


BETO 2021 Peer Review: Catalytic Upgrading of Pyrolysis Vapors 2.3.1.314

Mike Griffin March 9, 2021



## Project Overview: ChemCatBio

## Catalytic Technologies

Catalytic Upgrading of Biochemical Intermediates

(NREL, PNNL, ORNL, LANL)

**Upgrading of C1 Building Blocks** (NREL)

**Upgrading of C2 Intermediates** (PNNL, ORNL)

Catalytic Fast Pyrolysis (NREL, PNNL)

**Electrocatalytic CO<sub>2</sub> Utilization** (NREL)

## **Enabling Capabilities**

Advanced Catalyst Synthesis and Characterization (NREL, ANL, ORNL)

Consortium for Computational
Physics and Chemistry
(ORNL, NREL, PNNL, ANL, NETL)

Catalyst Deactivation Mitigation for Biomass Conversion (PNNL)

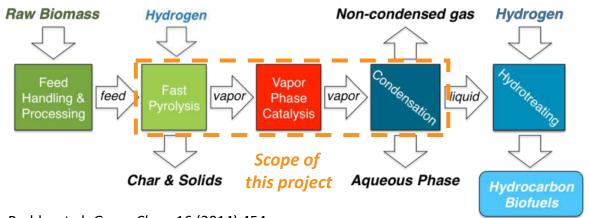
## Industry Partnerships (Phase II Directed Funding)

Opus12 (NREL)

Visolis (PNNL)

Sironix (LANL)

## **Cross-Cutting Support**


**ChemCatBio Lead Team Support (NREL)** 

**ChemCatBio DataHUB (NREL)** 

## **Project Overview**

Catalytic fast pyrolysis is a versatile technology pathway for the direct liquefaction of biomass and waste carbon sources

- Potential for high carbon yields to fuel blendstocks
- Ability to control the product slate through vapor phase catalytic upgrading
- Opportunities for co-processing using existing refinery infrastructure



# Advantage over petroleum fuels:

Reduces greenhouse gas emissions and qualifies for advanced regulatory incentives

# Advantage over non-catalytic fast pyrolysis:

Generates a stabilized bio-oil with lower acidity, lower viscosity, and reduced oxygen content

D. Ruddy, et al. *Green Chem* 16 (2014) 454

ChemCatBio Bioenergy Technologies Office |

# **Project Overview**

### **Project Objectives**

- Maximize yields and minimize costs through integrated catalyst and process development
- Expand market responsiveness by developing routes to produce co-products
- Provide experimental data to inform process modelling and scale-up activities
- Support BETO goals of meeting 2022 verification cost and carbon intensity targets: ≤\$3/GGE MFSP, ≥60% reduction in GHG emissions.

### **Vision:**

A circular carbon economy in which biomass and waste carbon sources can be readily recycled into renewable fuels, chemicals, and materials.

GGE: Gasoline gallon equivalent, MFSP: Minimum fuel selling price, GHG: Greenhouse gas



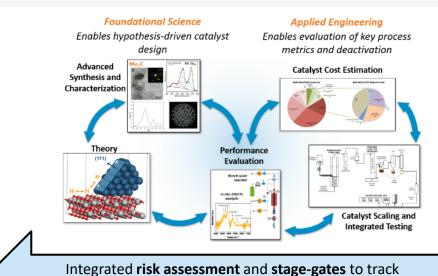


## Management Plan: Structure and Implementation

The management plan leverages an integrated task structure that spans key elements of CFP catalyst and process development

Task 1: Project Management
Lead: Mike Griffin

Task 2: Catalyst Synthesis and Characterization Lead: Susan Habas


> Task 3: Performance Evaluation Lead: Calvin Mukarakate

Task 4: Catalyst and Process Durability
Lead: Matt Yung

Task 5: CFP-Oil Production using FCC-Systems
Lead: Kim Magrini

Task 6: CFP-Oil Fractionation Lead: Kristiina lisa

Task 7: Co-Product Formation Lead: Mark Nimlos The implementation strategy combines advancements in foundational science and applied engineering to meet overarching project objectives



**Risk Assessment:** March 2020 Comprehensive Pathway Review

progress and inform strategy

Stage Gate: June 2020 Verification Go No-Go Decision Point

Bioenergy Technologies Office

# Management Plan: Collaboration

Collaboration across projects, consortia, and industry partners promotes integrated R&D

#### **Feedstock-Conversion Interface Consortium**

Establishing critical feedstock attributes and pre-processing strategies for FP and CFP

### **ChemCatBio Enabling Projects**

Improving catalyst performance and durability with support from enabling projects

### **Consortium for Computational Physics and Chemistry**

Informing process development and scale-up through atomistic, particle, and reactor-scale modeling

### **ChemCatBio Industrial Advisory Board**

Guiding R&D towards commercially impactful outcomes

#### ExxonMobil CRADA

Advancing biomass pyrolysis technologies through collaborative R&D

### Johnson-Matthey CRADA

Advancing CFP catalyst and process development through collaborative R&D

Streamlined communication enabled through the development of a multi-lab organizational structure

