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ABSTRACT Inverters are a leading source of hardware failures and contribute to significant energy losses at
photovoltaic (PV) sites. An understanding of failure modes within inverters requires evaluation of a dataset
that captures insights from multiple characterization techniques (including field diagnostics, production data
analysis, and current-voltage curves). One readily available dataset that can be leveraged to support such an
evaluation are maintenance records, which are used to log all site-related technician activities, but vary in
structuring of information. Using machine learning, this analysis evaluated a database of 55,000 maintenance
records across 800+ sites to identify inverter-related records and consistently categorize them to gain insight
into common failure modes within this critical asset. Communications, ground faults, heat management
systems, and insulated gate bipolar transistors emerge as the most frequently discussed inverter subsystems.
Further evaluation of these failure modes identified distinct variations in failure frequencies over time and
across inverter types, with communication failures occurring more frequently in early years. Increased
understanding of these failure patterns can inform ongoing PV system reliability activities, including
simulation analyses, spare parts inventory management, cost estimates for operations and maintenance, and
development of standards for inverter testing. Advanced implementations of machine learning techniques
coupled with standardization of asset labels and descriptions can extend these insights into actionable
information that can support development of algorithms for condition-based maintenance, which could

further reduce failures and associated energy losses at PV sites.

INDEX TERMS Inverters, machine learning, natural language processing, photovoltaics, failures, weibull.

I. INTRODUCTION

Renewable energy has demonstrated significant growth over
the last decade, with quarterly utility-scale production — from
wind, solar, and hydro — topping coal-fired generation for the
first time in the U.S. in 2020 [1]. Solar capacity deployment
comprised 30% of all new builds in the U.S. over the last
5 years and as of 2020, is generating 2.6% of annual U.S.
electricity on average [2]. With increasing penetration onto
the grid, reliability of these renewable systems (i.e., main-
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tenance of functionality over time [3]) becomes increasing
important for ensuring affordability and grid stability [4]. The
cost of maintenance balanced against energy production — or
lack thereof — is a trade-off the plant owner must consider
for achieving the targeted levelized cost of electricity for
the system, which comprises lifetime costs (such as upfront
capital and maintenance) divided by lifetime energy [5].
There have been marked improvements in the reliability
of photovoltaic (PV) modules but balance of systems com-
ponents warrant further attention [6]. A review of current
literature has identified that inverters, in particular, have been
associated with a large fraction of PV system repair events.
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FIGURE 1. Inverter Subsystems. IGBTs are insulated gate bipolar transistors.

In an analysis of 3500 computerized maintenance manage-
ment system (CMMS) records, inverters accounted for 43%
of the records and 36% of the energy loss between Jan 2010-
Mar 2012 for 350 systems [7]. Similarly, a review of annual
performance reports from 100,000 PV systems installed as
part of the U.S. Department of the Treasury Section 1603 Pro-
gram identified inverters as leading hardware failures [4].
Inverter reliability plays a critical role in PV plant profitabil-
ity since inverter failures lead to either reduced or no energy
production; a recent industry report attributed 25% of lost
revenue to inverter availability [8].

The high frequency of inverter failures is attributed to the
multiple subsystems (with little redundancy in power elec-
tronics) that support a multitude of functions in harsh envi-
ronmental conditions. Inverters set the voltage to maximize
power from the PV collector field, convert direct current (DC)
to alternating current (AC), interface with the local utility
grid, measure and communicate energy production data, and
shut down PV systems during unsafe conditions [3], [9].
These functions are supported by multiple subsystems within
inverters - such as breakers, capacitors, heat management,
ground fault detectors, power supply, and many others (Fig-
ure 1) - each of which is subject to failures.

Reliability analyses of PV inverters have, thus far, eval-
uated the impact of array sizing on inverter lifetime [10],
the impact of different maintenance strategies and frequen-
cies on economic return [11], [12], and development of
fault-tolerant topologies [13]. Field-based failure information
has also been used to generate failure rates or probabil-
ity indicators [14]-[16]. The sensitivity of PV performance
and reliability analyses to data fidelity has also prompted
researchers to improve data processing methodologies [17]
and data quality activities [18]. Knowing the underlying
source of field data issues (e.g., communications outage vs.
production outage) can help inform how invalid values or
dataset reconstruction activities are handled [19].

