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Abstract: The rapid growth of distributed generator (DG) capacities has introduced additional controllable assets to improve 
the performance of distribution systems in terms of service restoration. Renewable DGs are of particular interest to utility 
companies, but the stochastic nature of intermittent renewable DGs could have a negative impact on the electric grid if 
they are not properly handled. In this study, we investigate distribution system service restoration using DGs as the primary 
power source, and we develop an effective approach to handle the uncertainty of renewable DGs under extreme conditions. 
The distribution system service restoration problem can be described as a mixed-integer second-order cone programming 
model by modifying the radial topology constraints and power flow equations. The uncertainty of renewable DGs will be 
modeled using a chance-constrained approach. Furthermore, the forecast errors and noises in real-time operation are 
solved using a novel model-free control algorithm that can automatically track the trajectory of real-time DG output. The 
proposed service restoration strategy and model-free control algorithm are validated using an IEEE 123-bus test system. 
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0 Introduction

Distribution system service restoration represents the 
power supply recovery process for electricity consumers in 
distribution systems after faults or power failures. Recent 
years have witnessed an increasing number of power 
outages associated with extreme weather events, such 
as the 2008 blackout in China caused by an extremely 

 Fei Ding
 fei.ding@nrel.gov

heavy snowstorm and the 2012 blackout in the United 
States caused by Hurricane Sandy [1]–[2]. Compared to 
transmission systems that usually have a meshed topology 
and redundant generation capacity, distribution systems 
typically have a limited number of sectionalizing switches 
and generation resources. Therefore, bulk transmission 
grids are more resilient to extreme events than distribution 
systems, meaning that the increasing threats of extreme 
events are more likely to devastate the power supply in 
distribution systems and lead to enormous social and 
economic losses [3]–[4]. 

Traditionally, distribution systems have relied 
exclusively on the power supply from bulk power 
systems, and they do not have the capability to restore 
load supply services when upstream transmission systems 

Scan for more details
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are experiencing major disturbances. This situation has 
changed because of the integration of distributed generators 
(DGs) in modern distribution systems. Distribution 
systems can leverage the capacity and flexibility of DGs 
to provide emergency power to critical interrupted loads 
when suffering from a major power outage and thus 
improve system resilience. The uncertainty associated 
with renewable DGs (e.g., wind turbines and solar panels), 
however, brings another challenge to DG-based distribution 
system service restoration; hence, the development of an 
effective distribution system service restoration strategy that 
can properly handle the uncertainty of DGs is of significant 
importance to distribution utilities. 

Existing research has explored the key issues during 
restoration in cases of distribution system failures, such as 
the general principles of distribution network restoration 
through reconfiguration [5], optimization of switch 
and tap-changer reconfiguration [6], fuzzy decision-
making restoration model [7], service restoration strategy 
considering multiple faults [8], and reconfiguration strategy 
for large radial distribution networks [9]. Distribution 
system outages caused by transmission system failures, 
however, are more difficult to recover because of the 
lack of reliable power sources. The application of DGs in 
distribution system service restoration has been addressed 
in existing work, such as service restoration with distributed 
energy storage [10], DG-based restoration considering 
cold-load pickup characteristics [11], microgrids as black-
start sources [12]–[14], and the distribution restoration 
strategy based on microgrids and the spanning tree search 
methodology [15].

These studies validated the feasibility of implementing 
DGs for distribution system service restoration; however, 
the DG generation capacity in these studies is generally 
redundant so that a reasonable restoration strategy can 
successfully leverage the flexibility of DGs to recover the 
interrupted load supply. Unfortunately, the installed DG 
capacity in most existing utility distribution systems is 
quite limited, and renewable DGs are stochastic [16]. If 
the DG devices are not capable of supplying all interrupted 
loads in the distribution systems, a proportion of outage 
loads will not be supplied and will remain isolated to 
guarantee the reliability of recovered systems/microgrids. 
In fact, little attention has been paid to restoration problems 
with insufficient distributed generation capabilities. To 
better use the generation capabilities of distributed energy 
resources (DERs) and supply sustainable power to as many 
loads as possible after a blackout, this study focuses on 
the distribution system restoration problem with a limited 
capacity of intermittent renewable DGs.