#### TEA/LCA

Abhijit Dutta
Thermochemical TEA
2.1.0.302

Damon Hartley Feedstock Analysis 1.1.1.2

Hao Cai Lifecycle Analysis 4.1.1.10

Yuan Jiang Hydrotreating Analysis

#### Catalyst Development and Charaterization

Susan Habas ACSC Lead 2.5.4.303/304/305 Fred Baddour

Engineering of Scale Up 3.2.2.701

Huamin Wang Catalyst Deactivation 2.5.4.501

#### Feedstock Supply and Logistics

Jordan Klinger Biomass Preprocessing 1.2.3.3

> FCIC 1.2.2.804

#### Mangement and Coordination

Trevor Smith BETO TM

Mike Griffin CFP Principal Investigator

> Josh Schaidle NREL Platform Lead

Zia Abdullah NREL LRM

#### Hydrotreating and Refinery Integration

Huamin Wang Hydrotreating 2.3.1.312

Kristiina Iisa Co-Hydrotreating

2.3.1.314

Kim Magrini
FCC Co-Processing

Michael Talmadge Co-Processing Analysis 3.4.3.306,307,308

3.4.3.307

Computational Modeling Jim Parks

CCPC Lead

Bruce Adkins

Regeneation Modeling

2.5.1.301
Peter Ciesielski
Mesoscale

2.5.1.307

Carrie Farberow

Atomic Scale

2.5.1.307

#### Pilot Scale Points of Contact

David Robichaud Process Scale Up for Production Environments 3 4 2 302

> Kristin Smith TCPDU Operations 2.4.1.301

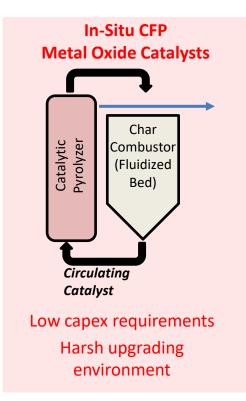


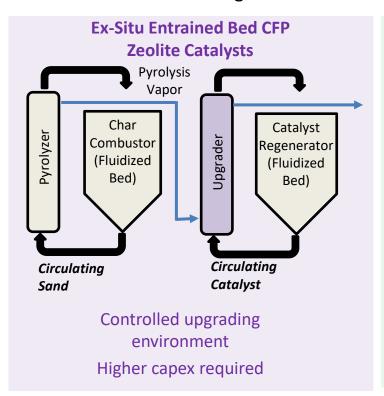


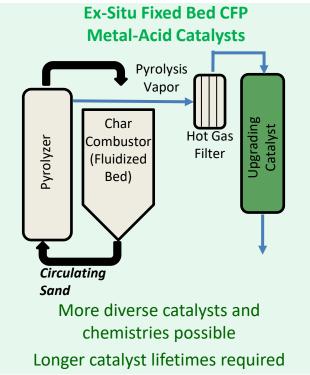
MREL









CRADA: Cooperative Research and Development Agreement

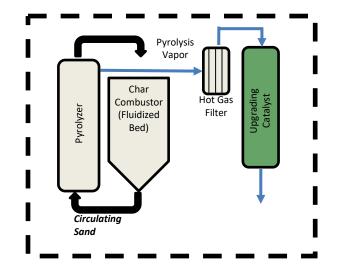

\_

# Approach: Pathway Assessment

Early efforts within this project focused on benchmarking performance for several CFP catalysts and reactor configurations

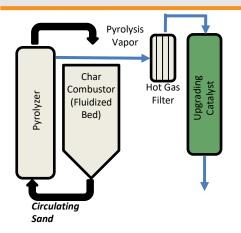







# Approach: 2017 Down-Selection

A down-selection was informed by a first-of-its kind performance evaluation under a controlled set of conditions


| Process                        | In-situ CFP                                   | <i>Ex-situ</i> Riser<br>CFP | Ex-situ Fixed-Bed<br>CFP                                     |
|--------------------------------|-----------------------------------------------|-----------------------------|--------------------------------------------------------------|
| Catalyst (Conditions)          | Red Mud<br>(400°C)                            | ZSM-5<br>(550°C)            | 2 wt% Pt/TiO <sub>2</sub><br>(400°C, H <sub>2</sub> co-feed) |
| Reactor                        | Utah State's<br>Fluidized<br>Bed<br>Pyrolyzer |                             | ized Bed Pyrolyzer +<br>ograding System                      |
| CFP Carbon Efficiency* (%)     | 42                                            | 33                          | 42                                                           |
| CFP O Content (wt%)            | 28                                            | 17                          | 17                                                           |
| HT Carbon Efficiency* (%)      | 85                                            | 96                          | 93                                                           |
| HT Oil O Content (wt%)         | 0.9                                           | 1.2                         | 0.4                                                          |
| Overall Carbon Efficiency* (%) | 36                                            | 32                          | 38                                                           |

Due to the comparatively high CFP yields, low oil-oxygen content, and improved overall carbon efficiency, the ex-situ fixed bed CFP approach was down-selected as a leading pathway for the BETO 2022 Verification

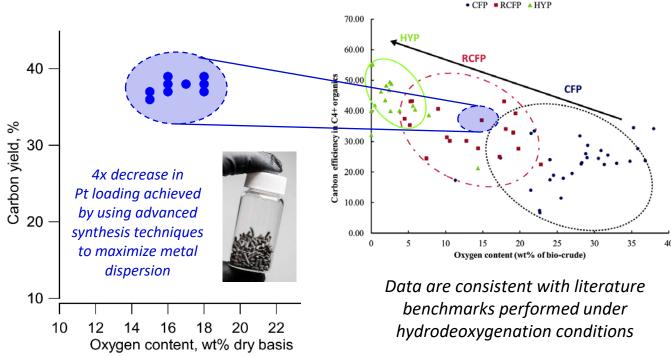


<sup>\*</sup>Normalized carbon efficiencies based on >500mL of CFP oil generated

# Approach: 2018 Baseline



#### **Standard Conditions**


Feedstock: Loblolly Pine Catalyst: 0.5 wt% Pt/TiO<sub>2</sub> Support: 1.7 mm TiO<sub>2</sub> Pellets Pyrolysis Temperature: 500 °C Upgrading Temperature: 435 °C

Catalyst Mass: 100 g

WHSV: 1.4 g biomass/gcat\*h Near Atmospheric Pressure Hydrogen Concentration: 83% Biomass:Catalyst Ratio: 3-13.2

Griffin, M. et al., Energy Environ Sci, 2018

Integrated experiments demonstrate potential for high carbon yields using 0.5 wt% Pt/TiO<sub>2</sub>