However, integration of field failure insights into produc-
tion assessments is challenging since there is no single way
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to detect faults at PV sites [20]. Instead, multiple datasets
and techniques are leveraged to understand inverter failures,
including statistical evaluation of one-diode models [21],
wavelet analyses [22], [23], Fourier image reconstruction of
electroluminescene images [24] and neural network-based
classification of specific datasets (such as current-voltage
curves [25]) or components (such as circuits [26]). Informa-
tion from text-based sources (such as maintenance records)
can also provide a lot of insight into failure patterns [4],
[7], [19] but the diversity in these records has led to limited
utilization of this information for reliability analyses. Thus
far, such analyses have been limited to either individual plants
[14], [15] or for an individual company’s fleet [7], [16].

This analysis addresses this knowledge gap by leveraging
a large database of 55,000 corrective maintenance records
across 880 sites from multiple PV owners and operators
within the United States to gain insight into common failure
modes within inverters. The novelty of this work lies in the
utilization of machine learning (ML) to consistently classify
inverter-related records across multiple CMMS and identify
patterns in relative failure rates across inverter subsystems.
These findings help inform a number of ongoing activities
focused on further reducing the LCOE of PV electricity,
including inverter reliability simulation analyses, spare parts
inventory management, cost model estimates for operations
and maintenance (O&M), and development of standards for
inverter testing. Further, this work demonstrates the utility
of ML for diversifying the types of data - beyond numerical
data [27]-[29] to text-based information - considered for
reliability and failure analyses.

Il. METHODOLOGY

Maintenance records were collected from multiple sites
across the PV industry. These records were then processed
using ML in two ways: 1) to consistently identify records
related to inverters and 2) to group inverter records into
subcategories (Figure 2). In this analysis, we consider an
inverter failure to be any event that triggers a ticket in the
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FIGURE 2. Dataset Processing and Analysis.

TABLE 1. Summary of Corrective Maintenance Dataset.

Attribute All Records Inverter Records
Number of Partners 6 5
Number of Records 54,909 18,014
Number of Sites 880 677
Aggregate DC capacity (GW) 4.9 4.8
Aggregate AC capacity (GW) 3.8 3.7
COD Range 2008-2019 2008-2019
Number of States 26 25
Number of Climate Zones 4 4

Records Date Range Feb 2011 - Feb 2020  Feb 2011 - Feb 2020

CMMS [30]. The resulting grouped inverter-related records
were then analyzed for patterns, including trends in time,
space, and failure rates. The following subsections provide
additional details about the dataset, ML implementations, and
subsequent pattern analyses.

A. DATASET

The analyzed dataset consists of 55,000 corrective (or reac-
tive) maintenance (CM) records collected from 880 sites
owned-operated by 6 industry partners across the U.S.
(Table 1). CM records capture details about repair needs
associated with unplanned events, such as troubleshooting
communications, replacing fuses, resetting inverters, and
replacing inverter subcomponents [31]. The sites within the
database range in commercial operation dates (COD), from
2008 to 2019 (Figure A1). The sites represent a total capacity
of 4.9 gigawatts (GW) in DC and 3.8 GW in AC, with DC:AC
ratios ranging between 1 to 1.5.

Geographically, these sites span 26 U.S. states, with a
significant portion of the sites (based on capacity) located
in North Carolina, California, and Texas (Figure 3). The
sites span four climate regions (arid, tropical, temperate,
and cold regions) per the Koppen Climate Classifications
[32], with a majority of the sites in the temperate non-dry
climate zone (Figure A2). The CM records contain vary-
ing levels of detail, but generally, all contain information
about the specific site as well as the time and description
of the event. Site details also included information about the
types of inverters present at each site: central (strings of mod-
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FIGURE 3. Location of PV Sites Represented within the Dataset. The
dataset contains a high concentration of sites (based on capacity) within
North Carolina, California, and Texas.

ules aggregated in [re]Jcombiner boxes before entering the
inverter), string (strings of modules feed the inverter directly
without use of combiner boxes), micro (inverters installed
on each module), or some mixed combination of central and
string inverters used at a single site (Figure A3).

