mate change, with air temperatures warming more than twice
as fast as the global average. Unusually warm summers – such
as the record-breaking 2020 heatwave in Siberia and Svalbard –
are happening more often (Ciavarella et al., 2020). This is causing
Arctic permafrost to thaw in some northern regions almost a cen-
tury earlier than some climate models projected (Farquharson
et al., 2019).

Abrupt permafrost thaw happens when melting ground ice
causes the ground surface above to collapse. This liberates previ-
ously frozen soil carbon, creating a so-called ‘thermokarst’ land-
scape of slumps and gullies in upland areas and collapse-scar
wetlands and lakes in less well-drained areas. Satellite observa-
tions of these landscape-scale changes have shown an acceleration
in abrupt thaw processes over the past two decades; they are
expected to substantially increase this century as climate warms
(Lewkowicz & Way, 2019).

Although climate models do include gradual permafrost thaw,
they do not include the more complex thermokarst-inducing pro-
cesses. When thermokarst is included, by the year 2100 up to
three times more carbon becomes exposed assuming a moderate
emission scenario at Representative Concentration Pathway
(RCP) 4.5 and up to 12 times more carbon is exposed under a
high emission scenario of RCP8.5 (Nitzbon et al., 2020).

Abrupt permafrost thaw increases thaw rates and also causes
ecosystem shifts to conditions more conducive to producing
strong GHG emissions, notably methane. The IPCC Special
Report 1.5 estimated 27 PgC of cumulative carbon emissions
from permafrost thaw and wetlands by 2100 for low emission
scenarios (where PgC is carbon loss in CO2 equivalents). The
more recent studies indicate that under moderate and high emis-
sion scenarios (RCP4.5–RCP8.5), emissions from abrupt thaw
processes would approximately double the projected cumulative

carbon emissions compared to estimates of gradual thaw alone
(Gasser et al., 2018; Turetsky et al., 2020). Increased losses
through abrupt thaw may also apply to emission scenarios con-
sistent with 1.5- or 2-degree warming targets but these more
aggressive climate change mitigation pathways could halve abrupt
thaw carbon losses compared to high emission pathways
(Figure 2).

Peatlands have year-round waterlogged conditions that slow
plant decomposition, allowing peat to accumulate – one of the
largest natural carbon stores on land. Nearly half of northern
peatlands are underlain by permafrost. Abrupt thaw could shift
the entire northern hemisphere peatland carbon sink into a net
source of global warming, dominated by methane, lasting several
centuries (Hugelius et al., 2020).

Most of the methane emissions from thawing permafrost are
fuelled by recently stored carbon, rather than carbon sequestered
thousands of years ago (Dean, 2020; Dean et al., 2020). A study of
atmospheric methane over the past million years of Earth’s his-
tory, using ice cores from Antarctica, found no evidence for sub-
stantial releases of methane due to the destabilization of old
permafrost carbon stores (Dyonisius et al., 2020). This is because
when methane is produced at depth in thawing soils or sediments,
microorganisms living in the soil or water columns above oxidize
most of the methane before it reaches the surface, instead releas-
ing it as CO2 (Dean, 2020).

An ecological feedback associated with permafrost thaw that is
not yet included in global climate models is a priming effect on
soil respiration, caused by an increase in root activity. This amp-
lifies soil carbon loss, with an additional 40 PgC loss projected
from Arctic permafrost by 2100 for RCP8.5 (Keuper et al., 2020).

In summary, when adding new knowledge on abrupt thaw to
what’s currently modelled for gradual thaw, the expected carbon
emissions from permafrost could as much as double by year
2100. The carbon emissions from permafrost regions could be
even higher when including effects on root activity which increase
soil decomposition. Accounting for these effects will impose tigh-
ter restrictions on the remaining anthropogenic carbon emission
budgets.

3.3. Carbon uptake by land sinks – potentials and limits

Land ecosystems remove about 30% of the CO2 emitted through
fossil fuels and land-use change (LUC) emissions, an ecosystem
service referred to as the ‘(natural) land sink’ (see Figure 3;
Friedlingstein et al., 2019). This serves to slow the growth rate
of atmospheric CO2, and consequently reduces the rate of climate
change. The amount of CO2 absorbed by the land has also
increased rapidly over the past few decades, likewise to anthropo-
genic CO2 emissions it has more than doubled since 1960
(Friedlingstein et al., 2019) with extensive greening reported
(Piao et al., 2020) as well as large associated changes in the effect
vegetation has on local and global climate (Forzieri et al., 2020).
The increased land sink has occurred despite an increased preva-
lence of large-scale natural disruptions to ecosystems (McDowell
et al., 2020) and evidence that some of the largest carbon sinks of
the planet have already saturated (Hubau et al., 2020). Its increase
is stronger than changes in emissions from LUCs (Friedlingstein
et al., 2019) but largely undermined by the impact of LUC on
tropical ecosystems (Tagesson et al., 2020). The natural land
sink is not constant, however, and responds directly to environ-
mental changes, such as heatwaves and droughts (Bastos et al.,
2020), and anthropogenic interventions such as deforestation
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and LUC (Brando et al., 2020). The dynamic nature of terrestrial
carbon uptake makes understanding the regional hotspots of
source or sink potential – and the processes that dictate the like-
lihood of continued increased uptake in those regions – essential
for adequate policy design.

