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ABSTRACT The optimization problem for scheduling distributed energy resources (DERs) and battery
energy storage systems (BESS) integrated with the power grid is important to minimize energy consumption
from conventional sources in response to demand. Conventionally this optimization problem is solved in a
centralized manner, limiting the size of the problem that can be solved and creating a high communication
overhead because all the data is transferred to the central controller. These limitations are addressed by the
proposed distributed consensus-based alternating direction method of multiplier (DC-ADMM) optimization
algorithm, which decomposes the optimization problem into subproblems with private cost function and
constraints. The distribution feeder is partitioned into low coupling subnetworks/regions, which solves the
private subproblem locally and exchanges information with the neighboring regions to reach consensus.
The relaxation strategy is employed for mixed-integer and coupled constraints introduced in the optimal
power flow (OPF) problem by stationary and transportable BESS because DC-ADMM convergence is only
guaranteed for strict convex problems. The information exchange and synchronization between subnet-
works/regions are vital for distributed optimization. In this work, both of these aspects are addressed by
the blockchain. The smart contract deployed on the blockchain network acts as a mediator for secure data
exchange and synchronization in distributed computation. The blockchain-based distributed optimization
problem’s effectiveness is tested for a 0.5-MW laboratory microgrid for one hour ahead and day-ahead for
the IEEE 123-bus and EPRI J1 test feeders, and results are compared with a centralized solution.

INDEX TERMS Alternating direction method of multiplier, battery energy storage systems, blockchain,
distributed optimization, optimal power flow, microgrid.

I. INTRODUCTION
Power distribution networks are being reshaped by the inte-
gration of distributed energy resources (DERs) and battery
energy storage systems (BESS) [1]. These DERs, when used
intelligently, can reduce our dependence on conventional
energy resources and thereby decrease the generation cost
to meet the demand [2]. The optimal power flow (OPF)–
economic dispatch problem [3] seeks to optimize the objec-
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tive of minimizing the total generation cost while satisfy-
ing the constraints imposed by the distribution network and
device operating limits.

The OPF problem is challenging to solve because of the
nonconvex feasible set and, hence, convex relaxation would
ease the computation complexity [4]. The second-order cone
program (SOCP) relaxation for the power distribution net-
work is proposed in [5]–[9]. The SOCP relaxed OPF problem
can be solved using any convex optimization solver. The
authors of [10]–[12] have proposed algorithms for optimal
power flow in power distribution networks with integrated
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BESS which are solved centrally. A centralized approach to
solve the OPF problem in power distribution networks with a
large number of integrated DERs and BESS is computation-
ally challenging and exhibits poor scalability. A distributed
optimization algorithm can address this challenge.

Several distributed optimization algorithms have been
adapted and/or developed in recent years to solve the OPF
problem, which decomposes the central problem into local
subproblems. The algorithm in [13] is based on a dual
decomposition method and in [14], [15] on the auxiliary
variable method. The alternating direction method of mul-
tiplier (ADMM) [16], which is simultaneously general and
scalable, is exploited in most of the recent research work to
solve the OPF problem in a distributed fashion. The ADMM
algorithm in [17], [18] solves the OPF problem, exchanging
voltage information between the neighboring regions; how-
ever, DERs and BESS are not integrated into the test network.
A full-scale distributed OPF is implemented using ADMM
in [4], [19]–[23] in which participating nodes/controllers
exchange information with the system or virtual aggregator to
solve for the global update. The OPF problem with noncon-
vex feasible sets in [24]–[28] is solved using a decentralized
algorithm in which a specific node communicates only with
its adjacent nodes with no central or virtual aggregator. The
authors in [26] discuss about the computation time and con-
vergence of the algorithm and have not addressed the impacts
and uncertainties of DER and energy storage integration,
which is resolved in [27]. The algorithm proposed in [28]
exchanges voltage and phase angle information with the
neighboring microgrids to reach consensus and does not con-
sider the impact of energy storage integration or consensus
on active and reactive power flow between the interconnected
microgrids.

In all the published work mentioned above, the microgrids
or the distribution network partitions are considered static.
In this work, the power distribution network is partitioned
dynamically based on our previous work presented in [29].
The OPF problem for the distribution network partitioned
into subnetworks is separable in which each subnetwork has
a private cost function and private constraints. The need for a
central/virtual aggregator to solve the separable distributed
OPF problem is eliminated by implementing a distributed
consensus based alternating direction method of multipli-
ers (DC-ADMM) proposed in [30]–[32]. The DC-ADMM
converges only for strictly convex problems. The mutually
exclusive charging and discharging status of BESS introduces
mixed-integer constraints to the OPF problem. The relax-
and-fix (RF) heuristic algorithm discussed in [33]–[36] is
employed for mixed-integer constraints that can be handled
by DC-ADMM. The issue of DER and load curtailment is
tackled by transportable BESS. The constraints for trans-
portable BESS are coupled, which are decomposed, relaxed,
and augmented into the objective function. The optimal route
scheduling and connection stations for transportable BESS
are already discussed in [37] and [38] respectively and not
in the scope of this work. The blockchain-based technology

FIGURE 1. Schematic of data exchange between local controllers to solve
distributed optimization.

is employed for direct and reliable exchange of information
between the participating nodes or assets by establishing
a secure and tamper-proof digital platform [39], [40]. The
blockchain has been used in [22] to store the optimal schedule
and to make automatic and secure payments.