K. Wang, et al., Green Chem. 19 2017

## Approach: FY19-FY20 Research Priorities

With the potential benefits of the chemistry established, research in FY19-FY20 targeted technical objectives associated with reducing risks, diversifying feedstocks, and informing scale up:



Reducing analytical uncertainty by improving material balances



Assessing catalyst and process durability



Increasing catalyst cycle length and regeneration efficiency



Demonstrating compatibility with waste feedstocks (e.g., forest residues)



Informing process scale up and supporting BETO

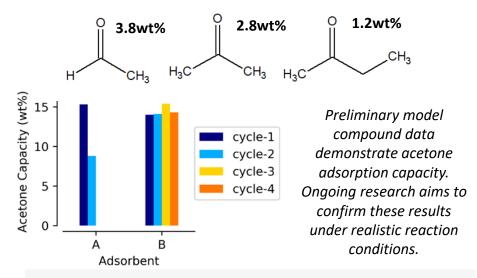
Verification goals

## **Impact**

Impact Section Will Follow Progress and Outcomes (Slides 20-21)

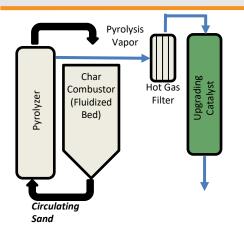


**ChemCatBio** 


## **Progress and Outcomes: Improved Analytics**

**Progress:** modifications to the system and methods resulted in improved carbon balance closure and reduced uncertainty in the product distribution

|                           | FY18  | FY19   |  |  |
|---------------------------|-------|--------|--|--|
| CFP Carbon Balance (%)    | 88    | 100    |  |  |
| CFP Oil Carbon Yield      | 45    | 35     |  |  |
| CFP Oil Oxygen (wt%, dry) | 19    | 15     |  |  |
| HT Carbon Yield (%)       | 89    | 95     |  |  |
| CFP + HT Carbon Yield (%) | 36    | 33     |  |  |
| Co-Product Credit         | -     | \$0.52 |  |  |
| MFSP, \$/GGE              | 3.50* | 3.33   |  |  |


<sup>\*</sup>This added level of analytical detail resulted in downward revisions to the 2018 normalized CFP oil carbon yield and increase in MFSP to \$3.80

**Co-Product Opportunity:** high yields were observed for acetaldehyde, acetone, and 2-butanone

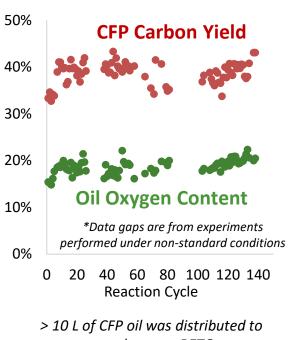


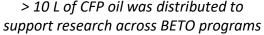
Outcome: Reduction in risk and analytical uncertainty, \$0.30/GGE increase in MFSP, potential for ~\$0.50/GGE reduction through valorization of acetone and 2-butanone

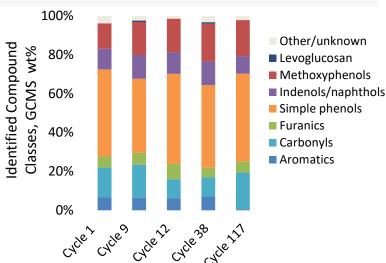
# Progress and Outcomes: Process Durability



#### Standard Conditions

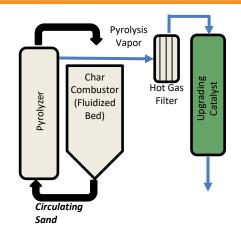

Feedstock: Loblolly Pine Catalyst: 0.5 wt% Pt/TiO<sub>2</sub> Pyrolysis Temperature: 500 °C Upgrading Temperature: 435 °C


Catalyst Mass: 100 g

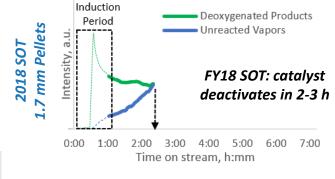

WHSV: 1.4 g biomass/gcat\*h Near Atmospheric Pressure Hydrogen Concentration: 83%

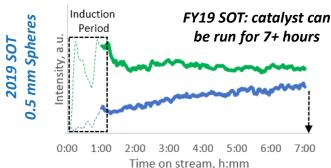
Biomass: Catalyst Ratio: 3

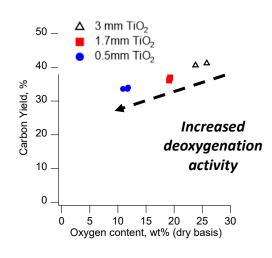
**Progress:** integrated experiments performed for 100+ reaction cycles reveal minimal impact on yields, oil-quality, and product composition







Outcome: improved confidence in catalyst and process durability, reduced risk for process model inputs, and support for technology transfer efforts


## Progress and Outcomes: Increased Cycle Length



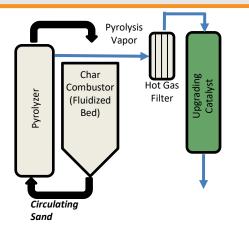
**Progress:** reducing the size of the catalyst support reveals potential for improved deoxygenation activity and increased cycle length







Outcome: 3.5 MM reduction in capital costs and improved process efficiency


#### **Conditions**

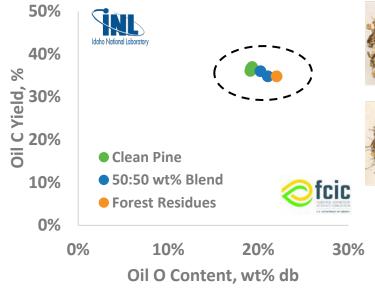
Feedstock: Loblolly Pine Catalyst: 0.5 wt% Pt/TiO<sub>2</sub> Pyrolysis Temperature: 500 °C Upgrading Temperature: 435 °C