CO2 fertilization is widely reported to be the primary cause of
the increased land sink (Tharammal et al., 2019; Walker et al.,
2020). Rising atmospheric CO2 increases leaf-scale photosynthesis
and resource-use efficiencies, which can lead to increased plant
growth, vegetation biomass and soil organic matter. However,
due to the complexity and heterogeneity of ecosystems, the result-
ing impact of CO2 on carbon uptake is context dependent.
Particularly, nutrient availability constrains the ability of global
ecosystems to translate increased photosynthesis into increased
biomass and thus carbon storage (Terrer et al., 2019). The CO2 fer-
tilization and other effects beneficial for carbon uptake are further
offset by the detrimental impact of warming on soil carbon
(Vaughn & Torn, 2019) and permafrost (Wang et al., 2020a),
and regional increases in forest mortality due to changes in the fre-
quency of extreme events (McDowell et al., 2020). A recent report
suggests that CO2 fertilization effects on vegetation photosynthesis
are globally declining as a result of these and other offsetting fac-
tors such as water and nutrient limitations (Wang et al., 2020c).

The processes that offset CO2 fertilization are highly regionally
specific, and emerging evidence suggests that many tropical

regions are at or near sink saturation (Hubau et al., 2020),
while boreal and temperate zones continue to increase their
sink capacity (Tagesson et al., 2020). LUC impacts explain
much of the regional differences with deforestation in tropical
regions (Brando et al., 2020) and increased wood harvesting in
Europe (Ceccherini et al., 2020). Moreover, unprecedented carbon
losses also occurred due to fires in Australia, California, the
Amazon and the Arctic, with fire impacts predicted to worsen
as a result of anthropogenic climate change (Bowman et al.,
2020; Witze 2020). Although results for the world’s drylands
are currently inconclusive, recent reports suggest that previous
long-term aridity-change projections overestimated dryland aridi-
fication (Yang et al., 2019).

Several knowledge gaps exist regarding the future potential of
the land sink to offset carbon emissions. Although the effect of
CO2 on global ecosystem productivity is now widely acknowl-
edged, the estimated magnitude of the effect spans an order of
magnitude across studies (Walker et al., 2020), which greatly hin-
ders the ability of models to project future expected changes. On
large scales the natural land sink can be measured only concur-
rently with CO2 sinks and sources due to land-use activities.
Better quantification of the net LUC flux is thus key for a better
understanding of the natural land sink. Land management is an
important unknown, and practices that co-deliver food security,
climate change mitigation and combat land-degradation and

Fig. 2. Thawing coastal permafrost in Arctic Canada with person for scale. Credit: G. Hugelius.
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desertification are needed (Smith et al., 2019). Although effective
practices could potentially achieve up to 30% of mitigation targets
needed to limit warming to 1.5°C (Roe et al., 2019), proposed
approaches based on widespread afforestation need to recognize
the potential negative impacts of tree planting, such as habitat
loss and interference with naturally treeless ecosystems (Bond
et al., 2019). Funding mechanisms for such natural solution
approaches are also needed, with renewed calls for carbon tax
strategies to support land-based mitigation (Barbier et al., 2020).

In summary, although we currently see a substantial and
slightly increasing land carbon sink, there is evidence of a weak-
ening sink capacity as the effects of drought and warming start to
outweigh CO2 fertilization effects (Figure 3).

3.4. Climate change will severely exacerbate the water crisis

Climate change is already causing extreme events in many water-
sheds, impacting communities (Madakumbura et al., 2019).
Changes in extreme precipitation are likely to be stronger than
changes in mean precipitation, with extreme events increasing
in intensity and frequency (Myhre et al., 2019). Extreme precipi-
tation will increase over all climate regions, but with greater inten-
sity in humid and semi-humid regions compared to semi-arid
areas, with a corresponding change in flood risk – overall flood
intensity is also projected to increase for most areas (Tabari
et al., 2019). Changes in precipitation impact spatio-temporal dis-
tribution and water availability, with seasonally variable rainfall
regimes anticipated to become even more variable, whereas
regimes with low seasonal variation will receive more rainfall in
the monsoon (Konapala et al., 2020). There is likely to be an
increase in the aridity of 72% of land area which, even when
accounting for vegetation response to the increased CO2 levels,
is expected to have deleterious effects on ecosystems and their
ability to sustain life. This particularly affects the Middle East,
North Africa, south Europe and Australia (Tabari et al., 2019).
Urbanization is further altering regional climate patterns – for
instance increasing the magnitude and recurrence of extreme

precipitation events in large urban areas in China (Li et al.,
2019). Climate hazards will drive water scarcity due to physical
shortage, or scarcity in access due to the failure of institutions
to ensure a regular supply or because of a lack of adequate infra-
structure (Empinotti et al., 2019).