The information exchange between the neighboring
regions/nodes is essential to solve the distributed optimiza-
tion problem as shown in Fig. 1. As discussed in [41], there
are two kinds of communications infrastructure for informa-
tion exchange: 1) centralized infrastructure and 2) distributed
infrastructure. The supervisory control and data acquisi-
tion (SCADA) system is an example of centralized infras-
tructure, where local devices or remote terminal units (RTUs)
send the data to the central controller and cannot exchange
information among each other. The limitation of centralized
infrastructure is that the fault in the central controller can halt
the entire network. With the recent developments in internet
of things (IoT) technology, the local controllers and RTUs
can communicate with each other [42] and are an example of
distributed communication infrastructure.

The main objective of this research is to implement an
offline DC-ADMM OPF problem on a blockchain platform.
The main contributions of this research work are as follows:

1) Presenting a day ahead dispatch strategy for a dynam-
ically partitioned power distribution network using a
DC-ADMM OPF algorithm.

2) A DC-ADMM and RF heuristic algorithm to solve the
OPF problem with mixed-integer and coupled BESS
constraints is proposed.

3) The proposed DC-ADMM-based OPF algorithm uti-
lizes the blockchain network and smart contract to
broadcast information to the neighboring subnetworks,
enable synchronization between the local controllers
of the subnetworks, and schedule transportable BESS
to curb DER and load curtailment. The system/virtual
aggregator or the global update is not needed in the pro-
posed approach. Advanced distribution management
systems could deploy smart contracts in existing utility
grids.

4) The proposed DC-ADMM-based OPF algorithm is
tested for the Alaska Center for Energy and Power
(ACEP) 0.5-MW Power System Integration (PSI)
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LaboratoryMicrogrid [59] and IEEE 123-bus and EPRI
J1 test feeders for scalability.

The rest of the paper is organized as follows: Section II
describes the formulation of the OPF problem, BESS model,
blockchain, and smart contract. The DC-ADMM and RF
heuristic algorithm implemented on the blockchain network
are explained in Section III, followed by the test feeder net-
work formulation in Section IV. The simulation results are
presented in Section V. Section VI concludes the paper and
discusses future work, followed by acknowledgments.

II. PROBLEM FORMULATION
In this section, we define an OPF problem for the power
distribution network. The distribution network includes a sub-
station node, renewable energy resources, customer-owned
BESS, ISO-owned BESS, mobile BESS, fixed loads, and
electric vehicles (EVs) as shapeable loads.

A. DISTRIBUTION NETWORK MODEL
The radial graph distributed network model < := (N , ε)
whereN := {0, 1, 2 . . . , n} represents the set of nodes, and ε
represents the set of distribution lines connecting these nodes
in the network. N = 0 represents the root node, and the
other nodes in N represent the branch nodes. For each node
i, it has a unique parent node Ai and a set of children nodes
Ci = [ji, j2, . . . , jk ] [4]. For each line that connects node i to
its parent node Ai, let zi = ri + jxi be the impedance of the
line.

For each node i ∈ N , let Vi be the complex voltage, vi =
|Vi|2, and si = pi + jqi be the net complex power injection.
Let Ii be the complex current flowing from node i to parent
node Ai, li = |Ii|2, and Si = Pi + jQi be the complex power
flowing from node i to child node Ci. The branch flow model
for this radial network is given by:

pi(t) = Pi(t)−
∑
k∈Ci

Pk (t)+ rili(t), ∀i ∈ N (1a)

qi(t) = Qi(t)−
∑
k∈Ci

Qk (t)+ xili(t), ∀i ∈ N (1b)

vi(t) = VAi (t)+ 2(riPi(t)+ xiQi(t))− (r2i + x
2
i )li(t)

(1c)

|Si(t)|2 = vi(t)li(t), ∀i ∈ N (1d)

where t = 1, 2, 3, . . . ,T , and T = 24 h.

B. NETWORK CONSTRAINTS
The set of network components at a particular node i for time
t is denoted as:
pgi (t) - Dispatchable synchronous generators (DSG) / substa-
tion active power
ppvi (t) - Photovoltaic (PV) generator unit active power
pwindi (t) - Wind turbine active power
pcob−chi (t) - customer-owned BESS (charging) active power
pcob−dchi (t) - customer-owned BESS (discharging) active
power

pISOb−chi (t) - ISO-owned BESS (charging) active power
pISOb−dchi (t) - ISO-owned BESS (discharging) active power
ptb−ch(t) - Transportable BESS (charging) active power
ptb−dch(t) - Transportable BESS (discharging) active power
pfli (t) - Fixed load
pevli (t) - Electric Vehicle (EV) load
qgi (t) - Diesel generator/substation reactive power
qfli (t) - Fixed load (reactive)
pi, pi - Minimum and maximum power generation or con-
sumption respectively.

The net active and reactive power injection at a particular
node i is given by:

pi(t) = pgi (t)+ p
pv
i (t)+ pwindi (t)+ pcob−dchi (t)

+ pISOb−dchi (t)− pcob−chi (t)− pISOb−chi (t)

− pfli (t)− p
evl
i (t) (2a)

qi(t) = qgi (t)− q
fl
i (t) (2b)

1) DISPATCHABLE SYNCHRONOUS GENERATOR (DSG)
The practical constraints for the DSG, including spinning
reserve and prohibited operating zones, are defined in this
subsection [43]. The power output and ramp rate constraints
are:

pgi ≤ p
g
i (t) ≤ p

g
i (3a)

pgi (t − 1)− DRi ≤ p
g
i (t) ≤ p

g
i (t − 1)+ URi,∀i (3b)

where pgi and p
g
i are the minimum and maximum generation

limits of DSG at bus i, respectively, and DRi and URI are
down-ramp-rate and up-ramp-rate limits of all online DSG
units, respectively. The spinning reserve constraints for DSG
units on (N − ω) buses are:

pSR (t) ≥ ηSRp
fl
i (t) (3c)∑

i∈(N )

pSi (t) ≥ pSR (t) (3d)

pSi (t) ≤ pgi − p
g
i ,∀i ∈ (N ) (3e)

pSi (t) ≤ pSi ,∀i ∈ (N ) (3f)

where pSR (t) is the distribution network spinning reserve
requirement, ηSR is the required percentage of spinning
reserve, pSi is the spinning reserve contribution of the DSG
unit on bus i, and pSi is the maximum spinning reserve
contribution of the DSG unit on bus i.

