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Abstract: This paper presents a methodology for enhancing community resilience through optimal
renewable resource allocation and load scheduling in order to minimize unserved load and thermal
discomfort. The proposed control architecture distributes the computational effort and is easier to
be scaled up than traditional centralized control. The decentralized control architecture consists
of two layers: The community operator layer (COL) allocates the limited amount of renewable
energy resource according to the power flexibility of each building. The building agent layer (BAL)
addresses the optimal load scheduling problem for each building with the allowable load determined
by the COL. Both layers are formulated as a model predictive control (MPC) based optimization.
Simulation scenarios are designed to compare different combinations of building weighting methods
and objective functions to provide guidance for real-world deployment by community and microgrid
operators. The results indicate that the impact of power flexibility is more prominent than the
weighting factor to the resource allocation process. Allocation based purely on occupancy status
could lead to an increase of PV curtailment. Further, it is necessary for the building agent to have
multi-objective optimization to minimize unserved load ratio and maximize comfort simultaneously.

Keywords: resilient community; optimal operation; load scheduling; renewable resource allocation;
model predictive control; mixed-integer linear program

1. Introduction

In the past several decades, the degrading power grid infrastructure has been faced with higher
stress. On one hand, the frequency of human-made disasters as well as extreme weather events
is increasing, causing more frequent power outages [1]. On the other hand, the rapid technical
advancement and increasing adoption of renewable energy is bringing more uncertainty and variability,
posing new challenges to the grid. These factors impact the resilience of the power supply and, thus,
require the demand side to become actively involved in grid resilience management.

In 2017, Hurricane Maria left 1.5 million customers across Puerto Rico without electricity and it
took 11 months to fully restore the power system [2]. In such extreme cases, outages not only cause
inconvenience to occupants’ daily life but also compromise their health or even lives. The power loss
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of the heating, ventilation, and air-conditioning (HVAC) system in a nursing home located in Florida
caused 12 patients’ deaths after Hurricane Irma in 2017 [3]. This has motivated the research towards
more resilient communities.

Studies have proven that communities with on-site PV power and batteries have the potential
to sustain power outages for a certain period if the energy resources are properly managed and the
controllable loads are well scheduled [4]. Some research efforts focus on microgrid operation with
selected distributed generation technologies and energy storage systems. Marnay [5] illustrated that
the adoption of combined heat and power together with heat and electrical storage in a hypothetical
San Francisco hotel can lead to 11% cost savings and 8% carbon emission reductions. Similarly,
Bozchalui [6] developed mathematical models of a combined cooling, heating, and power system for
a commercial building microgrid, together with PV generation, thermal energy storage, and battery
storage devices. Results in [4–6] show that adopting the above technologies can reduce total costs and
help achieve efficiency and emission reduction targets.

Some research focuses on restoring the power generation, transmission and distribution promptly
after power outages [1]. Arif [7] co-optimized the topology reconfiguration, repair crew scheduling,
and distributed generator (DG) dispatching to maximize the picked-up loads while minimizing the
repair time. Chen [8] and Ding [9] proposed a mechanism for microgrid formation to restore critical
loads after major disruptions in the power grid. In their scheme, a mixed-integer linear program
(MILP) was formulated to maximize the total restored critical loads. The problem was constrained by
each microgrid’s self-adequacy and operation constraints. Similarly, Chen [10] proposed a MILP model
for the optimal sequential service restoration, which coordinates dispatchable DGs and switchgears to
restore the power system service step by step.

Other studies consider flexible load scheduling as an important avenue to enhance resilience.
In this case, the power demand from buildings can be ramped up or down in response to exterior
signals, such as available PV power and occupancy prediction. Hussain [11] classifies proactive
scheduling, such as revising schedules of dispatchable generators, flexible loads and energy storages,
as the first step for enhancing grid resilience. Kallel [12] proposed a demand-side management control
strategy through the modification of the household load profile to satisfy the demand and reduce the
size of system components in a stand-alone hybrid PV system. Results show that the proposed strategy
led to minimum loss of power supply probability and system cost, as well as extended battery life.

Among the optimal load scheduling studies, some researchers approach load management
through a rule-based methodology. Ayodele [13] proposed a rule-based load management scheme for
a stand-alone PV battery system, where residential loads are classified into critical and non-critical
loads. The critical loads are given higher priority and therefore can operate at their scheduled time
while the uncritical loads can be shifted to other times. However, this type of method is not suitable
for problems with a large number of variables (i.e., controllable appliances), where manually defining
the algorithms becomes difficult.

Many other studies formulate load scheduling as an optimization problem. Garifi [14] adopted
a stochastic MPC-based algorithm for demand response in a home energy management system
(HEMS). The HEMS optimally schedules controllable appliances given user preferences and available
residentially owned power sources such as PV and battery. Zhao [15] applied a genetic algorithm
(GA) in a HEMS controller where the optimal power scheduling schemes under various electricity
pricing models are compared. Pathak [16] developed a scheduling strategy for demand response
management of residential loads using a particle swarm optimization algorithm. Additionally, machine
leaning techniques have been emerging in the optimal load scheduling field. Zhang [17] proposed a
learning-based HEMS, where neural network and regression-based learning are adopted to predict the
energy consumption of the HVAC system. Mazzeo [18] applied energy reliability-constrained method
for the multi-objective optimization of hybrid photovoltaic-wind-battery systems. The proposed
method permits choosing the most proper indicator combination to be constrained or optimized.
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Noticeably, occupants’ preferences are widely considered in the problem formulation of load
scheduling as either constraints or objectives. Jin [19] presented a user-centric HEMS that is built
on a multi-objective MPC framework, wherein the objectives consist of thermal comfort and user
convenience. In Zhao’s work [15], the delay time rate of home appliances, i.e., the deviation between
an appliance’s actual operation time and its scheduled time, is minimized to increase the satisfaction of
user preferences.