Extreme events are very important drivers of water crises, how-
ever, current practice in general circulation models may under-
state the potential for significant changes in the hydrological
cycle including the risk of extreme events (Hamstead & Coseo,
2020; Lomba-Fernández et al., 2019; Nicklin et al., 2019), for
instance by focusing on the ensemble mean and variance
(Tegegne & Melesse, 2020). Changes in extreme precipitation
require greater attention in climate modelling and prediction
research. There is greatest global uncertainty in tropical and sub-
tropical regions because of a combination of the difficulty in mod-
elling convective rainstorms and the sparsity of weather
observation networks for model validation and refinement
(Tabari et al., 2019).

Climate change coupled with socioeconomic drivers can also
impact water quality – for instance shifts in monsoon timings
can lead to dilution or concentration of nitrogen, phosphorus
and other pollutants (Whitehead et al., 2019). Conversely, water
quality and pollution levels can impact the ability of sensitive eco-
systems such as coral reefs to recover from extreme climate events
(MacNeil et al., 2019).

The Cape Town water crisis has been a clear example of a
water insecurity event that is indicative of how extreme climatic
events are exacerbated by climate change. In 2018 Cape Town
went through a severe water crisis as a result of a multi-year
drought. Shepherd (2019) reviewed how the city responded to
the threat of ‘Day Zero’ for the urban supply, the moment
when the reservoirs might run dry. The water crisis in Cape
Town has complex political and social ramifications, both reinfor-
cing existing inequalities and increasing competition between
water users, but also opening up new potentials for solidarity
and collective action. Water conservation efforts, particularly
the city’s creative campaign to reduce demand among residents
and businesses, reduced the severity of water scarcity (Simpson
et al., 2020; Van Zyl & Jooste, 2020).

The impacts of water crises and climate risks are highly
unequal, driven by social inequality (Craig et al., 2019; Roshan
& Kumar, 2020; WWAP, 2020). A review of water, sanitation
and hygiene (WASH) and gender linkages shows that this highly
unequal impact of inadequate water supply is the rule (Pouramin
et al., 2020). Inadequate WASH resources disproportionately
affect women and girls, leading to negative health outcomes in
71% of the studies reviewed.

Finally, there is increasing policy recognition that water-
related extreme events are also contributing to the migration
and displacement of millions of people. A new United Nations
(UN) report documents these cases and suggests that rather
than trying to prevent climate-driven migration, the inter-
national policy community should begin considering migration
as a potential adaptation strategy, one that can help in achieve-
ment of the Sustainable Development Goals (SDGs) (Nagabhatla
et al., 2020). Migration, urbanization and climate change are dis-
ruptors that can catalyse shifts in values towards water use and
management (IPBES, 2019). Integrated climate change mitiga-
tion and adaptation strategies could be a win–win policy: it
could concurrently combat both the causes and impacts of cli-
mate change, thus help tackle water crises and disaster risk in
tandem (WWAP, 2020).

Fig. 3. Long-term trajectories of the residual land sink, along with the atmospheric
CO₂ growth rate and emissions from fossil fuel burning and land use. The inset attri-
butes the long-term changes in the sink to the percentage contribution of CO2 fertil-
ization, LUC and other (e.g. N-deposition, ozone and phenology) factors (data from
Tharammal et al., 2019).
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3.5. Climate change can profoundly affect our mental health

Climate change is contributing to increased injuries, illnesses and
deaths, with health risks projected to increase as temperatures, pre-
cipitation and other climatic variables continue to change (Haines
et al., 2014). There is growing evidence that changing climatic con-
ditions are adversely affecting mental health including states of
mental wellness, emotional resilience and psychosocial well-being
(see e.g. Basu et al., 2018; Hanigan, Schirmer and Niyonsenga,
2018). These affects can become severe when people experience
the consequences of cascading and compounding risks, such as
heatwaves coincident with wildfires. Climate hazards can result
in new or worsened stress and clinical disorders such as trauma,
anxiety, post-traumatic stress disorder and depression (Hayes,
Berry & Ebi, 2019; Middleton et al., 2020; Wu, Snell & Samji,
2020). Some studies describe increased risk of suicide related to
exposure to warming temperatures (Burke et al., 2018b).

