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“Defining” Resilience: Mitigating Consequences
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Figure 5. Notional Representation of the Translation of Threats into Consequences
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Modeling Resilience: System Performance
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Figure 1. System Performance Curve and Timeline
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Achieving Resilience: Considering Non-Linearities
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Resilience Metrics (or Indicators)

Table S.1. Examples of Consequence Categories for Consideration in Grid Resilience Metric

Development

Consequence Category

Resilience Metric

Energy sector resilience .. senice
can be quantified
through temporally
explicit performance- Restoration
based metrics or o
indicators (e.g., mdvect
comparing baseline and Sm———"
investment scenarios)

Critical Electrical Service

Monetary

Other Critical Assets

Cumulative customer-hours of outages

Cumulative customer energy demand not served

Average number (or percentage) of customers experiencing an outage during a
specified time period

Cumulative critical customer-hours of outages

Critical customer energy demand not served

Average number (or percentage) of critical loads that experience an outage
Time to recovery

Cost of recovery

Loss of utility revenue

Cost of grid damages (e.g., repair or replace lines, transformers)

Cost of recovery

Avoided outage cost

Critical services without power (e.g., hospitals, fire stations, police stations)
Critical services without power for more than N hours (e.g., N > hours of
backup fuel requirement)

Loss of assets and perishables

Business interruption costs

Impact on Gross Municipal Product or Gross Regional Product

Key production facilities without power

Key military facilities without power

https://gmlc.doe.gov/sites/default/files/resources/GMLC1.1_Vol3_Resilience.pdf
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This Study

* Challenge: Doing resilience analysis “right” requires substantial
computational resources and data that are often not available;
so what else can you do?

* Interim Solution: modify existing modeling tools to enable
imperfect (yet impactful) resilience analyses

— Define power interruption scenarios
— ldentify key metrics, based on existing model architecture

— Perform preliminary scenario analysis to demonstrate the
ability to inform decisions

https://www.nrel.gov/docs/fy200sti/74241.pdf " ! 7



Advanced Notice

Power Interruption Scenarios

Power Interruption Duration
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NREL | 8



Approach 7
Adapt a wide array of energy @ RQSStOCk 0

\
sector modeling tools to enable 0
imperfect (yet impactful) %f:\ Fea g
resilience analysis, sampling a T i 00 o
variety of: L Y et

\%,; >

* Energy subsectors
* Geographic scales
* Modeling methods

* Resilience metrics Renewable Energy

Integration and
Optimization
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Results: ResStock

Year home built
<1950

Model Description: Physics-based

simulation of the energy use and
thermal performance of the U.S. e
residential building stock g o

Model Update: Development of
methods for (1) representing a
power outage and (2) measuring
thermal resilience

Power Interruption Scenario: il b - .
Long_ and Short_duration extreme ohil ACZEEN SR ITAN 43 A} s6AM Jan4 s AM Minimum Indoor Drybulb Temperature During Outage (9F)

Indoor Drybulb Temperature

. 7, . ” Figure 1. Internal temperature trajectories (left) and distribution of minimum indoor
we at h er wi t h NO N Ot Ice temperatures (right) for buildings in Buffalo, New York, during a power interruption resulting

from a hypothetical 12-hour ice storm, as modeled in ResStock

Newer homes, presented in green, typically maintained a livable internal temperature for longer during the

Re Si I ie n Ce IVI Et ri C : ti m e tO U n S a fe hypothetical ice storm, and they maintained higher temperatures overall over the course of the outage.
In d oor con d Itions https://www.nrel.gov/docs/fy200sti/74241.pdf " I 10



Results: REopt

N R E L’S Re newa b I e E ne rgy Resiliency Not Valued Resiliency Valued
° ° ° ° Optimal Solution: PV 113 kW Optimal Solution: PV 134 kW
Integration and Optimization coop | Moy Sk /6wt Battery 32 kW 79 kit
M Od e I % $250
 Developed of a methodology 5200
for considering avoided £ 8150
power interruption costs in : 10
backup power system <
i n Ve St m e n tS . Benefits Costs Benefits Costs
(excluding micro-grid (excluding micro-grid
¢ EXp I O re d a S h O rt-d u rat i O n [ Eneh;f::§:gs M Demand Charge Savings e
power d isru pt|o N W|th no M Avoided Outage Costs M CapEx Il O&M
. Figure 5. Accounting for the value obtained by mitigating the power interruption experienced
n 0t| ce by a facility or campus resulted in a cost-optimal backup power system that is larger and
incorporates longer-duration storage, as modeled in REopt.
o Eva | u ated an avo i d ed outa ge CapEx = capital expenditures, O&M = operation and maintenance
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Results: PRAS