Another important issue that has not been properly 
addressed in existing literature is the real-time DG control 
methods during service restoration. On one hand, the 
forecast error of renewable DGs is inevitable. On the other 
hand, the renewable DG outputs are volatile and can change 
rapidly over time. Because they are the primary power 
sources during service restoration, a reasonable control 
method is needed to ensure that renewable DGs can act 
as reliable and sustainable power supplies. Existing DG 
control methods generally require an accurate system model 
to achieve the optimal control objective [17]–[18], whereas 
distribution system models and parameters can become 
unreliable when suffering from major disturbances such as 
power outages. Therefore, it is critical to investigate a real-
time control method that can effectively track the trajectory 
of renewable DG outputs and does not rely on system model 
knowledge.

In this study, we propose a mixed-integer second-
order cone programming (SOCP) model to optimize the 
distribution system service restoration by leveraging the 
DG contributions. The forecast error of renewable DGs will 
be handled by a chance-constrained approach and will be 
integrated into the proposed model to be efficiently solved 
by commercial solvers. When executing the optimized 
service restoration solutions, a model-free real-time control 
method is developed to track the renewable DG outputs 
and maintain the stability and reliability of restored systems 
without knowledge of the accurate system model. In this 
manner, distribution system operators can effectively 
perform service restoration based on local DGs to improve 
the distribution system resilience.

The remainder of this paper is organized as follows. 
Section 1 introduces the service restoration model with 
DG devices. Section 2 describes the employed model-free 
control method for real-time DG control. Section 3 presents 
the simulation results. Section 4 concludes the paper.

1 Service restoration planning model

Generally, DGs can have diverse characteristics in terms 
of fuel type, capacity, and ownership. Small capacity DGs 
(e.g., a few kWs) are mostly owned and operated by private 
customers; thus, these small DGs can be difficult to control 
and coordinate. Utility-scale DGs typically have much 
larger capacities (e.g., hundreds of kWs) and are owned or 
operated by utility companies. When suffering from power 
outages, utility-scale DGs can effectively follow control 
signals and provide considerable generation capacities; 
therefore, it is assumed that utility-scale DGs will be the 
primary power sources during service restoration. When an 
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outage occurs, the utility system operator coordinates the 
operation of utility-scale DGs to recover the power supply 
to outage loads.

1.1 Service restoration model

If the available generation capacities of DERs are not 
sufficient or reliable to supply all the outage loads in the 
distribution system, one or several restoration islands will 
be formed, and the DERs will be responsible for supplying 
power to the loads within their supply region. Basically, the 
restoration of a distribution system aims to maximize the 
capacity of restored loads and is subject to the characteristics 
of DERs and distribution system constraints, that is, 

  Max  
i i
∑ ∑
∈Ω ∈ΩT N

ϕ i i tP,
D (1)

             s.t.   P P Pi t i t i t, , ,
Gmin G Gmax≤ ≤(1 )+ ϖ   (2)

  Q Q Qi t i t i t
Gmin G Gmax
, , ,≤ ≤(1 )+ ϖ  (3)

          V V Vi i t i
min max≤ ≤,               (4)

  −z I I z Iij ij ij t ij ij
max max≤ ≤,   (5)

 P P V V g bi t i t i t j t ij ij t ij ij t, , , , , ,
G D− = +

j
∑
∈ΩN

( cos sin )θ θ  (6)

 Q Q V V g bi t i t i t j t ij ij t ij ij t
G D
, , , , , ,− = −

j
∑
∈ΩN

( sin cos )θ θ  (7)

  z ijij ∈ ∀ ∈Ω{0,1 ,} L    (8)

where zij is the Boolean variable for distribution lines, a 
positive value means that line ij is restored, and vice versa; 
ΩN, ΩL, and ΩT denote the sets of distribution system 
nodes, distribution lines, and considered restoration time 
intervals, respectively; ϕ i denotes the weighting factor of the 
interrupted load at bus i. The weighting factor is intended 
to distinguish the load priorities and can be determined 
based on the economic loss associated with per-unit energy 
consumption; Pi t,

D, Qi t
D
, , Pi t,

G, and Qi t
G
,  are the active/reactive 

load capacity and active/reactive power generation of the 
DER at node i, respectively; Pi t,

Gmax, Pi t,
Gmin, Qi t

Gmax
, , and Qi t

Gmin
,  

are the maximum/minimum available active and reactive 
power DER outputs at node i, respectively; ϖ represents 
the required reserve coefficient; Vi t, , Vi

max, and Vi
min are the 

nodal voltage magnitude and its maximum and minimum 
values at node i, respectively; Iij t,  and Iij

max denote the current 
magnitude and its maximum limit of line ij; θij t, , gij, and 
bij denote the phase angle between node i and node j, and 
the real part and the imaginary part of the (i, j)-th entry of 
the nodal admittance matrix, respectively. The radiality of 
the restored distribution islands should be guaranteed by 
introducing graph theory-based constraints, which will be 
discussed in Section 1.2.