B. MACHINE LEARNING

Understanding the specific failures and patterns in
inverter subsystems has been challenging due to diverse
(non-standard) event capture practices within CMMSs. Each
PV fleet owner records and categorizes failures in what-
ever manner and level of detail they feel is appropriate.
Furthermore, there can be inconsistency in type and detail
of information recorded amongst maintenance technicians
within the same company. To date, CMMS analysis either
depended on existing classifications made by technicians [7]
or used manual categorization of entries (using either key
term identification or classification of individual entries) [4],
[33]. However, these approaches are time consuming and
not reproducible. Instead in this work, ML techniques were
introduced to the analysis to enable a more efficient and
consistent identification and classification approach of these
maintenance records. The supervised algorithm executed
quickly (<3 seconds) while the unsupervised algorithm took
4673 seconds to execute; both algorithms were executed on a
machine with an Intel Xeon CPU E5-1630 v3 processer with
48 GB RAM.

1) IDENTIFICATION OF INVERTER FAILURE RECORDS

The CM records generally contain details about the specific
asset (or equipment) associated with a failure, such as invert-
ers, trackers, transformers, or the overall facility (Figure A4).
Most of the collected records contained a label indicating
the type of asset to which a CM record pertains. However,
15% of the records were missing these specific details. These
entries were gap-filled using a supervised ML approach,
where the variable being predicted is the asset and the variable
being used for prediction is the description of the event
from the maintenance records (Table 2). The implementation
involved: 1) converting text-based description information
into a numerical representation using term frequency-inverse
document frequency (TF-IDF) and then 2) applying a support
vector machine (SVM) algorithm to generate the output of
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TABLE 2. Example Records for ML. For the supervised SVM implementation, descriptions were transformed using TF-IDF to predict missing assets. For the
unsupervised LDA implementation, inverter descriptions were analyzed to generate topics.

Alg. | Asset | Description
Inverter Inverter offline due to failure
Tracker Many trackers time drifted, leading to shading during backtracking
= Facility C4 could not remotely access SCADA via the remote desktop connection...troubleshooting a cell modem issue
5) Transformer  Transformer offline due to internal failure
Combiner CB 2.3 went offline around 2:00 PM on 25-Jan
Other Comms - Contact overdue since 3 days (5/14/2016 9:03:34 AM)
Alg. | Topic(s) [ Description
IGBT The alarm was showing a PEBB 2 IGBT Failure.
< Coolant Recharged the cooling systems to a static 30psi and monitored with the pump on.
S Ground Faults, Fuses Inverter is offline with Array Fault: GFDI has tripped fault. Field Wiring Repair

Communications, Unknown/cycle, Offline

interest. The TF-IDF transformations, which weight words
in a given CM record based on the relative frequency of word
occurrence in the overall dataset, were used to predict the
asset labels in the ML algorithm [34], [35].

A SVM algorithm, which trains a separate classifier for
each pair of labels, was used in this study since it had one of
the highest classification accuracies for the records [36]. The
records with existing asset labels were split into a training
(80%) and testing (20%) set for the SVM algorithm. The
results were evaluated based on an accuracy score gener-
ated by comparing the “predicted” asset from the trained
algorithm with the technician-labeled entry in the testing
dataset. The scikit-learn library in Python was used to process
the data and apply the SVM algorithm using the C-Support
Vector Classification function [37]. Subsequent analysis was
conducted for all records tagged with “inverter” as the asset.

