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Project Goals
This project aims to investigate the hypothesis that white-rot fungi can simultaneously depolymerize lignin extracellularly and catabolize depolymerization

products intracellularly as carbon and energy sources (Figure 1). Evaluating this hypothesis will provide deeper understanding of the role of white-rot fungi in

facilitating carbon sequestration in Nature. Additionally, identifying the most promising fungal strains for lignin turnover and catabolism will catalyze future

efforts in genetic tool development to enable metabolic engineering in white-rot fungi for lignin bioconversion to bioproducts.

Background
Lignin is the second most abundant plant-based biopolymer on Earth and represents up to 40% of the energy density of lignocellulosic biomass. Even though

lignin is a massive natural carbon and energy reservoir, only a small group of basidiomycete fungi, namely white-rot fungi (WRF), have evolved the ability to

efficiently depolymerize and mineralize lignin to CO2 and H2O. Considerable research efforts have been undertaken to understand how WRF depolymerize

lignin but the biochemical reactions that convert lignin into CO2 have been largely neglected. In fact, it is unclear if WRF intracellularly catabolize lignin-

derived aromatic compounds to utilize them as a carbon and energy source, or rather if lignin is depolymerized and mineralized extracellularly merely to

facilitate access to cellulose and hemicellulose for use as a primary carbon source.

Going forward, further characterization of the selected and additional aromatic catabolic enzyme candidates will be a high priority for continued studies to validate different enzymatic steps. Additionally, WRF

performance warrants further examination in modeled environmental conditions (e.g., solid-state cultivations instead of submerged cultivations) to better understand regulatory processes and rates for

simultaneous lignin degradation and catabolism. Overall, the findings from this study imply that annotation, analysis, and inclusion of aromatic catabolic pathways in genomics and systems biology studies of

lignin-degrading WRF is a worthwhile pursuit and forms the foundation of a new research area based on lignin catabolism by WRF, which could be further exploited to convert the undervalued biopolymer

lignin into value-added compounds.

Results
To date, we have employed 13C-isotope labeling, systems biology approaches, and in vitro enzyme assays to definitively demonstrate that two WRF, Trametes versicolor and Gelatoporia (Ceriporiopsis)

subvermispora, funnel carbon from lignin-derived aromatic compounds into central carbon metabolism via intracellular catabolic pathways [1]. Specifically, 13C-isotopic labeling approaches showed that these

WRF utilize lignin-derived aromatic compounds from poplar (i.e. 4-hydroxybenzoic acid (4-HBA)) as a carbon source (Figure 2). In silico genome analysis led us to hypothesize a complete catabolic

pathway for 4-HBA and identify multiple homologous sequences for enzymes with putative oxidative decarboxylase, hydroxylase, and ring-opening dioxygenase activities, which are among the main

biochemical reactions acting on aromatic compounds. Spatial and differential metabolomic (Figure 3) analyses supported the proposed catabolic pathways and showed alternative catabolic steps in T.

versicolor that were not present in G. subvermispora. Further, based on differential proteomics and transcriptomics results (Figure 4), we down-selected enzymes for further in vitro characterization, and we

have assigned a function to six fungal enzymes (including oxidative decarboxylases, hydroxylases, and ring-opening dioxygenases) (Figure 5).

Figure 1. Brief scheme of potential routes for carbon flow from lignin 

to CO2 during lignin decay by white-rot fungi. 

Future work and conclusions
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Figure 2. 13C-labeling experiments demonstrate carbon flux from 4-hydroxybenzoic acid to

proteinogenic amino acids in T. versicolor and G. subvermispora, which indicates that carbon is going

through central carbon metabolism. The graphs show the fractional labeling (%) in intracellular

proteinogenic amino acid fragments and other metabolites (acetate (AC) and succinate (SU)) in T. versicolor

and G. subvermispora cultivations, when providing unlabeled 4-HBA (negative control, CTL(-)) and 13C-ring-

labeled 4-HBA at two different time points. Individual points are connected with discontinuous lines to facilitate

visualization. All results are the average of biological triplicates and error bars represent the standard deviation.
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Differential NMR metabolomic analyses provide clues on key metabolic intermediates

for the conversion of 4-HBA towards central metabolism

In vitro enzyme assays validated several of the down-selected oxidative decarboxylases, hydroxylases, and dioxygenases

Fr
ac

tio
na

l l
ab

el
in

g 
(%

)
Fr

ac
tio

na
l l

ab
el

in
g 

(%
)

Figure 3. Proposed metabolic pathway in

T. versicolor and G. subvermispora for

the conversion of 4-HBA. Intracellular and

extracellular metabolites detected in

cellobiose, 4-HBA, lignin, and poplar-

containing cultivations. Media not inoculated

with fungi (non-inoculated) was also used as

control for extracellular metabolomic

analyses and intracellular when applicable.

Molecules without boxes next to the

structure do not have commercially available

standards. Continuous grey arrows indicate

potential transport through the cell

membrane. Continuous and discontinuous

black lines correspond to validated (in this

work) and proposed enzymatic steps,

respectively: (1) oxidative decarboxylases

GS_120062, GS_90429, (2) hydroxylase

TV_58730, (3) hydroxylation by cytochrome

P450, (4) hydroxylases TV_58730 and

GS_82057, (5) oxidative decarboxylases

GS_120062 and TV_32834 and GS_90429,

(6) dioxygenase, (7) ring-cleaving

dioxygenases TV_28066 and GS_116134,

(8) 4-hydroxymuconic semialdehyde

dehydrogenase, (9) maleylacetate

reductase, (10) ketoacid CoA transferase,

(11) thiolase, (12) carboxylic acid reductase

(CARs), (13) aldehyde dehydrogenase, (14)

alcohol dehydrogenase, (15) alcohol

oxidase, (16) aldehyde oxidase, (17) 4-O-

methyl transferase, (18) demethylase.

Figure 4. Proteomic and transcriptomic analyses. Phylogenetic

relationships with putative oxidative decarboxylases, hydroxylases, and

dioxygenases selected from in silico analyses in T. versicolor (TV) and G.

subvermispora (GS). The heat map shows proteomic (P) and

transcriptomic (T) results for protein expression and gene regulation

levels, respectively, in each growth media compared to the inoculated

control (cellobiose-containing media) from biological triplicates. NS = non-

significant differential expression compared to the control; U = unique.

Figure 5. In vitro biochemical validation. a-b. Apparent specific activity in µmol NADH (left) or NAD(P)H (right) turnover per min per mg of enzyme of selected b. oxidative decarboxylase and c. hydroxylase candidates on diverse substrates. d. Apparent specific activity in µmol O2

consumed per min per mg enzyme of selected dioxygenase enzymes on diverse substrates. BZT = 1,2,4-benzenetriol; CAT = catechol; CTL(-) = negative control no substrate; HQ = hydroquinone; PCA = protocatechuate. Enzymes assays were conducted in triplicate and error bars

show the standard deviation.
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