2) CUSTOMER-OWNED BESS
The customer-owned BESSmodel considered in this research
work is based on the dispatch strategy that maximizes battery
utilization. The mixed-integer linear BESS model, which is
dependent on charge and discharge cycle efficiencies and
ignores losses as well as the degradation defined in [44], has
the following constraints:

pcobi (t) = ηchp
cob−ch
i (t)−

1
ηdch

pcob−dchi (t) (4a)
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Ecobi ≤ Ecobi0 +1t
T−1∑
τ=1

pcob(k)i ≤ Ecobi (4b)

0 ≤ pcob−chi (t) ≤ χcob−chi (t)pcob−chi (4c)

0 ≤ pcob−dchi (t) ≤ χcob−dchi (t)pcob−dchi (4d)

χcob−chi (t)+ χcob−dchi (t) ≤ 1 (4e)

where χcob−chi (t), χcob−dchi (t) ∈ {0, 1} is mutually exclusive,
i ∈ N , t = 0, 1, 2, . . . ,T − 1, and T = 24 h. Ecobi and Ecobi
are the minimum and maximum capacities of the BESS.

3) ISO-OWNED BESS
The ISO-integrated BESS is a viable and cost-effective solu-
tion to account for the variability and uncertainty of loads
and renewable energy resources in the power distribution
network. But the degradation and ohmic power losses in
BESS are inevitable. The BESS model incorporating ohmic
power losses is defined as,

pISOb−lossi (t)vi(t) ≥ r
eq
i (pISObi (t))2 + rcvti (qISObi (t))2(5a)

reqi (scvti )2 ≥ pISOb−lossi (t)vi + r ISObi (qISObi (t))2 (5b)

(scvti )2(vi + vi) ≥

scvti )2vi(t)+ p
ISOb−loss
i (t)(vi ∗ vi) (5c)

(pISObi (t))2 + (qISObi (t))2 ≤ (scvti )2 (5d)

pISObi (t) = ηchp
ISOb−ch
i (t)−

1
ηdch

pISOb−dchi (t)+

pISOb−lossi (t) (5e)

E ISObi ≤ E ISObi0 +1t
T−1∑
τ=1

pISOb(k)i ≤ E ISObi (5f)

0 ≤ pISOb−chi (t) ≤ χ ISOb−chi (t)pISOb−chi (5g)

0 ≤ pISOb−dchi (t) ≤ χ ISOb−dchi (t)pISOb−dchi (5h)

χ ISOb−chi (t)+ χ ISOb−dchi (t) ≤ 1 (5i)

where χ ISOb−chi (t), χ ISOb−dchi (t) ∈ {0, 1} is mutually exclu-
sive, i ∈ N , t = 0, 1, 2, . . . ,T − 1, and T = 24 h. E ISObi and

E ISObi are minimum and maximum capacities of the BESS.
pISOb−lossi (t) is the ohmic power loss of the BESS, reqi =
rbi + r

cvt
i is the sum of battery energy storage and associated

converter resistance and, scvti is the maximum apparent output
power of the converter. The degradation cost function of
BESS in [45] is incorporated into the optimal power flow
objective function and is given by:

fi(pISObi (t)) = cd ∗ max

[a1 a2 a3]
pISObi (t)
E ISObi (t)

E ISObi

 (6)

where a1, a2, a3 ∈ RnpX1 are plane parameters of np trian-
gles from the convex hull, E ISObi (t) is the state of energy of
ISO-owned BESS at time t , and cd is the degradation cost of
the BESS whose optimal value is tabulated in [46].

4) WIND POWER GENERATION
The operational constraint for wind power is given by,

0 ≤ pwindi (t) ≤ pwindi (t) (7)

where pwindi (t) is the actual utilization of the wind power and
pwindi (t) is the available wind power at time t based on the
forecast.

5) PV POWER GENERATION
The operational constraint for the PV power generating unit
is given by,

0 ≤ ppvi (t) ≤ ppvi (t) (8)

where pPVi (t) is the actual utilization of the wind power and
pPVi (t) is the available wind power at time t based on the
forecast.

6) TRANSPORTABLE BESS
The transportable BESS can be used as a nonspinning reserve,
and its sizing is based on the criteria defined in [47] and [48].
The transportable BESS is also scheduled to minimize the
curtailment of renewable energy resources and load shedding.
The mixed-integer linear model of transportable BESS is
considered in this research with the following operation and
scheduling constraints.