2) CATEGORIZATION OF INVERTER FAILURE RECORDS
Structural topic modeling (STM) is an unsupervised ML
approach that uses Latent Dirichlet Allocation (LDA) to
identify ““topics” or groups of words that occur frequently
and exclusively together [38], [39]. Topic modeling has been
effectively used to understand patterns in text in diverse
fields, including sociology and law [40], [41]. STM is a robust
approach for identifying related records since it does not
rely on user specification of key terms and is not sensitive
to misspelled words. The ““stm” package in R was used to
conduct the structural topic modeling on the inverter-related
CM records.

STM was used to group the inverter CM records into those
covering similar topics and help identify patterns among
them. Each topic encompasses a different combination of
words found within the text and can be used to understand
the general category being discussed; the sum of all word
probabilities for a given topic is one. These topics are then
mapped onto the CM records to help identify the propor-
tion of a topic within each record; for a given CM record,
the topic proportions sum to one [42]. The resulting model
helps contextualize the data, including the most frequent
topics and the top words associated with each topic (Figure 2).
These topics are manually assigned a label based on the most
frequent words within the topics (Table 2). Similar to other
unsupervised ML techniques, however, the number of topics
used by STMs is user-specified; the “‘searchK” function
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Inverter down to fix communications problem on inverter 2.1. Power Cycle.

within the stm package in R was used as a diagnostic tool
to identify the number of topics for grouping the maintenance
records [43]. In this study, the CM records were clustered into
66 topics.

C. DATA ANALYSIS

Failure rates over time were estimated using a Kaplan-Meier
estimator, following the methodologies outlined by Gunda
and Homan [44]. A non-parametric approach, the Kaplan-
Meier estimator generates a conditional probability that esti-
mates the probability of a site not yet having experienced a
failure by a given point in time (for sites that experienced that
failure) [45]. The values range between zero to one, indicating
the probability that a failure will occur within a site by time t.
Inverters in the field can vary in the amount of time they have
been placed in service, with some inverters not experiencing
a particular failure within the period observed [46]. The
Kaplan-Meier estimator is able to account for this censorship
within the data, where censorship is defined as records ending
before a site experiences failure (either because the site went
offline, or observations at the site ended) [47]. Since the
sites all began operations at different times, failure analysis
is conducted as a function of time since commercial opera-
tion started. Given the limited information regarding specific
assets within the database, the analysis is limited to first
occurrence of a given failure at a site (i.e., subsequent failures
of the same type are not considered). While a non-parametric
approach allows for more flexibility, Weibull distribution
parameters are also useful for informing cost modeling efforts
[48]. These distribution parameters were derived using the
“survival” package in R [49].

A population of inverters in California may not see sim-
ilar stress to inverters in New York or inverters in Florida
due to various operational differences, including grid and/or
climatic conditions [46]. To understand these variations in
space and time within the inverter-related records, data visu-
alizations and STM evaluations were conducted. Time series
charts and pareto charts (which contain a rank order sum-
mary of items based on frequency) were used to identify the
general patterns in records. Specific patterns within topics
were also evaluated (using the ‘“‘estimateEffects” function
in the “stm” package in R [43]) to understand variations
in topic coverage as a function of the different metadata
characteristics, such as local climate, inverter type, time of
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FIGURE 4. Frequency of Inverter Records over Time. Generally, a higher
proportion of the records are present within the first 3 years of the site
commissioning. Fewer records after five years likely reflects limited data
since most sites are relatively young.

commissioning, and month of failure; these variations were
estimated using regression where the topic proportions serve
as the outcome while the metadata serve as covariates.
Correlations between the topics were also used to understand
patterns between associated records [50].

IIl. RESULTS AND DISCUSSION

A. MACHINE LEARNING IMPLEMENTATIONS

The SVM algorithm had an accuracy of 90%, indicat-
ing the predicted entries matched existing labels 90%
of the time. The gap-filled assets dataset indicated that
inverter-related records represent 33% of all records within
the CM database (Table 1; Figure A4). These records are
present for sites with central, string, and mixed inverter
types; no inverter-related records were identified at sites with
microinverters (Figure A3). Consistent with [4], a significant
percentage of inverter records - underscoring high failures
and associated maintenance activities - are concentrated in the
first few years of operations (Figure 4). The lack of a signif-
icant spike (reflecting infant mortality issues) in the first few
months of site operations (Figure 4) likely reflects discovery
of certain issues (e.g., faulty or loose connections) during
site construction and commissioning, which happen before
commercial operations commence and are not captured in
CMMSs [7], [46] while the presence of few records after
5 years likely reflects the young age of the sites (Figure Al),
consistent with larger industry trends [4].