In 2016, it was estimated that mental and addictive disorders
affected more than 1 billion people globally (Rehm & Shield,
2019) but accurate statistics are lacking. Growing public awareness
of the current impacts and future risks of changing climate and
weather patterns, wildfires, sea level rise and ocean acidification
are increasing the prevalence of emotional responses, especially
among youth concerned about the future (Clayton, 2020). Terms
used to describe this phenomenon include eco-anxiety, biospheric
concern and solastalgia (Cianconi, Betrò & Janiri, 2020). It is
expected that rising sea levels and coastal erosion and other cli-
mate impacts will contribute to relocation, displacement and
migration away from high-risk human settlements (McMichael
et al., 2020; Palinkas & Wong, 2020). The associated disruption
of community networks, livelihoods and place attachment can
lead to heightened psychosocial risks (Hayes et al., 2020).

Tackling climate-related mental health issues requires proactive
planning with (inter)national agreements, preparedness building
activities but also displacement, migration and mental health sup-
port for those on the move or ‘left behind’ (Matias, 2020;
Schwerdtle, Bowen & McMichael, 2018). Health-system resilience
also needs to be strengthened to include mental health support for
survivors of climate-related disasters, including the mental health
impacts that can last years from living in temporary shelters
over prolonged periods of time or enduring the lengthy recon-
struction of settlements (Schwartz et al., 2017; Yokoyama et al.,
2014). Figure 4 shows a comprehensive list with factors influencing
mental health, and how mental health, well-being and emotional
resilience can be improved (Hayes, Berry & Ebi, 2019). In order
to better understand the risks to mental health arising from cli-
mate change, it is important to support transdisciplinary research
and practice collaborations (Hayes, Berry & Ebi, 2019).

A large body of research identifies strategies for addressing
mental health and improving emotional resilience (Hayes &
Poland, 2018; Hayes et al., 2018). Such strategies will need to be
harnessed and adapted to address current and future mental
health risks and impacts of climate change. Concrete actions
include communicating with individuals and populations about
climate change and mental health; advocacy for GHG reductions
and adaptation measures that enable populations to cope with,
prepare for and respond to climatic risks. In this regard, govern-
mental acknowledgment of mental ill-health as a worrying and
increasing burden of disease is growing (McIver et al., 2016;
Rehm & Shield, 2019).

Policies and measures to protect and strengthen blue and green
spaces (i.e. visible waters and greenery, respectively) are important

as the ecosystem services they provide are associated with positive
mental health and well-being outcomes (Bratman et al., 2019).
For example, the presence of green space during childhood has
been associated with better mental health later in life
(Engemann et al., 2019). Likewise, short, frequent walks or time
spent in blue spaces have proven mental health benefits (Vert
et al., 2020). Ecosystem service assessments and policies, land-use
decisions and climate change resilience plans need to include psy-
chosocial well-being considerations. Such considerations are also
fundamental components of climate-resilient development and
have multiple benefits – for human health and the health of
our natural environment.

In sum, climate change can profoundly affect mental health.
Cascading and compounding risks are projected to increase, con-
tributing to anxiety and distress. There are opportunities to
address the mental health consequences of climate change,
including by implementing and communicating effective mitiga-
tion and adaptation strategies (such as blue and green spaces),
protecting ecosystems and biodiversity with resultant co-benefits
for human health, as well as developing mental health support
strategies.

This insight is further elaborated on in the Supplementary
material.

3.6. Many governments are missing the opportunity to use
COVID-19 recovery spending for decarbonization

In the first half of 2020, the COVID-19 pandemic led to wide-
spread confinement and human mobility restrictions, resulting
in economic contraction and reduced emissions of GHGs and
air pollutants. For this period, global CO2 emissions were esti-
mated to decline by 8.8% compared to 2019 (Liu et al., 2020).
This included a CO2 emission decline of 17% at days of peak lock-
down (Le Quéré et al., 2020) and a nitrogen oxides (NOx) decline
of 30% (Forster et al., 2020) in April. The transport sector was
responsible for roughly half of the decline, while industry and
the power sector yielded another 43%. Declines in single countries
were even greater than the global total, averaging one-quarter at
respective peak confinement. Significant air quality improvements
were also observed, especially in urban areas, attributable to a
reduction in car use, factory production and construction activ-
ities (Wang 2020b).

Despite large reductions during lockdowns, global carbon
emissions have bounced back and are expected to decline by
‘only’ 7% in 2020 as a whole (Friedlingstein et al., 2020).
Emissions from cars and other vehicles have returned and are
close to 2019 levels as economies are opening up, while emissions
from air travel are still down by almost half. To make 2020 a turn-
ing point in global emissions, the 7% emission reductions
expected for 2020 will need to be repeated year on year to reach
net zero by mid-century (Hepburn et al., 2020). Climate change
response strategies with accelerated systemic changes in energy
sources, technology, personal choices and additional policies
(Barbier, 2020) are essential to stay on a low-carbon path.