Catalyst Mass: 100 g

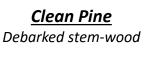
WHSV: 1.4 g biomass/gcat\*h
Near Atmospheric Pressure
Hydrogen Concentration: 83%
Biomass:Catalyst Ratio: 3-12

## Progress and Outcomes: Waste Feedstocks




#### **Standard Conditions**

Feedstock: Loblolly Pine + Forest Residues


Catalyst: 0.5 wt% Pt/TiO<sub>2</sub> Pyrolysis Temperature: 500 °C Upgrading Temperature: 435 °C

Catalyst Mass: 100 g

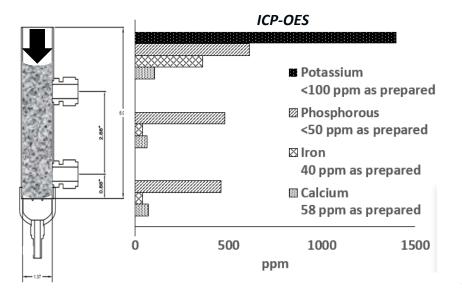
WHSV: 1.4 g biomass/gcat\*h Near Atmospheric Pressure Hydrogen Concentration: 83% Biomass:Catalyst Ratio: 3 **Progress:** reaction testing data demonstrates minimal impact of waste feedstocks on carbon yield or oil quality





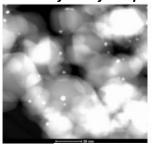


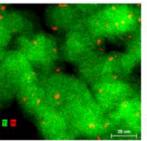


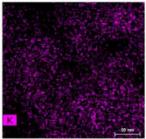

<u>Forest Residues</u>
Harvest waste including bark, needles, branches

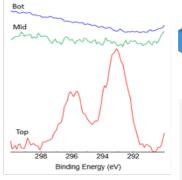
**Ongoing Research:** establish critical feedstock attributes for CFP. FCIC: 1.2.2.804

Outcome: 20% reduction in feedstock costs, translating to a \$0.33/GGE improvement in MFSP


## Progress and Outcomes: Tracking Inorganic Deposition


**Progress:** catalyst characterization after reaction with forest residues tracks potassium deposition at the leading edge of the catalyst bed





Experiments performed with a 50:50 wt% blend of clean pine and forest residues for a cumulative time on stream of 32 h

Dark field STEM images and EDS maps indicate well-dispersed K on the surface of the post-reaction samples from the top of the bed





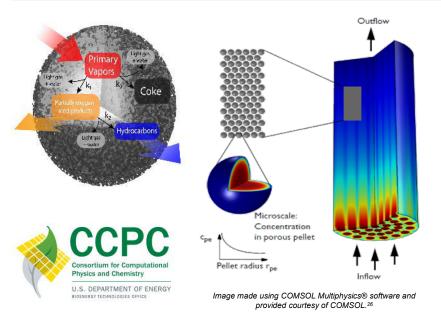




XPS Spectra of K 2p Region confirm K deposition

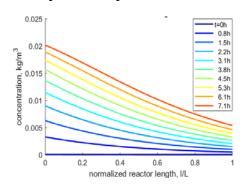


## Ongoing Research:

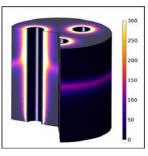

CDM: 2.5.4.501

ACSC: 2.5.4.303/304/305

Outcome: building foundational knowledge of critical deactivation mechanisms and mitigation strategies for biomass conversion pathways


## Progress and Outcomes: Informing Scale Up

**Progress:** collaborative development of a new simulation frameworks for multiscale modeling to inform in-silico optimization and process scale up




Pecha, B.; et al. *Reaction Chemistry and Engineering*, 2020 Adkins, B. D.; et.al, *Reaction Chemistry and Engineering*, *Submitted* 

# Predicted catalyst coke profile as a function of time on stream



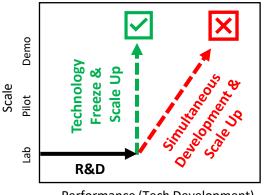
## Thermal excursions during regeneration at pilot-scale



 $\nabla$ T, °C/cm

**Outcome:** early identification of potential process disruption at the pilot scale. Ongoing efforts target improve heat transfer capabilities through catalyst development and reactor design: *CCPC*: 2.5.1.301

## Progress and Outcomes: Verification Go/No Go


**Progress:** data from this project informed a comprehensive pathway review performed with an independent engineering team to serve as a scale-up stage gate for the 2022 BETO Verification

A detailed **block flow diagram** which clearly defines all inputs/outputs for pilot scale unit operations

A process indicator matrix that provides a row-by-row comparison across scales

An overarching risk assessment to identify research needs and inform forward looking decision making

Determination: successfully meeting the verification goals by 2022 would require simultaneous technology development and scale-up. This exceeded risk tolerances and motivated a no-go decision for the pathway.



**Needed:** additional experimental data to meet \$3/GGE cost target and derisk process scale-up

Performance (Tech Development)

**Outcome:** early risk assessment and proactive project management to guide decision making for the BETO 2022 Verification

# Progress and Outcomes: Project Direction

Near term research addresses technical risks and data gaps through four targeted experimental campaigns:

### **Feedstock Risks**

Establish critical material attributes for CFP feedstocks and identify pre-processing requirements

FCIC: 1.2.2.805

### **Integration Risks**

Link CFP reaction conditions to bio-oil quality and downstream processing requirements PSUPE: 3.4.2.302

### **Catalyst Risks**

Tailor catalyst support morphology to increase cycle length and minimize pressure drop ACSC: 2.5.4.303/304/305

EOS: 3.2.2.701

### **Durability Risks**

Assess durability during prolonged exposure to reaction environments *PSUPE*: 3.4.2.302