This distribution system restoration model contains 
integer variables and nonlinear constraints, which makes it 
difficult to solve directly. In this study, the network radiality 
and AC power flow constraints are modified to reduce the 
restoration model complexity.

1.2 Network radiality constraints

Spanning tree constraints are widely used in existing 
literature to guarantee the radial topology of distribution 
systems. The original constraints should be revised to 
accommodate cases where multiple islands should exist; 
therefore, for distribution system service restoration 
problems with DGs, the spanning tree constraints can be 
revised as follows: 

  µ µ1 2
ij ij ij+ = ∈Ωz ij, L          (9)

  µ µ1 2
ij ij≥ ≥0, 0, ij ∈ΩL         (10)

  ∑
i

µ1
ij = ∀ ∈Ω ∉Ω1, ,j jN S          (11)

  ∑
i

µ τ1
ij j= ∀ ∈Ω, j S           (12)

               
j
∑
∈ΩS

τ j = − +N N z zS B
T              (13)

  τ j ∈ ∀ ∈Ω{0,1 ,} j S             (14)
where µ1

ij and µij
2 are auxiliary continuous variables that 

indicate the direction of the power flow of line ij. ΩS denotes 
the set of DG buses, and NS and NB denote the number of 
DGs and buses, respectively. τ j is a Boolean variable that 
determines the injected flow direction of DG node j.

Constraints (9) – (14) can manage situations where the 
number of restored islands is not determined. If multiple 
DGs are to be assigned to one island, only one of them will 
be considered as the source, according to (12) – (14); thus, 
(9) – (14) guarantee that all the restored islands are radial. 
Note that loops may be acceptable in distribution feeders 
under certain circumstances. In such cases, (9) – (14) can be 
neglected to formulate more flexible islanding strategies.

Remark: To maintain a steady restoration topology and 
avoid frequent switch operations, the Boolean variable zij 
is not time-variant, indicating that the topology will remain 
unchanged for the entire restoration duration (∀ ∈Ωt T). 
Hence, the number of restoration time intervals (i.e., the 
cardinality of the set ΩT) has a significant impact on the 
finalized restoration solutions. To minimize the influence 
of renewable DG forecast errors and maintain the flexibility 
of topological changes, utility companies should determine 
the restoration time interval based on: 1) the renewable DG 
generation forecast accuracy over time and 2) the acceptable 
switch operation interval. In this study, each time interval 
was set to 15 min and the total restoration horizon was 
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3 h because the short-term renewable DG forecast was 
relatively accurate.

1.3 Model convexification

The AC power flow equations in radial distribution 
networks can be converted into various forms by different 
methods to eliminate the nonlinearities introduced by the 
sine and cosine functions [19]–[20]. Although the AC 
power flows cannot be converted into linear constraints 
without approximation, they can be transferred into SOCP 
equations, which can be efficiently solved by commercial 
solvers. By employing the methods described in [20] and 
ignoring the shunt susceptance of the distribution lines, the 
nonlinear constraints in (4) – (7) are transformed as follows:

 P P g U g W b Ci t i t ij i t ij ij t ij ij t, , , , ,
G D− = − −

j
∑
∈ΩN

( ) (15)
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∈ΩN
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   W Wij t ji t, ,=  (18)

   C Cij t ji t, ,= −  (19)

  U U W Ci t j t ij t ij t, , , ,− −( )2 2( ) ≥ 0         (20)
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min max)2 2

< <, ( )            (21)

           (I z Iij t ij ij, )2 2
≤ ( max )                (22)

     (I g b U U Wij t ij ij i t j t ij t, , , ,)2
= + + −( 2 2 )( 2 )      (23)

where Ui,t, Wij,t, and Cij,t are introduced as auxiliary variables. 
Equations (15) – (23) are sufficient to convert the AC power 
flow equations of radial distribution systems into SOCP 
problems. Combined with the network radiality constraints 
(9) – (14), the optimization model is a mixed-integer SOCP 
problem.