Some major economies like the United States, Japan and
Germany are implementing recovery packages amounting to
nearly 15% of their GDP (Sovacool et al., 2020a). The size of
these packages means that they can lock the world into more or
less green trajectories. The global investment requirement for a
Paris-compatible pathway has been estimated to be 1.4 trillion
USD per year in the period 2020–2024, a modest sum compared
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to the global stimulus funds (Andrijevic et al., 2020) amounting to
more than 12 trillion USD. Investments in areas like clean phys-
ical infrastructure, building efficiency retrofits, education and
training, natural capital and clean R&D can achieve both eco-
nomic revitalization and climate goals simultaneously
(Engström et al., 2020; Gawel & Lehmann, 2020; Hepburn
et al., 2020; Malliet et al., 2020). However, governments are not
taking the opportunity to decarbonize about 3.7 trillion USD of
stimulus funds being allocated to environmentally relevant sectors
suitable for such green investments (Vivid Economics, 2020).
Instead, G20 governments are committing 233 billion USD to fos-
sil fuel-based (‘brown’) activities, compared to only 146 billion
USD for green activities, as of November 2020 (SEI et al.,

2020). This will lock in brown activities for years or even decades
(Barbier, 2020; Hepburn et al., 2020) and also reinforce the power
structures favouring fossil fuel companies, including their ability
to hinder climate policy (Kuzemko et al., 2020; Mildenberger,
2020).

Although the GHG emission reductions caused by mobility
restrictions were mostly temporary, governmental economic
recovery efforts invested in low-carbon solutions could reduce
global warming by 0.3°C by 2050 and put the world on track to
meet the Paris Agreement goals (Forster et al., 2020).
Unfortunately, based on the stimulus plans announced at time
of as of this writing, most governments are still on crisis mode
and so far appear to be missing this unique and critically

Fig. 4. Factors that influence the psychosocial health impacts of climate change. A framework showing the mental health consequences of climate change and how
these consequences are mediated by the social and ecological determinants of health, response interventions and factors that influence psychosocial adaptation
when they are in place or when absent act as barriers to psychosocial adaptation. Adapted with permission from Hayes, Berry, and Ebi (2019).
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important opportunity for green investments (Climate Action
Tracker, 2020). The period following the containment of the pan-
demic, when additional recovery packages will be designed and
released, will be crucial for the global climate.

3.7. The COVID-19 pandemic demonstrates the need for a new
social compact for a just and climate-friendly world

The world has a unique opportunity to reshape the future in new
directions. COVID-19, coupled with divided and divisive national
responses, abruptly exposed the weaknesses of international
cooperation in an era of climate crisis (Oldekop et al., 2020).
COVID-19 has laid bare governance deficiencies in many coun-
tries and led to a disruptive new normal – the tackling of
which requires transformative strategies and collaborations.
COVID-19 and climate change are transboundary risks that affect
all regions indiscriminately. No government, community or com-
pany can unilaterally address the systemic risks posed by
COVID-19 or climate change to human well-being and economic
and environmental security. Finding new ways to act together is
crucial, and this requires the strengthening of capacity and inclu-
sive forms of governance.

Systemic risks will continue to grow (Renn et al., 2019).
Throughout 2020, climate disasters and actions to address
COVID-19 have together imposed difficult economic and social
hardships around the world, especially on marginalized commu-
nities, in many cases increasing inequality (Howarth et al., 2020).
Yet, at the same time, responses to COVID-19, coupled with
activism by social movements surrounding climate change,
opens up new possibilities for transformation and underlines
the need to develop a new global social compact for a more just
and sustainable future (Dixson-Decleve et al., 2020). People every-
where are increasingly aware of their vulnerabilities to emergent
transnational risks and the threats they pose to global systems
and supply chains for energy, food, water, transport and material
goods (Laborde et al., 2020). Short-term political expediency is
being challenged as communities demand effective, long-term
and just solutions to global risks, particularly for the most vulner-
able (Leach et al., 2018).

In 2020, the climate and pandemic crises catalysed the emer-
gence of an informal, yet increasingly powerful global commit-
ment to change:

(1) Youth, labour and indigenous climate movements redoubled
their commitments to creating and sharing knowledge and
pressuring governments and the private sector to act
decisively, even in the face of significant hurdles (Hayward,
2020; Whyte, 2020). In July, the United Nations created the
Youth Advisory Group on Climate Change.

(2) Public health researchers, the private sector and health offi-
cials urgently collaborated to develop effective responses to
COVID-19 (Rourke et al., 2020), and the climate science
community continued to advocate for action to address cli-
mate change and other systemic risks.

(3) Transnational networks of businesses, cities, regions and
countries collaborated to fight COVID-19 and to set targets
and develop strategies for achieving carbon-neutral or even
carbon-negative economies by mid-century (Bai et al.,
2020). In October, the International Energy Agency (IEA)
acknowledged that net-zero carbon by 2050 was the new
standard for a clean energy transition and laid out a roadmap
for the world to get there (IEA, 2020a).