**Assessment of Co-Product Recovery and Separation** 

## **Project Direction**

**FY21:** facilitate a constructure closeout of the fixed bed CFP + standalone hydrotreating pathway





Stand Alone Hydrotreating to Fuel Blendstocks

#### Outcome:

communicating advancements and R&D needs through a comprehensive closeout report

**FY22+:** produce application specific CFP-oil for refinery integration





Co-Processing with Fossil Streams

#### Outcome:

adapting CFP to address emerging demand for biogenic refinery feedstocks

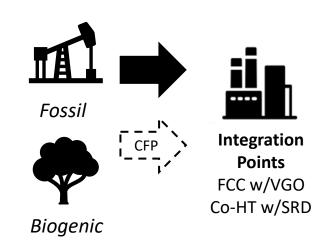
# Impact: Pathway to Market

## Opportunity

>\$2 billion invested to produce renewable diesel from fats, oils, and greases (FOG)








However, the supply of FOG is limited, and further growth in this sector will be inhibited by feedstock availability

CFP can help fill this gap by proving a stable biogenic liquid for refinery co-processing

FCC: Fluid Catalytic Cracking VGO: Vacuum Gas Oil

HT: Hydrotreating SRD: Straight Run Diesel



## CFP Co-Processing Targets:

Increase biogenic carbon incorporation

Reduce carbon intensity

Mitigate potential for process disruption

**Impact:** establishing a **pathway to market** that allows refiners and chemical companies to diversify feedstock sources, leverage existing capital, and reduce the cost of regulatory compliance

# Impact: Science and Partnerships

**Impact: Development of Industrial Partnerships** 

### Johnson Matthey Inspiring science, enhancing life

CRADA: Catalyst Development



CRADA: Biomass Pyrolysis

Impact: Spin-Off Projects (TCF, SBIR, DOE, USDA)









Carbon Co-Products For Energy Storage Applications



Chemical Co-Products for Bioinsecticide Applications



Chemical Co-Products for Biopolymer Applications

### Impact: Generation of Scientific Knowledge



### 14 Peer Reviewed Publications Since 2019

Average Journal Impact Factor of 7
See Supporting Slides 26-27



### 18+ External Presentations Since 2019

Spanning CFP Catalyst and Process Development See Supporting Slides 28-29



## 2 Issued Patents 6 Pending Patent Applications

Novel catalysts, processes, and co-products

CRADA: Cooperative Research and Development Agreement TCF: Technology Commercialization Fund SBIR: Small Business Innovation Research

## Acknowledgements

### <u>CFP</u>

Joshua Schaidle (NREL) Calvin Mukarakate (NREL) Kristiina Iisa (NREL) Richard French (NREL) Kellene Orton (NREL) Scott Palmer (NREL) Fred Baddour (NREL) Dan Ruddy (NREL) Susan Habas (NREL) Connor Nash (NREL) Matt Yung (NREL) Mark Nimlos (NREL) Anne Starace (NREL) Kim Magrini (NREL) Jessica Olstad (NREL) **Brady Petersen (NREL)** Mike Sprague (NREL)

### <u>CFP</u>

David Robichaud (NREL) Kristin Smith (NREL) Katie Gaston (NREL) Matt Oliver (NREL)

### **Computational Modeling**

Vivek Bharadwaj (NREL)
Meagan Crowley (NREL)
Tom Foust (NREL)
Aaron Lattanzi (NREL)
Peter Ciesielski (NREL)
Brennan Pecha (NREL)
Carrie Farberow (NREL)
Sean Tacey (NREL)
Bruce Adkins (ORNL)
Zach Mills (ORNL)
Austin Ladshaw (ORNL)
James Parks II (ORNL)

### TEA/LCA

Abhijit Dutta (NREL) Michael Talmadge (NREL) Kurt van Allsburg (NREL) Sue Jones (PNNL) Yunhua Zhu (PNNL) Yuan Jiang (PNNL) Hao Cai (ANL) Damon Hartley (INL) **Feedstocks** Jordan Klinger (INL) Danny Carpenter (NREL) Oil Analysis Jack Ferrell (NREL) Steve Deutch (NREL) Renee Happs (NREL) Anne Starace (NREL) Nolan Wilson (NREL) Earl Christensen (NREL) Lisa Fouts (NREL)

### **Hydrotreating (PNNL)**

Huamin Wang (PNNL)
Mike Thorson (PNNL)
Daniel (Miki) Santosa (PNNL)
Suh-Jane Lee (PNNL)
Igor Kutnyahov (PNNL)
Douglas C. Elliott (PNNL)
Kristiina Iisa (NREL)





**Bioenergy Technologies Office** 











Rebecca Jackson (NREL)

## Acknowledgements

NREL/PR-5100-79330

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Bioenergy Technologies Office

# Summary/Q&A

### Management

- Clear management plan with implementation strategy that advances foundational science and applied engineering
- Established avenues for collaboration including a well-defined multi-lab organizational structure to streamline communications
- Active project management through integration of risk identification and mitigation (comprehensive pathway review + go/no-go)

### Approach

- Advances the state-of-the-art through innovative catalyst and process development
- Builds on previous data with clear objectives that reduce technical risk, diversify feedstock opportunities, and inform process scale-up
- Supports BETO 2022 Verification goals by evaluating pathways to meet cost and GHG reduction targets

### **Progress and Outcomes**

- Reduced analytical uncertainty by closing carbon balances to 100 +/- 1%
- Improved process efficiency by achieving a 4x increase in catalyst cycle length
- Demonstrated process durability for 100+ reaction cycles (~275 h)
- Demonstrated compatibility with waste feedstocks (e.g., forest residues)
- Identified risks and research needs for process scale up to inform a proactive pivot for the 2022 verification

### **Impact**

- Generated broadly enabling scientific knowledge (14 publications, 18+ presentations, 8 IP positions)
- Considerable industry engagement through partnerships across the value chain (e.g., CRADAs with Johnson Matthey and ExxonMobil)
- Promising pathway to market that addresses an emerging demand for biogenic refinery feedstocks

**Supporting Information** 



## **Project Quad Chart**

### Timeline

Project start date: October 1<sup>st</sup>, 2019 Project end date: September 30<sup>th</sup>, 2021

Percent complete: 44%

|             | FY20   | Active Project |
|-------------|--------|----------------|
| DOE Funding | 3.4 MM | 6.8 MM         |

### **Project Partners**

Industry: ExxonMobil, Johnson Matthey

**Academia:** University of Southern California (FY20)

### **Barriers addressed**

Ot-B: Cost of Production

Reducing MFSP for CFP technology platform

Ct-F: Increasing the Yield from Catalytic Processes
Developing catalysts and process operations to enhance
carbon efficiency

## **Project Goal**

Develop CFP as a versatile deconstruction technology that is compatible with biomass and waste carbon sources and enables the production of application specific bio-oils with properties that can be tailored to meet dynamic market needs.