N∑
i=0

(ppvi (t)+ pwindi (t)− pcob−chi (t)− pISOb−chi (t)

− pfli (t)− p
evl
i (t)) ≤ ptb−chi (t) (9a)

N∑
i=0

(pfli (t)+ p
evl
i (t)− pgi (t)− p

pv
i (t)− pwindi (t)

− pcob−dchi (t)− pISOb−dchi (t)) ≤ ptb−dch(t) (9b)

E tb ≤ E tb0 +1t
T−1∑
τ=1

ηchptb−ch(t)−

1
ηdch

ptb−dch(t) ≤ E tb (9c)

0 ≤ ptb−chi (t) ≤ χ tb−chi (t)ptb−chi (9d)

0 ≤ ptb−dchi (t) ≤ χ tb−dchi (t)ptb−dchi (9e)

χ tb−chi (t)+ χ tb−dchi (t) ≤ 1 (9f)

χ tb−chi (t), χ tb−dchi (t) ∈ {0, 1} is mutually exclusive, i ∈ N ,
t = 0, 1, 2, . . . ,T − 1, and T = 24 h. E tbi and E tbi are
minimum and maximum capacities of the BESS.

7) ELECTRIC VEHICLE LOAD
The EVs with the energy demand Eevli have the following
constraints,

pevli ≤ pevli (t) ≤ pevli (10a)

T=24h∑
t

pevli (t) = Eevli (10b)
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pevli (t) = 0∀t = 1, 2, . . . , ti,start (10c)

pevli (t) = 0∀t = ti,stop, . . . ,T (10d)

where the electric vehicle must be charged between ti,start and
ti,stop. The EV batteries are only considered as load while
charging and are not considered for grid operations in this
research work because of degradation and reduction in their
life cycle.

8) CENTRALIZED OPF AND SOCP RELAXATION OF
NETWORK CONSTRAINTS
The thermal generator cost at the substation node is typically
represented by a quadratic fuel cost function given by:

fi(p
g
i (t)) = αi(p

g
i (t))

2
+ βip

g
i (t)+ γi(t) (11)

where α, β, γ are the fuel cost parameter.
The OPF problem aims at minimizing the thermal gen-

eration and battery degradation cost subject to branch flow
equations and local DER constraints and is formulated as,

min
T∑
t=1

N∑
i=0

fi(p
g
i (t))+ fi(p

IOSb
i (t)) (12a)

s.t. (1a)− (1d), (2a)− (2b), (3a)− (3f), (4a)− (4e)

(5a)− (5i), (7), (8), (9a)− (9f), (10a)− (10d) (12b)

The quadratic equality constraint in (1d) makes the above
OPF problem nonconvex. The OPF problem can be relaxed
to a convex problem by SOCP relaxation of (1d) given by,

|Si(t)|2 ≤ vi(t)li(t), ∀i = 0, 1, 2, . . . ,N (13)

The binary variables in constraints (4c)-(4d) and (5g)-(5h)
make OPF a mixed-integer problem and its relaxation is
explained in the next section.

C. BLOCKCHAIN AND SMART CONTRACT
Blockchain is a prominent technology that provides a secure
and distributed database that contains the log of transac-
tions in chronological order. The digital users/nodes on this
blockchain network communicate through the peer-to-peer
(P2P) system to reach a consensus on the ledger’s valid
state. This is contrary to centralized systems, which need the
central authority to act as the intermediary to maintain the
database and transactions and guard its authenticity. Further-
more, the blockchain network’s security is enhanced by hash
functions and public-key cryptography and depends on the
type of network (i.e., public or private network) [49]. Users
can either join the public blockchain network or the private
blockchain network. The trust among the users emerges from
game-theoretical incentives in the public network with the
permissionless ledger. The public network provides a tam-
perproof and censorship-resistant system. On the contrary,
the private network with the permissioned ledger has reduced
security but is fast, easy to scale, and energy-efficient [50].

The full potential of blockchain technology can only
be utilized using smart contracts. The smart contract is a
user-defined executable program that can alter the ledger and

perform specific tasks when called upon by the users. The
Ethereum is an open-source programmable distributed com-
puting platform with smart contract functionality [51]. The
distributedOPF algorithm proposed in this paper is developed
on the private Ethereum network in which the smart contract
is deployed to act as a mediator for secure communication
between the local controllers and a scheduler. The workflow
showing the interaction between the smart contract, local
microgrid controllers, and distribution network components
while solving the distributed OPF problem is explained in
this work. The following two subsections explain in brief
how blockchain can be implemented on IoT networks or
traditional SCADA systems.

D. BLOCKCHAIN AND INTERNET OF ENERGY (IoE)
The integration of distributed energy resources and energy
storage has made the power distribution network decen-
tralized and bidirectional. Hence, the distribution network
requires a distributed communication architecture where net-
work components can exchange electricity among themselves
so that the distribution is effective, autonomous, and without
the central authority’s involvement. This bidirectional and
distributed communication can be achieved by the Inter-
net of Energy (IoE). The IoE coordinates various network
components with the help of the internet. However, the IoE
technology faces many privacy and security issues that can
be overcome by blockchain [52], [53].

E. BLOCKCHAIN AND SCADA
SCADA systems are an integral part of the power distribu-
tion network for automatic generation control and economic
dispatch [54], [55]. A SCADA system comprises a central-
ized control center and associated field devices, local control
modules, and RTUs. The central control center solves the
optimization problem and dispatches the control signal to the
network’s field devices. As a result, the power distribution
network with the existing conventional SCADA makes the
entire network vulnerable to cyberattacks and control center
faults. The blockchain-based end-to-end secure prototype for
SCADA with smart RTUs linked with each other and the
central control center by IoT cloud services is developed
in [55], [56] for practical implementation.

III. DISTRIBUTED OPF PROBLEM FORMULATION
In this section, the distributed optimization algorithm based
on consensus ADMM is presented to solve the OPF prob-
lem. First, the power distribution network is partitioned into
several subnetworks/regions. After that, the general form
DC-ADMM is described and then applied to solve the OPF
problem. Once the solution method is established, the algo-
rithm is implemented on the blockchain network.