Year 2020 witnessed a public willing to tackle systemic risks by
transforming the intertwined social, economic and technological
systems (Sovacool et al., 2020b) that have created overlapping cri-
ses of sustainability, health, equality and democracy (Miller,
2019). Generating shifts in human values and new ways of think-
ing and acting are often harder to achieve than technical solu-
tions. Yet, as public responses to COVID-19 have demonstrated,
when motivated, people can and do change. New narratives and
forms of imagination are emerging to guide transformative
change and to facilitate a transition towards new, more sustainable
and equitable models for the economy, more socially and envir-
onmentally responsible technological innovation, and more just
systems of governance (Eschrich & Miller, 2019; Iwaniec et al.,
2020).

Translating this emergent global compact into stronger forms
of international collaboration for the planet is the key to effective
long-term responses to COVID-19 and climate change. Systemic
risks will require innovative, adaptive, reflexive, transparent, par-
ticipatory and accountable approaches to governance (Brown &
Scobie, 2020; Chou et al., 2020). Rapid, networked, transformative
responses that foster greater trust and more just relationships
between diverse actors will be indispensable to creating a thriving
and equitable global future for all (Scobie et al., 2020).

3.8. Economic stimulus focused primarily on growth would
jeopardize the Paris Agreement

An increasing number of studies provide solid evidence that there
are substantial economic benefits of climate action in the short as
well as long term. Climate mitigation has substantial co-benefits,
here and now, in terms of local economic, environmental and
health benefits (Karlsson et al., 2020; Rauner et al., 2020).
Recent research insights show that economically ‘optimal’ abate-
ment could very well be in line with the UN climate targets of lim-
iting global warming to well below 2°C and to actively pursue a
1.5°C limit (Burke et al., 2018a; Glanemann et al., 2020; Hänsel
et al., 2020). As the remaining carbon budget is limited it is essen-
tial to use it on investments that lead to high net CO2 savings, that
is, have a high return on investment in terms of CO2-emission
reductions (Alfredsson & Malmaeus, 2019).

An important driver for the changing cost landscape is the sig-
nificant drop in costs being realized for renewable energy, battery
storage and electric mobility. The global average levellized cost of
electricity has fallen by 82% for solar photovoltaics, and 29 and
40% for offshore and onshore wind power respectively, between
2010 and 2019 (IRENA, 2020). Of all the newly commissioned
utility-scale renewable power generation projects, 56% (by cap-
acity) had a levellized cost lower than the cheapest new source
of fossil fuel-fired power (IRENA, 2020). Batteries for electric
vehicles in the United States have dropped in average price
from more than 1100 USD/kWh in 2010 to 156 USD/kWh in
2019 (IEA, 2020b).

There is a risk, however, that gains from growing clean energy
sources are offset by rapid growth of economic activity that
increase the overall demand for energy slowing down system-wide
decarbonization. Dyrstad et al. (2019) have shown that this has
happened in OECD countries since 1980. A large body of litera-
ture finds that there has generally been – at a global level – a
strong coupling between GDP growth, resource use and GHG
emissions (Haberl et al., 2020; Parrique et al., 2019; Vadén
et al., 2020). In high-income countries there is, in terms of
GHG emissions and if measured from a production perspective,
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evidence of a small absolute decoupling. Several countries have
shown that it is possible to combine (low) economic growth
with decreasing CO2 emissions, also for consumption-based emis-
sions, when there are targeted policies (Le Quéré et al., 2019). Still,
current policies are insufficient to reduce emissions globally at the
rate needed to achieve the goals of the Paris Agreement
(Roelfsema et al., 2020).

The decarbonization rate and mitigation costs not only depend
on technology development, but also on the rate and type of eco-
nomic development. In order to stay below 2°C, modelling scen-
arios with high growth often require CO2 removal (CDR) at
quantities that threaten several sustainability goals. Van Vuuren
et al. (2018) show that in a scenario with moderate growth, the
needs for CDR can be greatly reduced when combining a technol-
ogy transition with substantial behavioural changes.

Weighing in the critical time factor, recent scientific evidence
shows that if the economic recovery after COVID-19 has a pri-
mary focus on economic growth, with sustainability and climate
mitigation as a secondary goal, it could jeopardize our last chance
of achieving the Paris Agreement and safeguarding people’s
health, well-being and a prosperous economic development.

This insight is further elaborated on in the Supplementary
material.

3.9. Electrification increasingly pivotal for just sustainability
transitions and urban areas are at the forefront

Urban electrification has accelerated in recent years (World
Economic Forum, 2020). However, although the decarbonization
impacts of electrification are well documented in industrial and
transport sectors (Alarfaj et al., 2020; Arabzadeh et al. (2020);
Lah et al., 2020; Madeddu et al., 2020; Mai et al., 2020), compre-
hensive analyses of the role that urban electrification can play are
lacking (Fuso Nerini et al., 2019). The sustainable energy transi-
tion relies on a concurrent global urban transition (IRENA,
2019; IPCC et al., 2018). Urban electrification offers opportunities
to examine the challenges and harness the opportunities of urban-
ization and decarbonization in tandem (Romero-Lankao et al.,
2019; Allam et al., 2020); it opens up new areas of discussion
for bridging urban and energy planning, which require interdis-
ciplinary dialogues. Cities will need to develop new solutions,
including fundamental structural and systemic changes, to cope
with expected urbanization trends (Salvucci & Tattini, 2019)
and other emerging technological innovations, like e-commerce
and e-ride hailing.