## **End of Project Milestone**

Develop refinery integration approaches and feasible co-products from catalytic fast pyrolysis pathways. Establish CFP-oil quality specifications and blend ratios for FCC and/or co-hydrotreating integration points to meet an overall minimum fuel selling price of \$3/GGE in \$2016 dollars.

## **Funding Mechanism**

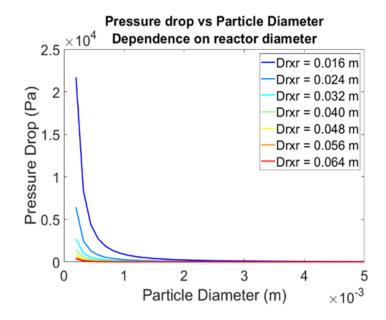
National Laboratory AOP Project

# Publications Since 2019 (1 of 2)

- French, R. J.; Iisa, K.; Orton, K. A.; Griffin, M. B.; Christensen, E.; Black, S.; Brown, K.; Palmer, S. E.; Schaidle, J. A.; Mukarakate, C.; Foust, T. D.,
  Optimizing Process Conditions during Catalytic Fast Pyrolysis of Pine with Pt/TiO2—Improving the Viability of a Multiple-Fixed-Bed Configuration. ACS
  Sustainable Chemistry & Engineering 2021, 9, 1235–1245.
- Pecha, M. B.; Iisa, K.; Griffin, M.; Mukarakate, C.; French, R.; Adkins, B.; Bharadwaj, V. S.; Crowley, M.; Foust, T. D.; Schaidle, J. A.; Ciesielski, P. N., Ex situ upgrading of pyrolysis vapors over PtTiO2: extraction of apparent kinetics via hierarchical transport modeling. *Reaction Chemistry & Engineering* **2021**, **6**, 125-137.
- Peterson, B.; Engtrakul, C.; Evans, T. J.; Iisa, K.; Watson, M.J.; Jarvis, M. W.; Robichaud, D. J.; Mukarakate, C.; Nimlos, M. R. Optimization of Biomass Pyrolysis Vapor Upgrading Using a Laminar Entrained-Flow Reactor System Energy, *Energy Fuel*, **2020**, 34, 5, 6030–6040.
- Guo, Q.; Meyer, H.; levlev, A.; Starace, A.; Mukarakate, C.; Habas, S.; I Veith, G. and Unocic, K\*. Multi-scale Characterization Study Enabling Deactivation Mechanism in Formed Zeolite Catalyst. *Microscopy and Microanalysis*, 2020, 1-3.
- Yeonjoon Kim, Anna E. Thomas, David J. Robichaud, Kristiina Iisa, Peter C. St. John, Brian D. Etz, Gina M. Fioroni, Abhijit Dutta, Robert L. McCormick, Calvin Mukarakate\*, Seonah Kim\*; A perspective on biomass-derived biofuels: From catalyst design principles to fuel properties. *Journal of Hazardous Materials*, **2020**, 400, 123198.
- Mukarakate, Calvin; Orton, Kellene; Kim, Yeonjoon; Dell'Orco, Stefano; Farberow, Carrie; Kim, Seonah; Watson, Michael; Baldwin, Robert; Magrini, Kimberly, "Isotopic Studies for Tracking Biogenic Carbon during Co-processing of Biomass and Vacuum Gas Oil", ACS Sustainable Chemistry and Engineering, 2020, 8(9), 2652-64.
- Kristiina Iisa, Yeonjoon Kim, Kellene A. Orton, David J. Robichaud, Rui Katahira, Mike Watson, Evan C. Wegener, Mark Nimlos, Joshua A. Schaidle, Calvin Mukarakate, Seonah Kim, "Ga/ZSM-5 Catalyst Improves Hydrocarbon Yields and Increases Alkene Selectivity during Catalytic Fast Pyrolysis of Biomass with Co-fed Hydrogen", *Green Chemistry*, **2020**, 22, 2403
- F. G. Baddour\*, E. J. Roberts, A. T. To, L. Wang, S. E. Habas, D. A. Ruddy, N. M. Bedford, J. Wright, C. P. Nash, J. A. Schaidle, R. L. Brutchey\*, N. Malmstadt\*, Logan, "An Exceptionally Mild and Scalable Solution-Phase Synthesis of Molybdenum Carbide Nanoparticles for Thermocatalytic CO<sub>2</sub> Hydrogenation", J. Am. Chem. Soc., **2020**, 142, 1010.