Unlike the SVM implementation, the LDA implementa-
tion does not contain an accuracy score; rather its utility
is dependent on the coherency and interpretability of find-
ings. Results from STM indicate multiple interpretable topics
emerge from the CM records (Figure 5). The most common
subsystems discussed within the records are communications
(7% of records), heat management systems (i.e., coolants,
fans, and filters; 4% of records), ground faults (3% of
records), and IGBTSs (2% of records); multiple heat manage-
ment systems-related topics are present in the dataset, regard-
ing coolants (Topic 45), contactors/fans (Topic 54), and fil-
ters (Topic 15). Issues related to PCBs, capacitors, breakers,
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fuses, and enclosures are also discussed within the records
(Figure 5). Given the central role of the inverter within the PV
system, issues plaguing neighboring equipment, such as com-
biners and transformers are also discussed within the inverter
CM records. In addition to identifying specific subsystems,
the ML analysis identified three common troubleshooting
activities: power cycling of the inverters (Topic 7), remote
reset (Topic 11), and making repairs (Topic 30) (Figure 5).
A complete listing of top words within each topic can be
found in the Appendix (Figure A6). These failure modes are
generally consistent with findings from industry surveys and
maintenance record reviews [3], [4], [6], [7], [9], [33], [51].

Correlation analysis identified varying associations
between topics (Figure A7). The correlation between the
transformer-related topics (Topics 10 and 42) is higher
than the correlation between the communication-related
topics (Topics 19, 43, and 55) (Figure A7). The low cor-
relations between communication-related topics indicates
notable diversity in underlying causes. For example, if an
inverter were to fault resulting in a loss of communication,
that fault may or may not have been observed prior to
the inverter stopping communication. Ground fault-related
maintenance records (Topic 53) are highly correlated to
maintenance records discussing remote reset (Topic 11)
indicating nuisance tripping of these systems (Figure A7).
Topics associated with cabling (Topic 26), fuses (Topic 63),
IGBTs (Topic 23), and coolants (Topic 45) also have strong
associations with each other (Figure A7).

B. PATTERN ANALYSES

The four dominant subsystems from the STM analysis (com-
munications, heat management systems, ground faults, and
IGBTs) were further evaluated to identify patterns in failures.
Implementation of the Kaplan-Meier estimator indicates that
the likelihood of first failure as a function of time is relatively
high in the first year of site operations across all four of
these subsystems (Figure 6). Communication systems have
the highest likelihood of failure until 1500 days (~year 4),
after which heat management systems dominate (Figure 6).
The probability of a failure having occurred in commu-
nication systems reaches 50% at 685 days (~1.9 years),
while ground faults and heat management systems reach a
50% probability between 2-3 years (856 days and 908 days
respectively), and IGBTs fail at a slower rate, reaching
50% of failure at 1514 days (~4.1 years) (Figure 6). The
maximum failure probabilities observed for these systems
after 3200 days of operation (~8.8 years, the longest period
observed in the dataset), is 100% for heat management sys-
tems, 94% for ground faults, 92% for communications, and
84% for IGBTs (Figure 6). Associated Weibull parameters
fitting these failure rates (provided in Table 3) indicate a
decrease in failure rates over time, since the shape factors
are all less than 1 [44]. These parameters can be used to
inform PV reliability simulations and cost model planning
estimates [5], [6], [30], [48].
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FIGURE 5. Select Topics within Inverter Records. Y-axis indicates that topic number(s) while x-axis indicates the average probability of that topic being
present within a given ticket; probability values for subsystems with multiple topics (e.g., communications) were summed. Labels reflect the most
frequent words associated with the topics.