NREL’s Probabilistic Resource
Adequacy Suite (PRAS)

 Developed a sequential
simulation mode for
tracking storage device
state-of-charge

 Explored a long-duration
fuel supply disruption with
no notice

e Evaluated the change in
expected unserved energy

(EUE) under different
investments scenarios
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— Gas Interruption —— Gas Interruption with 100MW 4-hour storage

—— Gas Interruption with 6x100MW 4-hour storage — No Interruption

Figure 3. Expected unserved energy across natural gas disruption scenarios with varying
levels of energy storage capacity, as modeled in PRAS

The four lines demonstrate the expected shortfall (in megawatts) that could occur under scenarios with
varying assumptions about natural gas supply interruption and installations of four-hour battery storage
systems. Obtaining the total lost load (in megawatt-hours) requires multiplying the expected magnitude
and duration of the shortfall.
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Results: SIIP::Power

NREL’S Scalable Integrated July 10th 15:00 ) July 10th 16:00 | ok i
Infrastructure Planning (SIIP) | e 157 ot

Model: Production Cost Model "\ e IR '\\.\ »\/

* Developed a methodology for b R e call
CO‘OptlmiZing the diSpatCh Of :lhlo:ror-a:o::nnn ® Qutage -:ra:ns::i;si::.::es --Qutage affected Lines |
generation with an outage ¥ e
duration-dependent power =t \ff-
interruption cost '\

* Explored a long-duration power o ey |

disruption with no notice

Figure 4. Under degraded conditions, considering a duration-dependent value of lost load

o resulted in a modified system dispatch, which reduced outage duration at each bus and
° Ut' I I Zed an d eva I u ated d overall system costs, as modeled in the production cost model framework in SIIP::Power.
1 1 Results sh h i h in Region 1 he RTS-GML int i
|Ocat ion- an d d u rat ion- esults shown here represent system dispatch in Region 1 of the RTS-GMLC under a power interruption

scenario that resulted in a 15% loss in available generation capacity for 12 hours. The top row shows the
dispatch pattern that resulted from consideration of a duration-dependent VoLL, whereas the bottom row

dependent value of lost load considers only a statc VoLL.
(VoLL)
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Results: ReEDS

NREL’s Regional Energy

Deployment System Model

Increased service
requirements, outage
rates for electricity
generation assets, and
outage rates for
transmission assets

Evaluated the impacts of
redundancy on system
performance, makeup,
and costs

Table 5. Model Constructs Used to Analyze Resilience Planning in v2018 ReEDS

Modification
(Scenario Abbreviation)

Intent

Model Constraints and
Parameter Range

Increased operating reserve
requirement

Greater flexibility responding
to short-term outages

3%—15% of load required as
spinning reserves

Increased planning reserve
requirement

Improve resource adequacy
under outages at peak

Regional planning reserve
requirement increased by 40%?2

Higher generator outage rates

Plan for more frequent
generator outages

Generator forced outage rate
increased by 50%?2

Higher transmission
outage rate

Plan for more frequent
transmission outages

Transmission forced outage
rate increased up to 50%?2

Higher transmission outage
rate plus option to purchase
“resilience capacity”

Allow construction of resilient
transmission capacity, e.g.,
undergrounding

Transmission forced outage
rate increased up to 50%?2

a Parameter increases or reductions reflect percent changes relative to default assumptions in the

2018 version of the ReEDS model.

NREL | 14



Conclusions

Challenge: Doing resilience analysis “right” requires
substantial computational resources and data that are often
not available

Interim solution: be creative!

Long-term solution: develop models that can directly
quantify the resilience of energy infrastructure

— Durability/survivability of equipment against threats
— Financial risks associated with investments
— Bulk power system recovery/restoration
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Study URL.:
https://www.nrel.gov/docs/fy200sti/74241.pdf
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