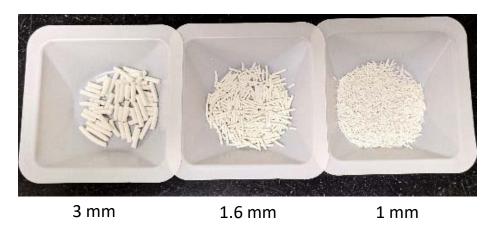
# Publications Since 2019 (2 of 2)

- Himanshu Patel, Naijia Hao, Kristiina Iisa, Richard J. French, Kellene A. Orton, Calvin Mukarakate, Arthur J. Ragauskas, Mark R. Nimlos, Detailed Oil Compositional Analysis Enables Evaluation of Impact of Temperature and Biomass-to-Catalyst Ratio on ex Situ Catalytic Fast Pyrolysis of Pine Vapors over ZSM-5, ACS Sustainable Chemistry & Engineering, 2020, 8, 4, 1762.
- M. Yung, A. Starace, M. Griffin, J. Wells, R. Patalano, K. Smith, J. Schaidle, "Restoring ZSM-5 Performance for Catalytic Fast Pyrolysis of Biomass: Effect of Regeneration Temperature", Catalysis Today, 2019, 323, 15, 76
- Edmunds, C. W.; Mukarakate, C.; Xu, M.; Regmi, Y. N.; Hamilton, C.; Schaidle, J. A.; Labbé, N.; Chmely, S. C., Vapor-Phase Stabilization of Biomass Pyrolysis Vapors Using Mixed-Metal Oxide Catalysts. *ACS Sustainable Chemistry and Engineering* **2019**, *7* (7), 7386-7394.
- Moyer, K.; Conklin, D. R.; Mukarakate, C.; Vardon, D. R.; Nimlos, M. R.; Ciesielski, P. N., Hierarchically Structured CeO<inf>2</inf> Catalyst Particles From Nanocellulose/Alginate Templates for Upgrading of Fast Pyrolysis Vapors. *Frontiers in Chemistry* **2019**, *7*.
- Wilson, A. N.; Dutta, A.; Black, B. A.; Mukarakate, C.; Magrini, K.; Schaidle, J. A.; Michener, W. E.; Beckham, G. T.; Nimlos, M. R., Valorization of aqueous waste streams from thermochemical biorefineries. *Green Chemistry* **2019**, *21* (15), 4217-4230.
- Harrhy, J.; Wang, A.; Jarvis, J.; He, P.; Meng, S.; Yung, M.; Liu, L.; Song, H.\* "Understanding zeolite deactivation by sulphur poisoning during direct olefin upgrading", *Communications Chemistry*, **2019**, 2, 1-13.


# Presentations Since 2019 (1 of 2)

- Mike Griffin, Bruce Adkins, Brennan Pecha "Advancing Catalytic Fast Pyrolysis through Integrated Experimentation and Multi-Scale Computational Modeling" BETO ChemCatBio Webinar (virtual), January 2021
- Calvin Mukarakate, et al. "Biomass ex-situ CFP: a Mo2C case study to evaluate if trends in model compound reactivity translate to real biomass feeds." TCS Biomass 2020 (virtual), October 2020
- Calvin Mukarakate, et al. "Challenges for scaling-up biomass catalytic fast pyrolysis process technology: A case study for ex-situ CFP in fixed-bed configuration" TCS Biomass 2020 (virtual), October 2020
- Mark R. Nimlos, A. Nolan Wilson, Joe Roback, Kylee Harris, Abhijit Dutta, "Evaluation of Coproducts from Catalytic Fast Pyrolysis" TCS Biomass 2020 (virtual), October 2020
- Mark R. Nimlos, A. Nolan Wilson, Megan Girdwood, "Catalytic Fast Pyrolysis for Sustainable Fuels and Products", ICOSSE '20, AIChE, (Virtual) August 2020.
- Stefano Dell'Orco, Edoardo Miliotti, Nolan Wilson, Andrea Maria Rizzo, Kimberly A. Magrini and David Chiaramont, "Overcoming scale-up industrial barriers of hydrothermal liquefaction of lignin-rich streams: Carbon recovery from residual aqueous phase", tcbiomass*plus*, October 2019, Chicago, IL.
- K. Magrini, Calvin Mukarakate, Kellene Orton, Yeonjoon Kim, Stefano Dell'Orco, Carrie A Farberow, Seonah Kim, Michael J Watson, Robert Baldwin, "Isotopic Studies for Tracking Biogenic Carbon during Co-processing of Biomass and VGO", tcbiomassplus, October 2019, Chicago, IL.
- Braden Peterson, Chaiwat Engtrakul, Nolan Wilson, Stefano Dell'Orco, Jessica Olstad, Mike Sprague, Yves Parent, Kim Magrini, "Preconditioning Pyrolysis Vapors for Downstream Upgrading Processes via Coupled Catalytic Hot-Gas Filtration and Fractional Condensation", tcbiomassplus, October 2019, Chicago, IL.
- J. Olstad, E. Christensen, S. Deutch, Y. Parent, K. Magrini, "Co-Processing Catalytic Fast Pyrolysis Oils with Vacuum Gas Oil in a Davison Circulating Riser", tcbiomassplus 2019, October 2019, Chicago, IL.

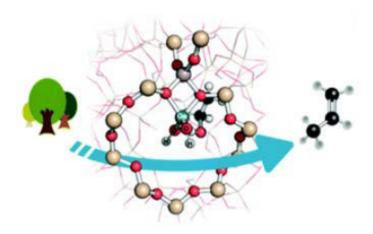
# Presentations Since 2019 (2 of 2)