100+

~
[6)]
1

Probability of First Failure (%)
o 3

o
1

Topic
Communications

— Ground Faults

— Heat Mgmt. Sys
IGBTs

1000 2000 3000
Days since Commissioning

FIGURE 6. Probability of First Failures. Solid lines indicate probability of failure for the different topics with associated 95% confidence intervals in
shaded regions. Generally, communication systems have a higher probability of failure until 1500 days (~year 4), after which heat management systems
dominate. IGBTs have a lower likelihood of failure than the other systems.

Although inverter technology has changed over time, number of records related to heat management systems
the number of communication- and IGBT-related records (i.e., coolants, fans, and filters) has decreased over time
seem to be relatively stable on an annual basis (Figure 7). (Figure 7). These patterns could reflect changes in both
In contrast, the number of ground fault-related records technology implementation as well as performance. For
have significantly increased over the last decade while the example, code changes prompted the installation of ground
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FIGURE 7. Topic Variations for Different Commissioning Dates. Points
indicate mean values while gray bars indicate 95% confidence intervals;
negative probabilities emerge from the interpolated nature of the spline
function in the estimateEffects function. Number of records pertaining to
ground faults has significantly increased in recent years while number of
records related to heat management systems has decreased.
Communications and IGBT-related records have been relatively stable
over the last decade.

TABLE 3. Weibull Parameters for Annual Failure Rates.

Inverter Subsystem Shape Factor (o«)  Scale Factor (3)
Communications 0.69 3.29
Ground Faults 0.77 3.60
Heat Mgmt. Systems 0.93 3.35
IGBTs 0.81 6.01

fault detection devices more consistently within PV systems,
which has led to an increase in recorded observations (many
of which are false positives) [52].

Temporal patterns are also present within a given year with
inverter-related records being relatively frequent in the spring
and summer months (Figure AS). However, different seasonal
patterns emerge when looking at specific topics (Figure 8).
Both communication and ground fault issues have greater
occurrences in the spring and summer months (likely due
to increased moisture conditions) while heat management
issues peak in the fall months (Figure 8), which could reflect
refilling of coolants when these liquids contract in the cooler
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FIGURE 8. Seasonal Patterns in Topic Variations. Communications and
ground fault-related records are generally greater in the spring and
summer months while heat management-related records peak in the fall.
IGBT-related records are highest in Feb and Nov.

months. IGBTs also exhibit a different seasonal pattern, with
probabilities of these tickets highest in the late winter and
spring months with another significant increase observed in
late fall (Figure 8). The higher prevalence of IGBT issues in
Feb and Nov could indicate stress induced by higher array
voltage produced in lower temperatures when irradiance may
still be high, leading to maximum power flows that could
stress internal electronics.

Different patterns emerge as a function of site character-
istics as well. For example, sites with string inverters report
fewer communications issues while sites with central invert-
ers report ground fault-related issues more often (Figure A8).
The highest probability of failure is attributed to the sites with
mixed inverter types (i.e., both central and string) but the
dataset contains a relatively small percentage of these sites,
so more data is needed to validate this pattern (Figure A3).
The lower number of records related to communication and
ground fault-related records at sites with string-level inverters
could reflect the level of detail captured within CMMS
records since string inverters may often be replaced in their
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entirety (versus specific components within central invert-
ers). These variations have important implications given the
increasing installation of string inverters in current fleets
(Figure Al).

Arid regions appear to have a slightly higher likelihood
for ground faults than sites in other conditions but otherwise,
no significant variability due to climate was observed in
this analysis (Figure A9). This is likely due to the limited
number of sites in non-temperate regions within the database
(Figure A2). Since other studies have indicated a correlation
of inverter failures with climate zones [4], additional data
is needed to validate patterns found in this analysis and
associated drivers, such as wire management issues driving
the increased prevalence of ground faults in arid regions
(Figure A9).