The current wave of electrification is mainly driven by urban
buildings and on-road transportation, especially battery electric
vehicles, heat pumps and cookstoves (Romero-Lankao et al.,
2019). Electric utilities and investors see these changes as new
sources of growth, as can be seen from the global trends in invest-
ment in electricity networks. Rates of decline in carbon intensity
are forecast to be faster in cities and with municipally owned util-
ities, due to their renewable targets, unique regulatory structures
and prominent role in regional, state and national economies
(REN21, 2019). Electrification via micro-grids can support the
development of a small- and medium-sized enterprise-based
industry (Ganguly et al., 2020), that shares economic benefits
throughout communities (Westman, Moores & Burch, 2021),
and is linked with improvements in per capita income (Akin
et al., 2018). However, there is hardly any effort to examine
those possibilities in urban contexts.

The expectation is that urban electrification can help leapfrog
societies towards low-carbon sustainable energy systems and
facilitate broad-based, just changes in the urban environment,
thereby aligning adaptation and mitigation with the SDGs
(IPCC, 2018). Reductions in local air pollution and improvements
to health and quality of life are some tangible co-benefits of urban
electrification (REN21, 2019). Cities, including government, com-
munity and private actors, are at the forefront of innovation and
adoption of technologies and thereby can be hubs of accelerated
and equitable energy transitions (Bai et al, 2018; de Chalendar,
2019; Kern, 2019; Romero-Lankao, 2018; Ryan, 2015). Cities are
also places of informal settlements, environmental inequalities
and energy poverty; and adaptation may increase energy demand
(Gielen et al., 2019).

Urban electrification opens up opportunities to provide access
to clean and affordable energy from renewable sources (e.g.
Stewart et al., 2018) to over a billion people in the world who
lack access to electricity, many of whom live in rapidly urbanizing
areas or urbanized areas where access to electricity is highly
uneven (de Collaço et al., 2019).

Urban electrification can help democratize electricity provision
(Burke & Stephens, 2018). Decentralized energy systems, for
example, can facilitate a transition away from exclusively centra-
lized high-carbon electricity systems (Adil & Ko, 2016), returning
control to citizens over energy systems. Notable risks stem from
significant inequalities of access to decision-making on invest-
ments and technologies; unmitigated, these factors could deepen
the divide between those who benefit and can afford low-carbon
systems and those who do not, or who bear the negative impacts
(Korkovelos et al., 2020). This electrification divide is a question
that has not yet received sufficient attention in the academic
literature.

Many actions can help realize the potential of urban electrifi-
cation. Communities, local officials and utilities are introducing
decentralized power systems such as distributed energy gener-
ation, micro-grids and smart grids (Adil & Ko, 2016; Pullins,
2019). City officials are promoting the use of renewables in
their government-owned facilities and also integrating them
into their building codes (Schmid et al., 2020). Infrastructure is
also being deployed to support end-use electrification, like electric
vehicle charging solutions (IEA, 2020b).

It is, increasingly, grassroot movements that drive actions at
the city level, involving diverse stakeholders. Youth climate acti-
vists, community actors and transnational networks are engaging
in a variety of actions from working on urban planning, green
transport and grid integration, to challenging existing power rela-
tionships around current energy regimes as well as the actors and
political authorities who maintain them (Szulecki, 2018). Urban
electrification benefits, including reduction of GHG emissions,
will be realized only if the demands of the built environment,
institutional constraints and the carbon intensity of energy
sources are addressed (Castan Broto, 2019; Romero-Lankao
et al., 2019).

This insight is further elaborated on in the Supplementary
material.

3.10. Rights-based litigation as an essential tool in climate
action

Litigation is an essential tool to urge action to prevent dangerous
climate change and support the goals of the Paris Agreement
(Gerrard, 2019; Setzer & Byrnes, 2019; International Bar
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Association, 2020; Mitkidis & Valkanou, 2020; Wegener, 2020).
Most climate cases are public interest litigation against a govern-
ment (e.g. Urgenda Foundation v. State of the Netherlands, 2020)
although claims are also brought against private actors such as oil
companies (e.g.Milieudefensie et al., v. Royal Dutch Shell plc., filed
in 2019), and can be initiated before domestic courts and inter-
national courts, tribunals or human rights treaty bodies or non-
compliance mechanisms (Spijkers, 2020). Developing climate pol-
icy is typically the domain of the legislative branch of the State,
but given the urgency to act and the absence of adequate climate
action or enforcement, the courts come in as ‘lawmakers’ (Spijkers
& Oosterhuis, 2020; Voigt, 2019). This challenges conventional
interpretations of the balance of power and features a critical
interplay between scientific evidence and adjudication.