Note that the inequality constraint (20) is a relaxation 
to maintain model convexity. Typically, SOCP relaxation 
is exact for radial distribution systems. Thus, relaxing 
(20) will not affect the accuracy because constraints (9) – 
(14) ensures the radiality of reconfigured networks. More 
discussions concerning the exactness of SOCP relaxation 
can be found in studies such as [21]. 

1.4 Uncertainty modeling

The uncertainty of renewable DGs will directly 
influence the nodal active power injection and further affect 
the optimality and sometimes the feasibility of distribution 
system restoration strategies. In this section, a chance-
constrained approach is employed to model the uncertainty 
factors when optimizing the restoration planning model.

Let Pi t,
Gmax,u and Pi t,

Gmax,l denote the upper and lower 
forecasted limits of Pi t,

Gmax at a confidence level of α i at time t, 
respectively. Thus, the chance constraint can be adopted to 
reformulate (2) as:

  P P Pi t i t i t, , ,
Gmin G Gmax≤ ≤(1 )+ ϖ           (24)

           P P P Pr i t i t i t i{ , , ,
Gmax,l Gmax Gmax,u≤ ≤ ≥} α        (25)

where Pr is the probability measure.
In general, Qi t

Gmax
,  and Qi t

Gmin
,  of renewable DGs are 

constrained by the rated capacity of their inverters [22]. In 
this study, they are conservatively calculated as,

         Q Q S Pi t i t i i t
Gmax Gmin G Gmax,u
, , ,= − = −( )2 2( )  (26)

where S G
i represents the inverter capacity of the i-th DG.

Equation (25) is normally handled by methods such as 
Monte Carlo simulation [23], which is generally considered 
computationally inefficient. Employing Pi t,

Gmax,l as the 
estimated Pi t,

Gmax could be a fast and feasible solution, but 
the results might be too conservative because it is less 
likely that the actual power output of each DER is near its 
estimated lower limit at the same time.

The probabilistic distribution function of renewable DG 
generation output is typically difficult to derive. However, 
the forecast error between the generation forecast and 
actual output can be modeled by the normal distribution as 
described below: 

  P Ni t i t i t, , ,
Gmax G G 2⊕ − µ σ (0, ( ) )  (27)

  µi t i t i t
G Gmax,l Gmax,u
, , ,= +

1
2
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   σ i t
G
, =

( )P P

2

i t i t, ,
Gmax,u Gmax,l

Φ−1  
  

−
1+

2
α i

 (29)

where Pi t,
Gmax⊕ denotes the actual available power output of 

the DG at node i at time t; µi t
G
,  and σ i t

G
,  denote the expectation 

of the forecast Pi t,
Gmax and the standard deviation of forecast 

error between Pi t,
Gmax⊕ and µi t

G
, , respectively; and Φ−1 denotes 

the inverse function of the cumulative distribution function 
of the standard normal distribution.

Assume that there exist Ψ intermittent DGs, and the 
correlation coefficient between any two DGs is known 
a priori. The covariance matrix of the DG forecast error, 
denoted as Θ, can be calculated as, 

  Θ = =  ϑ Ψi j, Ψ Ψ×
i j, 1, 2,...,  (30)

   ϑ i j, =


ρ σ σij i t j t

( ) =σ i t
G G

G 2

, ,

,

i j
i j

≠
              (31)

where ϑ i j, , and ρij denote the covariance and correlation 
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coefficient between DG i and j, respectively.
Integrating Θ into evaluating DG output uncertainties 

alleviates the conservative estimation, and the generation 
capabilities of the DERs can be better used. As a result, (27) 
can be modified as, 

         Pi t i t i i, , ( ,:) ( ,:)
Gmax G 1 T≤ µ + Φ−  

  
1+

2
α i π Θπ  (32)

        Pi t i t i i
Gmax G 1 T
, , ( ,:) ( ,:)≥ µ − Φ−  

  
1+

2
αi π Θπ  (33)

where π ( ,:)i  denotes the i-th entry of the DG active power 
generation sensitivity vector, which can be calculated 
based on [24]–[25]. Note that (32) and (33) are linear 
approximations of (25). Nonetheless, they are more 
computationally efficient than (25) and less conservative 
than using Pi t,

Gmax,l as the available power generation of 
renewable DGs.