C. FUTURE WORK
Future work should consider extending the ML implementa-
tions to extract additional details from the text descriptions,
such as cause and response activities associated with failures.
This would extend the insights gained from the maintenance
records, beyond those indicated by the correlation of topics
(e.g., high nuisance alarms for ground faults). Additional
text-based ML techniques that focus on relationship extrac-
tion and sentence sequence patterns within the text descrip-
tions can help support the development of these capabilities
[53], [54]. As more grid-forming inverters and smart inverters
come online [55], creating standardized approaches for data
collection and analysis can help improve the performance of
the implemented ML algorithms, including SVM and LDA,
as well as support benchmarking analyses, which can vary
based on fleet size, technology, location, scope, labor rates,
local energy prices, and available incentives [7], [33], [56].
Pattern analyses could also be extended to consider produc-
tion and financial information. Industry reports highlight that
inverter maintenance could be up to 75% of an overall annual
site O&M budget, with inverter replacement encompassing
an additional 60% [57]; however, little information is avail-
able regarding cost differences among specific inverter failure
modes. For example, IGBTs have been identified as an expen-
sive component [30] but details regarding the exact number of
labor hours and equipment costs associated with these repairs
were not readily available within the database. Expanding
the database and improving data collection practices would
support an evaluation of differences in failure rates due to
inverter size, manufacturer, warranty coverage, and inverter
hours as well as quantify associated cost and energy impacts
of the observed failures in future work [6], [33]. Fusion of
production information with maintenance records, in partic-
ular, would help quantify the information implicitly captured
in inverter topics, which range from impairment (degraded
power output and loss of major functionalities, such as com-
munications) to outages (Figure 5). Research is currently
underway to develop a text-to-timeseries toolkit that can
leverage these ML techniques to develop consistent labels in
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O&M datasets and support further evaluation of failure and
degradation patterns.

IV. CONCLUSION

This analysis highlights how ML techniques can aid in
text-based data preparation and curation for reliability analy-
ses, even when there’s a lack of standardization in O&M data
collection and management practices. Specifically, the imple-
mentation of supervised and unsupervised algorithms enables
an efficient approach for identifying records of interest and
categorizing them into consistent categories. These capa-
bilities for extracting insights from text-based information
can be extended to other energy sectors, such as wind [58]
and nuclear [59], with similar challenges and interests in
improving maintenance capabilities.

The data-driven evaluation of the maintenance records
in this study indicates that inverters continue to dominate
reported CM activities at PV sites and that inverter subsys-
tems emerge as a strong commonality for categorizing failure
modes across multiple CMMSs. Strong associations between
PV inverter topics also indicates the opportunities provided
by ML to identify co-occurring subsystems within a single
maintenance record, which might not be readily apparent if
these tickets were pre-labeled by technicians. Variations in
subsystem failures were also extended to demonstrate pat-
terns across time, space, and site features, which provide
important insights into potential root causes of these failures.
For example, the high prevalence of communication issues
during wet conditions (spring/summer peaks and in tropical
regions) indicates the importance of managing moisture con-
ditions for these components.

However, consistent with larger industry trends [4], most
of the sites within the database have only been online since
2015 (Figure A1). Thus, continued data collection is needed
to more robustly evaluate failure rates over time, particularly
for informing and developing cost-effective post-warranty
maintenance activities and frequency [5]. Improved data col-
lection to capture the specific component involved in a failure
would enable evaluation of recurrent patterns. An expanded
database would also support validation of patterns observed,
including whether few records for micro-inverters and string
inverters indicate greater reliability of these technologies or
poor data collection (Figure A3) as well as underlying cause
for the relatively low frequency of inverter-related records
in tropical climate regions (Figure A2). Understanding these
geographic and seasonal variations in inverter failures can
inform the design of tailored control strategies that can
improve reliability in performance [60].

In addition to expanding the data analyzed and standard-
izing labels, future work can consider additional text-based
ML techniques and fusion of text data with production and
financial data to develop actionable insights. Such increased
understanding of failure modes can inform ongoing reliability
activities as well as the development of new monitoring activ-
ities that shift the industry from reactive to condition-based
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maintenance activities, which could reduce overall system
downtime.
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