A. POWER DISTRIBUTION NETWORK PARTITION
The power distribution network is initially partitioned by
unnormalized spectral clustering analysis. Once the initial
partitions are formed, the power distribution network is
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re-partitioned by the algorithm described in our previous
work [29]. After the optimal partitions are achieved, the OPF
problem is decomposed as explained in the next subsection.

B. DISTRIBUTED CONSENSUS-BASED ADMM (DC-ADMM)
A unidirected network denoted by < := (N , ε), whereN :=
{0, 1, 2 . . . , n} represents the set of nodes, and ε represents
the set of edges connecting these nodes. The node i and j can
communicate information only if (i, j) ∈ ε (i.e., node j is the
neighbor to node i). Each node i ∈ N has a local objective
function which is given by

min
x

N∑
i=0

fi(xi) (14a)

s.t. Ax = 0 (14b)

where xi ∈ RN is a local variable that is related to the local
problem, and Ax = 0 implies that xi = xj for nodes i and j
connected by an edge (i, j).
The augmented Lagrangian function for the problem

in (14) is given by

L(x, u) =
N∑
i=0

fi(xi)+ uTi (xi)+
ρ

2
||Axi||22 (15)

where the dual variable uTi ∈ RN , and ρ > 0 is the penalty
parameter. The iterations to solve the general form consensus
ADMM problem mentioned in (15) is given by

xk+1i = argmin
xi

fi(xi)+
ρ1

2

∑
j∈Ai

||xk+1j − xi −
1
ρ1
ukji||

2
2

+
ρ2

2

∑
j∈Ci

||xi − xkj −
1
ρ2
ukij||

2
2 (16a)

uk+1ji = ukji − ρ1(x
k+1
j − xk+1i ) ∀j ∈ Ai (16b)

uk+1ij = ukij − ρ2(x
k+1
i − xkj ) ∀j ∈ Ci (16c)

where ρ1 and ρ2 are penalty parameters, uij is the dual vari-
able with the constraints xi = xj on the edge (i, j) ∈ ε. Each
node i keeps a local copy of decision variable xi ∈ RN and
a vector of a dual variable uji with j ∈ Ai. The algorithm will
stop when the following condition is met:

1xk+1i = |xk+1i − xki | ≤ εtol (17)

where εtol is the tolerance value of the residual.

C. DC-ADMM MODIFICATION FOR MIXED-INTEGER
PROBLEMS
The optimization problems with integer or binary variables
are nonconvex, and the convergence of those problems when
solved using ADMM is not guaranteed. The mixed-integer
problem (MIP) in this work is solved by the RF heuristic
algorithm.

The local subproblem for node i defined in (16) is an MIP
for xz ∈ {0, 1} ⊂ xi. Initially to solve the MIP using RF,

all the binary variables are relaxed (i.e., they can take any
value between 0 and 1) defined as 0 ≤ xz ≤ 1. This makes
the problem in (16) a convex quadratic problem for which
the ADMM converges. Once the initial solution is obtained,
a few variables are enforced to be binary variables, with the
remaining ones relaxed. After finding the solution, the binary
variables are fixed and another set of relaxed variables are
enforced to be a binary variable. The process iterates until
all the binary variables are fixed and a feasible solution is
obtained. Once all the binary variables are fixed, the ADMM
will converge because all the subproblems are convex.

D. APPLICATION OF DC-ADMM AND RF TO OPF
To solve the distributed OPF problem, the distribution
network is partitioned into several subnetworks/regions,
as explained in III-A. Now the OPF problem for the entire
distribution network is reformulated to solve using the
DC-ADMM based method so that each region needs to solve
its local subproblem in each iteration. The local subproblem
has its own objective function and set of constraints and is
formulated for a particular region i as

min
T∑
t=1

N∑
i=0

fi(p
g
i (t))+ fi(p

IOSb
i (t)) (18a)

s.t. (1a)− (1d), (2a)− (2b), (3a)− (3f), (4a)− (4e)

(5a)− (5i), (7), (8), (9a)− (9f), (10a)− (10d), (13)

(18b)

The local variables to solve the subproblem presented
in (18b) for a particular region i is denoted by xi =
[pi, qi, p

g
i , q

g
i , p

pv
i , p

wind
i , pcob−chi , pcob−dchi , pISOb−chi ,

pISOb−dchi , pfli , q
fl
i , p

evl
i ] and is not shared over the network.

All the variables and constraints defined above are local
except the constraints (1a)-(1c), (9a), and (9b). The equation
in (9a) and (9b) is decomposed for a particular region i as

ppvi (t)+ pwindi (t)− pcob−chi (t)− pISOb−chi (t)

− pfli (t)− p
evl
i (t)) ≤ ptb−chi (t) (19a)

pfli (t)+ p
evl
i (t)− pgi (t)− p

pv
i (t)− pwindi (t)

− pcob−dchi (t)− pISOb−dchi (t) ≤ ptb−dchi (t) (19b)

where ptb−chi (t) and ptb−dchi (t) are the local representation
of the global variables ptb−ch(t) and ptb−dch(t), respectively,
for a region i. The constraints (1a)-(1c), (19a), and (19b) are
augmented in the objective function of the problem in (18b)
and solved iteratively as

xk+1i = argmin
xi

T∑
t=1

fi(p
g
i (t))+ fi(p

IOSb
i (t))+

+
ρ1

2

∑
j∈Ai

||vk+1j − vi −
1
ρ1
ukji||

2
2

+
ρ2

2

∑
j∈Ci

||xi − xkj −
1
ρ2
ukij||

2
2 (20a)
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FIGURE 2. Information exchange between neighboring
subnetworks/regions in power distribution network.

