

Time Disciplined Non-PLL Active Synchronization for Grid Forming Inverters

Toby Meyers Texas Power and Energy Conference 2021 February 2-5, 2021

Project Breakdown

- 1. Grid Forming Inverters (GFMIs) [1]
 - Critical to providing stability for weak systems (high percent GFLI, microgrids, ...).
- 2. Active Synchronization [2]
 - With a DQ inverter, we can separate voltage and phase.
 - Phase is the key to synchronization.
- 3. Non-PLL [3] (Phase-Lock Loop)
 - PLLs are inaccurate in weak grids and computationally burdensome.
 - Solution is relying entirely on the internal clock and not the grid.
- 4. Time Disciplined [4]
 - With a reliance on phase, we need to have a solid phase reference.

Metrics from Existing Standards

TABLE IIEEE 1547 RELEVANT METRICS[5]

Requirement	Limit	Section of IEEE 1547-2018	
Absolute Voltage	0.7 - 1.1 PU	6.4	
Absolute Frequency	58.5 - 61.2 Hz	6.5	
ROCOF (Ride Through)	0.5 Hz/sec	6.5.2.5	
Enter Service	0.917 - 1.05 PU Voltage 59.5 - 60.1 Hz	4.10.2	
Reconnection Tolerances (with respect to the Grid)	0.1 Hz Frequency (59.9 - 60.1 Hz) 3% PU Voltage 10° phase	4.10.4	
Initial Grid Synchronization	Maximum EPS Line Voltage 138% for <1 cycle	7.4	

TABLE IIIEEE 1547.4 MODE COMPARISON[6]

Framework Mode	IEEE 1547.4-2011 Mode	Section of IEEE 1547.4-2011
Reconnection Coordination	Reconnection Mode	4.4.4
Ride Through	Area EPS-connected Mode (normal parallel operation)	4.4.4
	Transition-to-Island Mode	4.4.2
	Island Mode	4.4.3

Synchronization Modes

Inverter Model

Simulation Results – Frequency/ROCOF

Initialization, Islanding, Reconnection (Grid)

Blackstart (Inverter)

Simulation Results – Summary Table

TABLE IV SIMULATION RESULTS SUMMARY

Category/Measurement	Min Frequency [Hz]	Max Frequency [Hz]	Min ROCOF [Hz/sec]	Max ROCOF [Hz/sec]
Initialization (Inverter)	59.79	60.18	-12.81	11.13
Initialization (Grid)	59.92	60.05	-7.523	9.278
Ride Through (Inverter)	59.56	60.01	-12.51	13.04
Ride Through (Grid)	59.85	60.02	-10.89	8.336
Reconnection (Inverter)	59.94	60.38	-13.02	12.52
Reconnection (Grid)	59.97	60.15	-8.252	10.85
Blackstart (Inverter)	59.83	60.08	-9.996	7.26

References

- [1] P. Denholm, T. Mai, B. Kroposki, R. Kenyon, and M. O'Malley, Inertia and the Power Grid: A Guide Without the Spin. No. NREL/TP-6A20-73856, National Renewable Energy Laboratory, Golden, CO, May 2020.
- [2] J. Wang, A. Pratt, and M. Baggu, "Integrated synchronization control of grid-forming inverters for smooth microgrid transition," in 2019 IEEE Power and Energy Society General Meeting (IEEE PES GM), pp. 1–5, Aug. 2019.
- [3] J. Wang, B. Lundstrom, and A. Bernstein, "Design of a non-pll grid forming inverter for smooth microgrid transition operation," in 2020 IEEE Power and Energy Society General Meeting (IEEE PES GM), Aug. 2020.
- [4] M. S. Golsorkhi, M. Savaghebi, D. D. Lu, J. M. Guerrero, and J. C. Vasquez, "A GPS-based control framework for accurate current sharing and power quality improvement in microgrids," in IEEE Transactions on Power Electronics, vol. 32, pp. 5675–5687, July 2017.
- [5] "IEEE standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces," IEEE Std. 1547-2018, Apr. 2018.
- [6] "IEEE guide for design, operation, and integration of distributed resource island systems with electric power systems," IEEE Std. 1547.4-2011, July 2011.

Thank You

Toby.Meyers@nrel.gov

www.nrel.gov

NREL/PR-5D00-78901

This work was authored by the National Renewable Energy Laboratory (NREL), operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. This work was supported by the Laboratory Directed Research and Development (LDRD) Program at NREL. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Backup Slides

Initialization Phase Generator

Reconnection Phase Generator

Simulation Results - Voltages

Simulation Results – Voltages (Cont.)

NREL | 14

Simulation Results – Frequency (Inverter)

NREL | 15