1.5 Complete model formulation

Let S P P Q Q Pi t i t i t i t i t i t, , , , , ,=   
G D G D Gmax, , , ,

T
.  The complete 

mathematical model for distribution system restoration can 
be described as follows:

S z U W Ci t ij ij ij j i t ij t ij t, , , ,, , , , , , ,µ µ τ1 2
max

t i
∑
∈Ω ∈ΩT N

∑ ϕ i i tP,
D 

s t. . 2 , 3 , 8 23 , 32 , 33( ) ( ) ( ) − ( ) ( ) ( )

2 Model-free control algorithm

Section 1.4 employed a chance-constrained approach 
to model the uncertainty of renewable DGs, but the 
forecast error and renewable DG output fluctuations 
are still inevitable. When the generation of renewable 
DGs is redundant, the distribution system can supply 
more interrupted loads to minimize economic loss. If the 
generation of renewable DGs falls below expectations, 
additional generation resources should kick in to maintain 
the reliability of the restored system. Therefore, the real-
time control algorithm should be able to track the trajectory 
of renewable DG generation and adjust the operational 
strategy in a timely fashion. 

Another concern lies in the accuracy of the distribution 
system models. Typically, utility companies do not have 
accurate data on secondary feeders. Further, extreme 
events such as natural disasters can cause various faults/
malfunction scenarios that are difficult to model and detect; 
thus, traditional model-based control algorithms might 
become infeasible when dealing with distribution system 
restoration problems. A model-free real-time control 
algorithm that can achieve satisfactory control performance 

without relying on accurate system models is desired. 
The employed real-time model-free control algorithm 

is demonstrated using a general optimization problem 
described in (34)–(36) as an example. For DG-based 
distribution system service restoration, the real-time control 
objective is to use renewable DG outputs and reduce load 
curtailment:

      Min  f f0
(k k k) ( y x x( ) ( )) + ∑

m

M

=1
m m
( ) ( ) (34)

        s.t.   xm m∈ = …χ (k ) , 1, 2, ,m M (35)

      g n Nn
(k k) ( y x( ) ( ))≤ 0, 1,2, ,= …  (36)

where χ m
(k ) is a convex set representing the feasibility 

region of control input xm of system m at control step 
k, and y x(k ) ( ) is an algebraic formulation of observable 
system outputs. f0

(k ) () is a time-varying function associated 
with y x(k ) ( ). gn

(k ) () denotes the time-varying constraints on 
y x(k ) ( ).

Naturally, this method is model-based, and the 
Lagrangian-based control method can be described as,

x x( 1)k + = − −Proj 1
χ(k )

  
 

 
 
 ( α α) (k )

 
 
 
  C y C y

∇ +

T k T k

x

∇ + ∇

f (

y m m

k k)

f g

(
0
(

x

k k k)

(

(

)

ˆ ˆ

)
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m

M
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λ( ) ( ) ( )


 (37)

         λ α λ αm m
( 1) ( )k k+ = − +Proj 1{( ) (k k) g y( ) ( ˆ )} (38)

where α > 0 is a constant step size, and ŷ( )k  is the 
measurement of y x(k k) ( )( ) . Note that the control algorithm 
(37)–(38) still relies on the knowledge of the system model 
CT.

To derive a model-free variant of (37) and (38), we first 
look at Taylor’s theorem. For any r ∈ , we have,

F r F r F F O r( x x x x+ = + ∇ + ∇ +ξ ξ ξ ξ) ( ) T T( ) r
2

2
2 3( ) ( ) (39)

Taking r =∈ and r = − ∈, the contraction yields:

F F F O( x x x+ − − = ∇ +∈ ∈ ∈ ∈ξ ξ ξ) ( ) 2 T 3( ) ( ) (40)
where ∈ξ indicates that the variable x is perturbed by ± ∈ξ.