uk+1ji = ukji − ρ1(v
k+1
j − vk+1i ) ∀j ∈ Ai (20b)

uk+1ij = ukij − ρ2(x
k+1
i − xkj ) ∀j ∈ Ci (20c)

The local coupling variable xj = [vj, p
tb−ch
j , ptb−dchj ],

∀j ∈ Ai and xj = [
∑

j∈Ci Pj,
∑

j∈Ci Qj,
∑

j∈Ci p
tb−ch
j ,∑

j∈Ci p
tb−dch
j ],∀j ∈ Ci will be shared with the neighboring

subnetworks/regions as shown in Fig. 2.
The subproblem for region i defined in (20c) contains four

binary variables χcob−chi , χ ISOb−chi , χcob−dchi , and
χ ISOb−dchi for charging and discharging status, respectively,
of the customer-owned and ISO-owned BESS. Initially, all
four variables are relaxed and allowed to take any value
between 0 and 1. This converts the subproblems in the convex
quadratic problem and is solved until the acceptable tolerance
of ε is achieved. After that, the variables for charging mode
χcob−chi , χ ISOb−chi are enforced to be the binary variables, and
the OPF problem is solved until the tolerance ε is achieved
or reaches the iteration limit. If the algorithm reaches the
iteration limit with no feasible binary solution, the values
of ρ1 and ρ2 are updated by 5% and warm start the OPF
subproblem. In the last step, all the binary variables are fixed
based on the condition in (21b), and the OPF problem is
solved until it converges. The algorithm flowchart is shown
in Fig. 3.

χcob−chi (t)+ χcob−dchi (t) ≤ 1 (21a)

χ ISOb−chi (t)+ χ ISOb−dchi (t) ≤ 1 (21b)

E. IMPLEMENTING THE ALGORITHM ON BLOCKCHAIN
NETWORK
The private Ethereum blockchain network is used to imple-
ment the distributed OPF algorithm for the distribution net-
work in this research work, and the block diagram is shown
in Fig. 4. The go-ethereum client (geth) is used to run a
full Ethereum node. Each node/user on the Ethereum net-
work is assigned a personal account defined by a private
and public key. Their address indexes these accounts 5
derived from the public key. There are two types of Ethereum
accounts: 1) externally owned accounts (EOAs) and 2) con-
tracts accounts. The EOA is controlled by a private key and
can transfer ether or trigger a contract code. The contract
account has its own code and is controlled by that code. The

FIGURE 3. DC-ADMM and RF algorithm flowchart.

FIGURE 4. Ethereum blockchain network architecture for distributed OPF.

users/nodes interact with the Ethereum network by sending a
transaction from an account using a web3 object that connects
to a JSON-RPC server [57].

Upon establishing the Ethereum network to implement
the DC-ADMM + RF for the OPF problem, an externally
owned account indexed by address 5i is set up for every
region i in the distribution network. The contracts account
indexed by address 9 is set up for the control center that
deploys the smart contract (modeled in Solidity [58]) to
the network. The address 9 is shared with all subnet-
work/regions i in the network to communicate with the smart
contract.

IV. CASE STUDY
In this section, we discuss validating the centralized and pro-
posed DC-ADMM + RF OPF algorithms using results from
a 0.5-MW laboratory microgrid at the ACEP PSI laboratory
with four control nodes and implementing the same for the
IEEE 123-bus and EPRI J1 test feeder system.

A. ACEP PSI LABORATORY MICROGRID
The ACEP PSI lab operates on the same scale as one
of Alaska’s village power systems and can be modified
for individual test scenarios. The PSI lab infrastructure
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FIGURE 5. IEEE 123-bus test feeder partitioned into
4 subnetworks/regions for distributed OPF.

includes a 320-kWdiesel generator, a 100-kWwind emulator,
a 540-VDC/1000 A-hr lead-acid battery, a 312-kVA
inverter, and two 250-kW programmable load banks.
The one-line diagram of the ACEP PSI lab is available
in [59].

B. IEEE 123-BUS TEST NETWORK
The IEEE 123-bus test feeder used in this study consists
of 114 branch buses and is partitioned into four regions,
as shown in Fig. 5. The test feeder is also modified to a
balanced network [60]. The nominal operating voltage of the
test feeder is 4.16 kV. The DC-ADMM + RF optimization
algorithm in (20c) and Fig. 3 is implemented for the parti-
tioned IEEE 123-bus test feeder, where each region solves
its local subproblem and exchanges information with the
neighboring regions.

Region 1 is a root/reference bus, either a substation or
thermal/diesel generator with a quadratic fuel cost function.
Other regions consist of branch nodes with a determin-
istic load profile, rooftop PV, wind farm, electric vehicle
load, customer-owned BESS, ISO-owned BESS, and trans-
portable BESS. The shapeable loads and customer-owned
BESS at each node are half the peak residential load. The
storage capacity of customer-owned BESS is 6 hours. The
ISO-owned BESS has a peak power of 150-kW with a stor-
age capacity of 4 hours. The ISO-owned BESS are con-
sidered on bus 39 and 85. The transportable BESS has a
peak power rating of 1,000-kW with a storage capacity
of 2 hours.

The PECAN STREET project residential load data set
from January 1 to June 30, 2017, is used in this research
work [61]. The capacity of the rooftop PV installed at each
house on branch nodes is 6-kW. The hourly 2017 NSRDB
solar data [62] from January 1 to June 30, 2017, is used for
the rooftop PV. The wind farm is integrated with the network
at bus 85. The wind farm consists of 6 wind turbines rated at
235-kW, each with a pole height of 35 m. The hourly NREL
Flatirons Campus data for a wind turbine from January 1 to
January 30, 2017, is used for this work [63].