- J. Schaidle, "Bio-oil as a Platform for Products: Improved Process Economics and Enhanced Utilization of Carbon and Oxygen by Expanding the Product Slate from Catalytic Fast Pyrolysis of Biomass", European Biomass Conference and Exhibition, 2020.
- *Invited* S. E. Habas, "Advances in Nanostructured Metal Phosphide Catalysts for Renewable Fuels", Inorganic Chemistry Seminar, University of California, San Diego, November 2019.
- Kristiina Iisa\*, Richard French, Kellene Orton, Calvin Mukarakate, Josh Schaidle, Effect of Feedstock and Pyrolysis Conditions on Ex-situ Catalytic Fast
  Pyrolysis, The International Conference on Thermochemical Conversion Science: Biomass & Municipal Solid Waste to RNG, Biofuels & Chemicals,
  tcbiomassplus, October 2019, Rosemont, IL.
- K. Magrini, J. Olstad, B. Peterson, Y. Parent, S. Deutch, A. Starace, K. Iisa, K. Orton, M. Sprague, M. Watson, L. Tuxworth, "Reactor, Catalyst and Feedstock Considerations for Upgrading Biomass Pyrolysis Vapors and Liquids to Fungible Hydrocarbon Intermediates", tcbiomassplus, October 2019, Chicago, IL.
- Invited M.M. Yung et al., "Deactivation and regeneration of Mo<sub>2</sub>C used for HDO of biomass fast pyrolysis vapors," ACS National Meeting Orlando, FL, April 2019.
- Invited M.M. Yung et al., "Enabling Production of Sustainable Biofuels and Bioproducts through Catalysis R&D: An Overview of NREL Thermochemical Biomass Conversion R&D Projects and Heterogenous Catalysis Examples," University of South Florida Department of Chemical Engineering Seminar -Tampa, FL,(April 2019.
- M.M. Yung et al., "Characterization of Mo<sub>2</sub>C used for Hydrodeoxygenation of Biomass Pyrolysis Vapors," North American Catalysis Society NAM 26 Meeting Chicago, IL, June 2019.
- *Invited* M.M. Yung, "Enabling Production of Sustainable Biofuels and Bioproducts through Catalysis R&D: An Overview of NREL Thermochemical Biomass Conversion R&D Projects and Heterogenous Catalysis Examples," *Seminar at George Olah Renewable Methanol Plant Kopavogur, Iceland*, September 2019.
- Invited M.M. Yung, "Enabling Production of Sustainable Biofuels and Bioproducts through Catalysis R&D: An Overview of NREL Thermochemical Biomass Conversion R&D Projects and Heterogenous Catalysis Examples," Seminar at Metan LTD. Reykjavik, Iceland, September 2019.

## Other Research: Optimizing Catalyst Support Formulations



Utilizing smaller TiO<sub>2</sub> supports improves deoxygenation performance but increases pressure drop and necessitates the use of low L/D reactors with limited heat transfer capabilities

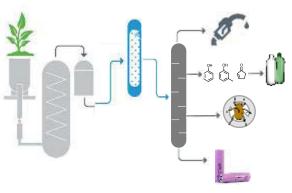

Ongoing collaborative research focuses on optimizing catalyst size and porosity using custom technical supports prepared at NREL (Engineering of Catalyst Scale Up: 3.2.2.701)



Target outcome: achieve high catalyst activity while minimizing pressure drop to enable the use of reactor dimensions with improved heat transfer capabilities

## Other Research: Zeolite and Metal Carbide Catalyst Development

Catalyst development within this project has led to impactful outcomes for a wide range of CFP approaches and biomass conversion technologies

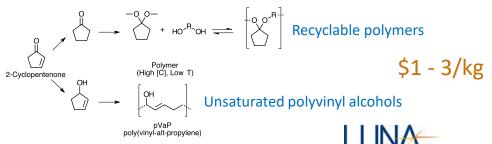


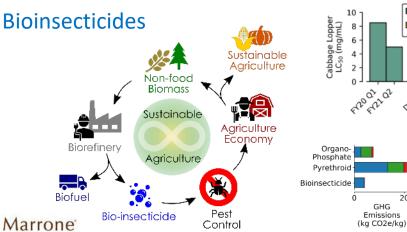

Improving hydrocarbon yields and increasing alkene selectivity using a Ga/ZSM-5 catalyst lisa, K., et al. Green Chemistry, 2020, 22, 2403

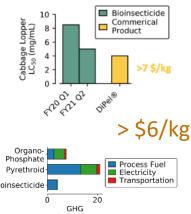


A novel and scalable solution phase synthesis route to produce molybdenum carbide nanoparticles Baddour, F., et al. JACS, 2020, 142, 2, 1010

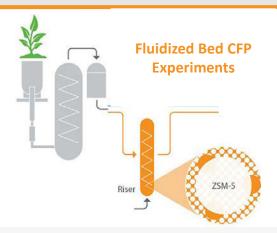
## Other Research: Developing Co-Product Pathways with Commercial Partners



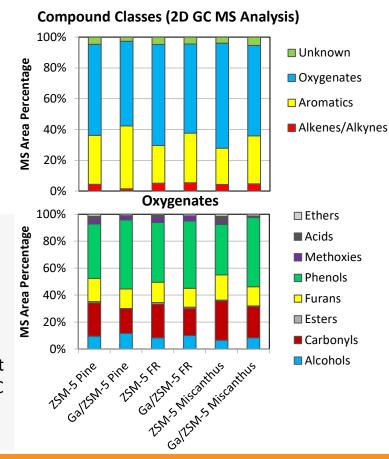


## **ENSYN** BIC **High Value Carbon** ADITYA BIRLA Voltage (vs Li/Li⁺) BIRLA CARBON \$5 - 10/kg


Anodes for Lithium and Sodium Ion Batteries

Specific capacity (mAh/g)


## **Chemicals for Polymers**








## Other Research: Fluidized Bed CFP



Approach: Develop modified zeolites with Johnson Matthey that target biomass conversion and are compatible with refinery fluidized catalytic cracking (FCC) catalysts; prepare CFP oils using a coupled pyrolyzer/FCC plant; evaluate catalyst impact on oil composition; assess FCC co-processability to biogenic carbon containing fuels.



### Feedstocks and Catalysts

- Pine (baseline feed)
- Pine forest residues (FR)
- Miscanthus
- ZSM-5
- Ga/ZSM-5

### Feedstocks and ZSM-5

FR and Miscanthus

 Increased oxygenates, reduced aromatics
 Miscanthus: reduced phenolics

(less lignin)

### Feedstocks and Ga/ZSM-5

- Increased aromatics, phenols for all feedstocks
- Reduced furans and carbonyls from cellulose deoxygenation