Therefore, the gradient can be approximated by:

 ∇ =  + − − ˆ F F F( x x x)
2
1
∈

ξ ξ ξ ( ∈ ∈) ( )  (41)

As shown in (41), the gradient approximation no longer 
requires knowledge of the system model CT. Returning to 
the discussed general optimization problem (34)–(36), the 
approximated Lagrangian can be calculated as,

∇ = ∇ + − +

2

ˆ

1

L

∈

(k k k k k k k k

ξ

)

(k k k k k k) (λ
x
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(
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( ˆ ˆ(

2

+ −

1

)

∈
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(

(

) (
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 (42)

where ŷ(
+
k ) and ŷ(

−
k ) are the measurement of ŷ(k ) with 
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introduced perturbation ± ∈ξ.
With the Lagrangian approximated using (42), the 

model-free variant of (37) and (38) can be written as,

              x x( 1)k + = − − ∇Proj 1
χ (k ) {( α α) (k k) ˆ L( ) } (43)

         λ λ( 1) ( )k k+ = − +Proj 1{( α α) (k k) g y( ) ( ˆ )} (44)

This model-free control algorithm quasi-linearly 
converges to the optimal solution; the proof can be found in 
[26] and will not be further elaborated.

3 Case study
3.1 Simulation setup

A modified IEEE 123-bus test feeder, as shown in Fig. 1, 
was adopted as the test distribution system in this study. 
The load data and line parameters can be found in [27]. 
It is assumed that seven DGs exist in the test system, 
including three diesel generators, two wind turbines, and 
two solar generation stations. The DG parameters are 
listed in Table 1. In addition, four tie lines—56-95, 83-
95, 49-250, and 151-300—are added to the test system; 
thus, the modified system consists of 123 distribution 
nodes and 126 distribution lines. 

The distribution system service restoration problem is 
solved during a 3-h horizon with a time resolution of 15 
min. The forecasted wind and solar generation outputs are 

illustrated in Fig. 2. The real-time control algorithm will be 
solved every 2 s. The proposed distribution system service 
restoration model is solved by GAMS/CPLEX, and the real-
time control algorithm is solved in MATLAB. To simulate 
the real-time fluctuations of renewable DGs, Gaussian noise 
will be added to each renewable DG as follows: 

  y y yˆm m m
(k k k) = +( ) W ( ) (45)

where W denotes a random variable that follows a Gaussian 
distribution. The standard noise deviation was set to 0.1% 
for the simulation.

3.2 Simulation results

In this simulation, it is assumed that the upstream 
transmission system suffers from an outage, meaning that 
substation node 149 has no power supply. Assume that an 
outage occurs at 13:00. As shown in Fig. 2, both the solar 
generation and wind power outputs gradually decreased 
after 13:00. The distribution system reconfiguration is 
illustrated in Fig. 3, where switches 49-250, 50-51, 61-160, 
and 83-95 are open to maintain radiality. Table 2 lists the 
restoration results. 
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Fig. 2  Renewable DG generation and forecast profiles
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Fig. 1  Test system
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Table 1  DG parameters 

Bus no. Type Rating capacity/kVA Power factor limit

21 Diesel 500 0.8

35 Solar 600 0.9

48 Wind 800 0.9

64 Diesel 500 0.8

78 Solar 600 0.9

95 Wind 800 0.9

105 Diesel 500 0.8
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As shown in Table 2, the available generation outputs 
of renewable DGs were efficiently used by the proposed 
restoration strategy. The optimization model proposed in 
Section 1 reconfigures the distribution system based on the 
conservative DG output forecast, and the real-time control 
algorithm is capable of tracking the trajectory of renewable 
DG output to avoid excessive renewable generation 
curtailment. The voltage magnitude was well controlled 
using the proposed strategy, and the power loss was 
minimized by reconfiguring the distribution system through 
switch operation. 

Table 2  Performance of the developed restoration strategy

Item Value

Average nodal voltage (p.u.) 0.988

Average network loss rate (%) 0.902

Total restored load consumption (kWh) 6736.9

Total renewable DG output (kWh) 3168.4

Actual available renewable DG output (kWh) 3218.3

Renewable DG utilization factor (%) 98.45

The performance of the real-time model-free control 
algorithm between 14:00 and 14:15 is illustrated in Figs. 4 
and 5. Fig. 4 shows the total error between the scheduled 
renewable DG generation output and the actual DG 
generation capability. As shown in Fig. 4, the error is 
quite large at the beginning, when the real-time control 
algorithm first engaged. The large error is the result of the 
forecast error. By implementing the model-free control 
algorithm, the error rapidly decreases and fluctuates around 
zero. This fluctuation is caused by the real-time renewable 
DG generation fluctuation. It is validated that the real-
time model-free control algorithm can effectively handle 
the forecast error and follow the random fluctuations of 
renewable DGs. In this way, the generation capacity of 
renewable DGs can be effectively used to restore the power 
supply in the distribution system after an outage. 