FIGURE 6. EPRI J1 test feeder partitioned into 7 subnetworks/regions for
distributed OPF.

C. EPRI J1 FEEDER
The EPRI J1 test feeder has 3,434 buses, which serves
approximately 1,300 residential, commercial, and light indus-
trial customers via 58 miles of 12.47 kV primary line [64].
The feeder is modified to a balanced three phase network and
is partitioned into seven regions as shown in Fig. 6 for this
work. Region 1 is a substation, whereas other regions consist
of branch nodes with residential, commercial, and light indus-
trial load, residential rooftop PV, customer-owned large PV
system, wind farms, electric vehicle loads, customer-owned
BESS, ISO-owned BESS, and transportable BESS. The peak
load of the entire feeder is approximately 6 MW. The sha-
peable load at each node with residential load is half the peak
load. The 1.7-MW customer-owned PV system already exists
on the feeder. Additionally, rooftop PV and customer-owned
BESS rated 50% of each residential load’s daily consump-
tion are also considered in this research work. The storage
capacity of customer-owned BESS is 6 hours. The hourly
June 2012 solar data from EPRI [64] is used for PV. Two
wind farms are integrated with the network, each consisting
of 9 wind turbines. Each wind turbine is rated at 235-kW
with a pole height of 35 m as in the IEEE 123-bus test
feeder system. The hourly NREL Flatirons Campus data
for a wind turbine from June 1 to June 30, 2012, is used
for this work [63]. Four ISO-owned BESS rated with peak
power 1,000-kW and storage capacity of 2 hours is also
integrated with the network. The transportable BESS has
a peak power rating of 1,000-kW with a storage capacity
of 2 hours.

D. IMPLEMENTING THE TEST SYSTEM ON ETHEREUM
NETWORK
The go-ethereum/Geth client is installed for running the
ethereum node on the computer and is used to connect to
the private ethereum network. Upon setting up the network,
the smart contract to securely exchange the data with the
neighboring regions for the DC-ADMM + RF OPF problem
for the ACEP PSI lab, IEEE 123-bus, and EPRI J1 test feeder
is developed and compiled in Solidity. The local subproblems
are executed using Python and CVXPY. After solving the
local subproblems, each region in the ACEP PSI lab, IEEE
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FIGURE 7. (a) ACEP PSI lab Diesel Generator Dispatch Plan, (b) ACEP PSI
lab BESS Dispatch Plan, (c) ACEP PSI lab wind and load profile.

TABLE 1. Electric energy generation/consumption over 1 h for ACEP PSI
lab.

123-bus, and EPRI J1 test feeder communicates with the
Ethereum network using web3.py.

V. RESULTS
A. ACEP PSI LAB
An hour-ahead centralized OPF algorithm was tested in the
0.5-MW ACEP PSI laboratory. The lab’s real-time control
strategy is based on spinning reserve control (SRC). The
SRC maintains the loading on the diesel-electric generator
between the minimum and maximum set points using the
inverter to compensate for over or under loading conditions.
The OPF algorithms were simulated for 1 hour with a time
step of 2.5 minutes. The dispatch plan for the diesel generator
and BESS and wind and load profile used for testing is shown
in Fig. 7. The constraints for BESS to simulate the OPF
problem for ACEP PSI lab are based on ISO-owned BESS
defined in (5a) to (5i).

The comparison of centralized and DC-ADMM+RFOPF
dispatch plan for the ACEP PSI lab model with the lab test
results is presented in Table 1 and Table 2.
We can observe from Fig. 7, Table 1, and Table 2 the

minimum generation from the diesel electric generator is
100 kW which was set to prevent wet stacking in the

TABLE 2. Comparison of OPF algorithm dispatch plan with ACEP PSI lab
test results.

TABLE 3. Comparison of DC-ADMM + RF OPF algorithm dispatch plan
with centralized solution for IEEE 123-bus test feeder.

diesel engine. The BESS discharges to the net load and
charges from the excessive wind power. Also, there is a
vast difference in the energy discharge from BESS between
the OPF algorithms dispatch plan and lab test results. This
difference is because, for the first half, the lab test was
intentionally performed without employing any optimization
strategy and only the diesel electric generator fed the loads
while BESS remained idle. The dispatch plan generated for
diesel generators and BESS is similar for DC-ADMM + RF
with and without blockchain. The Table 2 also shows the
difference in wind energy forecast and actual generation.

B. IEEE 123-BUS AND EPRI J1 TEST FEEDER
The centralized algorithm was tested using the
IEEE 123-bus test feeder and the results are published
in [44]. The comparison between the dispatch plan for the
IEEE 123-bus test feeder generated using the central-
ized algorithm and DC-ADMM + RF with and without
blockchain network is shown in Fig. 8 and Table 3.

We can observe from the results in Fig. 8 and Table 3
for IEEE 123-bus test feeder that the dispatch plan gener-
ated by DC-ADMM + RF with and without the commu-
nication over the blockchain network coincides with each
other. The dispatch plan generated by the centralized algo-
rithm is offset from the distributed algorithm, but the net
generation/consumption over the 24-hour period is approx-
imately similar. Hence, it is safe to assume that the proposed
DC-ADMM+RF’s performance quality is comparable to the
standard centralized OPF algorithm.