Climate cases have been based primarily on alleged human
rights violations, around which litigation in developing countries,
particularly in Latin America, is growing in scale and extent (Peel
& Lin, 2019). Such rights-based litigation appears to be a suitable
and effective channel to clarify the content and scope of existing
human rights, such as the right to life and the right to a private
life, in light of climate change impacts (Rodríguez-Garavito,
2020). The human rights prism has also led to a more focused
debate on the obligation of conduct that states have in order to
avoid dangerous climate change. This in particular details the def-
inition of due diligence and the requirement of states to reflect on
their highest possible ambition in their national climate plans,
policies and laws. Moreover, climate litigation plays an important
role in defining the content of a human right to a clean and
healthy environment, and how this relates to the duty to inform,
the precautionary principle and other substantive and procedural
principles of international environmental law (Peel & Osofsky,
2018).

Responsibility for extraterritorial emissions or harm is another
critical issue addressed by climate litigation. One contentious
issue in this context is whether states are responsible and should
account for ‘imported emissions’ (which are produced elsewhere
and cause emissions during those processes but are consumed
‘at home’) or ‘exported emissions’ (the result of exported oil
and gas products that are refined and burned abroad).
Extraterritoriality also applies to human rights violations due to
climate impacts, where the cause of such impacts may have
been in states other than those whose people are the victims of
such harm.

Climate litigation clarifies the issue of international legal
standing and representation of the rights and interests of future
generations in a healthy environment. Standing is closely linked
to establishing victimhood, which may involve future harm or
harm to future generations. In some instances, children have
initiated cases or similar proceedings as representatives of future
generations. In September 2019, 16 children – representing 12
nationalities – filed complaints against five countries before the
United Nations Committee on the Rights of the Child, and a
group of Portuguese youth lodged an application in September
2020 at the European Court of Human Rights against 33 states
to provoke legally binding climate action.

Furthermore, there has been an increase in climate-related
cases yielding legal rights of nature. For example, Asociación
Civil por la Justicia Ambiental v. Province of Entre Ríos, et al.,
filed 7 July 2020 in Argentina; and Demanda Generaciones
Futuras v. Minambiente, (Republica de Colombia, 2018), which
found the Amazon to have standing and be subject to protection.
The number of different actors who can represent climate-related

cases has widened, such as an NGO (McGrath, 2019), ombuds-
person, trustee, institution, governmental agency or a select
group of individuals. Also, courts, compliance procedures and
human rights treaty bodies are starting to be asked to recognize
the standing and rights of those who leave their country because
it no longer sustains their life – known as climate migrants, like
the case of Ioane Teitiota v. New Zealand (24 October 2019).

During recent decades, states have considered International
Courts and Tribunals (ICT) to be an appropriate forum for the
settlement of their international environmental legal disputes.
ICTs are increasingly recognized as a potentially powerful venue
for adjudication on climate and the court’s jurisdiction to advise.
This is due also to the demonstrated influence and cross-
fertilization among judges, courts and tribunals at domestic,
regional and international levels (Saiger, 2019; Wegener, 2020).
Recent decisions of ICT have highlighted the challenges of resolv-
ing environmental disputes, such as the assessment of the evi-
dence and the complexity of reparation for the loss of
environmental goods and services, including gas regulation and
carbon sequestration.

In summary, important developments are seen in climate liti-
gation concerning the expansion of who and what has legal stand-
ing in courts, who may represent interests such as that of future
generations, how to address harm across national boundaries,
the role of courts in mandating climate action and cross-
fertilization between courts and tribunals across levels and scales.

This insight is further elaborated on in the Supplementary
material.

4. Conclusions

Year 2020 will enter history as the year in which the COVID-19
pandemic ravaged our world and reshaped our lives. Global
responses to the pandemic provide a unique opportunity for the
crucial large-scale sustainable investments needed to reach the
Paris Agreement goals; these are investments that in turn are
needed for healthy, sustainable lifestyles and a prosperous eco-
nomic development. Although our horizon scan identifies a con-
tinued amplification in key environmental impacts (e.g. emissions
and permafrost thaw), it also points to opportunities that arise
from new views on climate change economics and governance,
partially in response to the pandemic.

The COVID-19 pandemic not only reinforces the links
between human health and climate change, it also provides a
strong manifestation of how global crises can emerge in the
hyper-connected world of the Anthropocene. Furthermore, it pro-
vides a unique opportunity for positive change by stimulating new
social contracts and narratives but it’s critical that economic
stimulus measures reduce the risk of climate change rather than
to drive short-term economic growth. Ultimately, the most funda-
mental 2020 insight may be that the world’s nations and citizens
can act together in the face of global threats and, although we can-
not yet be said to be on the right climate trajectory, we can draw
upon science and evidence to shape a safe, equitable and resilient
future.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/sus.2021.2
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