Fig. 5 shows the generation profile of the wind power 
plant at node 48. In the beginning, the forecasted available 
generation output is near 235 kW in the restoration 
optimization model for the 14:00–14:15 period, whereas 
the actual wind power generation capacity is near 245 kW. 
Through the real-time control algorithm, the generation 
output of this wind power plant gradually increases to its 
maximum available output. 

3.3 Comparative studies

In this subsection, the following methods are simulated 
to compare the performances of different distribution system 
restoration strategies:

M-1: Deterministic distribution system restoration 
method without real-time control [12];

M-2: Chance-constrained distribution system restoration 
model in Section 1.5 without real-time control;

M-3: The proposed integrated restoration and real-time 
control algorithm.

The total restored load consumption based on these three 

Fig. 5  Real-time wind power generation based on the model-
free control algorithm
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Fig. 4  Total real-time error between scheduled 
DG outputs and actual DG generation capability
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Fig. 3  Service restoration topology
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methods is compared in Table 3. As shown in Table 3, these 
methods were simulated in three scenarios. In the accurate 
forecast and no real-time variation scenario (2nd row in 
Table 3), method M-1 has the best performance because the 
chance constraints employed by M-2 and M-3 will introduce 
conservativeness in the renewable DG forecast. However, 
M-3 can restore more load compared to M-2 because the 
renewable DGs will modify their output in real time based 
on their capability, which can relieve the conservativeness 
of chance constraints to some extent. Meanwhile, method 
M-1 has the worst performance in the inaccurate forecast 
and no real-time variation scenario (3rd row in Table 3) 
because of the forecast error. When real-time variation is 
considered (4th row in Table 3), both M-1 and M-2 show 
considerable drops in restored load consumption compared 
to the 3rd row of Table 3. This is because the DG generation 
schedules cannot adapt to real-time capability, and real-
time load shedding might be inevitable if renewable DG 
generation decreases. Conversely, the proposed method M-3 
does a good job in tracking the trajectory of renewable DG 
real-time variations and the restored load consumption is 
almost identical to the scenario without real-time variation. 

Therefore, it can be concluded from Table 3 that the 
deterministic method is only effective when accurate 
forecasts are available, which is generally not the case 
in practice. Without the real-time control algorithm, the 
chance-constrained optimization does not perform very 
well in terms of utilizing the available generation capacity 
because of the conservativeness of this method. The 
proposed method combines the chance-constrained approach 
and the real-time control algorithm to effectively handle the 
uncertainty of renewable DGs during the restoration stage. 

Table 3  The restored load consumption in kWh

Scenario M-1 M-2 M-3

Accurate forecast and no real-
time variation

6864.5 6624.1 6741.1

Inaccurate forecast and no 
real-time variation

6581.0 6624.1 6741.1

Inaccurate forecast with real-
time variation

6443.5 6494.7 6736.9

4 Conclusion

This study proposes a distribution system service 
restoration strategy using DGs as the primary power source 
to recover the load supply after an outage. The distribution 
system restoration problem is formulated as a mixed-
integer SOCP model, where multiple DGs can be grouped 

into the same island. The uncertainty of renewable DGs is 
handled by a chance-constrained approach. Furthermore, 
the forecast error and real-time fluctuations of renewable 
DGs are managed by a model-free control algorithm. The 
control algorithm can track the trajectory of renewable 
generation without relying on information from accurate 
system models. Simulation results validated the proposed 
distribution system restoration strategy and demonstrated 
that the model-free control algorithm can successfully 
handle forecast errors and real-time fluctuations. 

Intermittent renewable DGs should be accompanied by 
a variety of solutions to guarantee the success of distribution 
system restoration after outages and enhance the resilience 
of distribution systems. Possible options include mobile 
resource operation and connecting multiple distribution 
systems to networked microgrids. Further, local faults in 
distribution systems are not modeled in this study. If local 
faults exist, the islanding strategy and emergency cutoff 
planning for unexpected DG output decline should be 
considered in future work as well.
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