Fig. 8(c) shows that the customer-owned BESS responds
to the demand and charges from the excessive solar and wind
power generation. The ISO-owned BESS remains idle during
certain hours and only responds when necessary to reduce the
charge-discharge cycle and minimize the degradation cost.
From Fig. 8(a), we can observe that there is a sudden rise
in the wind power generation at hour 5, which charges the
customer-owned and ISO-owned BESS. As a result, there is
not enough energy storage available during the peak solar
hours. The transportable BESS is scheduled to charge from
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FIGURE 8. IEEE 123-bus test feeder (a) Residential PV, wind farm, and
residential load profile, (b) distributed synchronous/fuel generator
dispatch, (c) customer-owned BESS (COB), independent system operator
BESS (ISOB), transportable BESS (TB) dispatch, and (d) Electric vehicle
load scheduling generated by centralized, DC-ADMM + RF algorithm with
and without blockchain.

excessive solar and wind generation, which reduces its cur-
tailment. Also, the electric vehicles’ charging schedule is gen-
erated for the peak solar and wind power generation hours.

The charge and discharge cycles for BESS are mutually
exclusive, which makes the OPF problem mixed-integer. The
proposed DC-ADMM + RF method in this paper solves
the mixed-integer OPF problem, and the mutually exclu-
sive charge and discharge cycles of the customer-owned and
ISO-owned BESS for IEEE 123-bus test system are shown
in Fig. 9. The negative values of active power represent the
discharge cycle.

The algorithms are also tested for the EPRI J1 test feeder,
and similar results were obtained. The comparison between
the DC-ADMM + RF and centralized OPF results for the
EPRI J1 test feeder is shown in Table 4.

FIGURE 9. Mutually exclusive charge and discharge cycles for
customer-owned and ISO-owned BESS.

TABLE 4. Comparison of DC-ADMM OPF algorithm dispatch plan with
centralized solution for EPRI J1 test feeder.

C. COMPUTATION DETAILS
For the ACEP PSI lab, IEEE 123-bus, and EPRI J1 test feeder,
the centralized OPF problem is simulated in a Python-based,
open-source optimization modeling language, Pyomo, and
the proposed distributed optimization algorithm is simulated
using CVXPY.

The simulations are run on a Windows 10 PC with a
3.40-GHz Intel Core i7 processor and 16-GB RAM. The
solver used and computation time for each OPF algorithm
simulation are listed in Table 5. For the DC-ADMM + RF
OPF, the subproblem for each region is computed sequen-
tially. As seen from Table 5, the computation time to solve
the DC-ADMM + RF OPF problem is reduced compared to
the centralized one for the IEEE 123-bus and the EPRI J1 test
feeder. Hence, the algorithm is scalable and will be able to
handle much larger systems where centralized OPF will be
computationally intensive.

For the DC-ADMM + RF on a blockchain network,
the time taken to validate the transactions is approximately
125 seconds for the ACEP PSI lab model, 625.2 seconds for
the IEEE 123-bus, and 1,560 seconds for the EPRI J1 test
system. The validation time is significantly high because
each node transacts with the network sequentially. In prac-
tice on edge computing devices, these transactions would
be performed in parallel, providing speed up by the factor
equivalent to the number of regions the power distribution
network is partitioned and will be demonstrated in future
work by setting up a node1 for each region on the blockchain
network using Docker.

The penalty parameters ρ1 and ρ2 were initialized to a
value of 3. The penalty parameters are updated by 5% if
no feasible binary solution is obtained. The iteration limit to
obtain the feasible binary solution to fix the binary variables is
set to 30 and tolerance value εtol = 1e− 4. The convergence
results of DC-ADMM + RF for the IEEE 123-bus and the

VOLUME 9, 2021 46569



C. Shah et al.: Distributed ADMM Using Private Blockchain for Power Flow Optimization in Distribution Network

TABLE 5. OPF algorithm computation time and solver.

FIGURE 10. Residue for IEEE 123-bus and EPRI J1 test feeder.

EPRI J1 test feeder are shown in Fig. 10. We can observe that
the DC-ADMMOPF converges in 18 and 30 iterations for the
IEEE 123-bus and the EPRI J1 test feeder, respectively, after
the binary variables are fixed.

The algorithm is part of a resiliency application for
fault-tolerant energy system (RAFTES), which is being
developed to integrate with the open-source ADMS platform
GridAPPS-D [65]. The GridAPPS-D will act as a contracts
account and deploy and manage the smart contract on the pri-
vate Ethereum network. The algorithm will subscribe to the
GridAPPS-D topic to receive the forecast data for the DERs
integrated with the power grid. A practical demonstration on
the GridAPPS-D platform will be presented in future work.

VI. CONCLUSION
A DC-ADMM + RF algorithm was proposed for the OPF
problem with mixed-integer and coupled constraints for an
adaptive partitioned power distribution network. The pro-
posed algorithm successfully fixes the mixed-integer/binary
variable, and theDC-ADMMconverges for theOPF problem.
We demonstrate that the proposed algorithm results are com-
parable by testing it for the 0.5-MW ACEP PSI laboratory
microgrid. We can also conclude that the results obtained for
the IEEE 123-bus and EPRI J1 test feeder for the proposed
algorithm are similar to the standard centralized algorithm
and hence scalable. The computation time of DC-ADMM +
RF is also reduced compared to the centralized OPF, and

hence it can be concluded that the algorithm converged faster
with reliable results. When implemented on the blockchain
network, the proposed algorithm takes more time to validate
the nodes, but it provides secure communication and synchro-
nization between the subnetwork local controllers.

The proposed distributed algorithm in this research work is
offline; therefore, its solution is applied to the physical grid
only after it converges. In the future, we need to explore ways
to reduce the computation time for distributed algorithms
implemented on the blockchain network to be applied to real-
time/online optimization and control.
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