Optimal load scheduling in single buildings, especially residential buildings, has been studied
extensively [14–17,19]. Quantifying load flexibility and optimal load scheduling in other building types,
however, needs further exploration. Larger-scale studies, such as those for microgrids, often focus
on identifying enabling energy technologies or operating energy resources from a higher level.
The scheduling of each controllable load in every building of a community can be computationally
challenging due to the increased number of variables. However, this also provides more possibilities
for load scheduling due to the heterogeneity of different building load shapes in the community.
If building loads in the same community are scheduled simultaneously by a single operator, power
sharing is possible. Further, under certain circumstances, buildings of lower priority could reduce
their loads to satisfy the demand of higher priority building loads.

Therefore, this paper proposes a new methodology for optimal renewable resource allocation
and load scheduling in resilient communities. The methodology adopts a hierarchical architecture
consisting of a COL and a BAL. The COL enables dynamic renewable resource sharing among
buildings in the same community according to various weighting methods. The BAL then achieves the
locally optimal operation solution by controlling its HVAC system, loads and battery storage with the
allowable load decided by the COL. The innovation of this work is that it proposes an easy-to-deploy
optimization scheme for large-scale communities, which embraces both high-level resource allocation
and low-level high-fidelity building energy modeling. The hierarchical control architecture distributes
the computational effort and is easier to be scaled up than traditional centralized control, which is not
robust for large-scale deployment. The hierarchical structure also helps hide the complexity of the
whole scheduling system through the separated layers. In the case study, different building types are
considered, including residential and small commercial buildings.

The remainder of the paper is organized as follows: Section 2 introduces the concept and
architecture developed for community resource allocation and load scheduling. Section 3 provides
the mathematical formulation of the optimization problem. Section 4 demonstrates the proposed
methodology through a case study based on a real community. Finally, concluding remarks and future
work are provided in Section 5.

2. Proposed Architecture for Resource Allocation and Scheduling

In this work, we consider an islanded community during a power outage. The only energy resource
accessible to the community is the on-site PV generator and the batteries. Under this problem setting,
the research question is how to optimally allocate the limited PV generation among different buildings
and schedule the loads to meet occupants’ essential needs for a certain time period. Here, we confine
occupants’ essential needs to be physiological (i.e., food and shelter) and safety needs (i.e., lighting at
night), which align with the two bottom levels of Maslow’s Hierarchy of Needs [20].

To address this problem, we propose a hierarchical control architecture that consists of two layers.
The top layer is the COL which mimics the perspective of the community operator and seeks the
optimal solution for allocating the limited PV power among buildings. The bottom layer is the BAL
which satisfies its occupants’ needs through optimal load scheduling. In this way, the cooperation
among buildings is achieved through their individual but simultaneous communication with the
operator and the global optimum of the whole community is also achieved through decentralized
control. The operation in both layers is formulated as MPC problems. The proposed architecture with
data exchange flow is visualized in Figure 1.
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As can be seen from the figure, the COL determines the allowable load based on the forecast of
the total PV power generation and the load flexibility of each building. The determined allowable
load of each building is then passed down to the building smart controllers in BAL. Other inputs of
the BAL consist of the outdoor temperature and solar irradiance forecasts. This decentralized control
architecture distributes the computational efforts to local controllers. Compared with centralized
control, this structure is more robust, scales up easily, and allows the use of inexpensive and simple
agents at the BAL [21]. The data exchange between the COL and the BAL can be implemented through
multi-agent communication system [22]. The detailed mechanisms of the two layers are introduced in
the remainder of this section.

2.1. Renewable Resource Allocation in COL

The COL allocates the limited amount of available generation from a renewable energy resource;
namely, PV power, according to the load flexibility of each building, within which range the building’s
power demand can fluctuate. The operator decides the optimal way to allocate the current PV power
to avoid PV curtailment and building load shedding. We assume that the operator does not take
into account the detailed building equipment information, extra building-owned energy resources
(i.e., battery), or building thermal dynamics in its allocation process. This assures the scalability of the
control framework. The allocated PV power to building i is defined as the allowable load:

Pt
allow,i = αt

i ∗ Pt
pv, (1)

where αt
i is the ratio of the allowable load of building i to the current total PV generation Pt

pv. Since it
is directly related to the allocated PV power, αt

i is referred to as the allocation factor in the rest of
the paper.

To investigate a logical way to allocate the PV power besides the baseline, where the allocation
is done only with information of building load flexibility, we introduce weighting factors into the
problem. The weighting factor reflects the priority of each building. Two types of weighting factors are
considered: constant versus dynamic. The constant weighting factor is adopted when a building is
naturally more important than other buildings. For example, health facilities are naturally prioritized
over other types of buildings during emergencies. The dynamic weighting factor is time-varying based
on occupancy, e.g., when a building is occupied, it has a higher weighting factor.
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Therefore, the COL decides the allowable load of each building through three methods: (1) equally
weighted, (2) weighted based on priority, (3) weighted based on occupancy. The determined allowable
load is then passed to the smart controllers in BAL, where each building performs its local detailed
optimization to achieve its own objectives.

2.2. Optimal Load Scheduling in BAL

The BAL addresses the optimal load scheduling problem with the predetermined allowable load.
Each building is simulated as an agent that has various electrical loads, an HVAC system, and a
battery. The HVAC system is modeled with a linear regression model trained from data. The battery is
modeled with a linear convex model. By adopting linear room temperature models and battery models,
the optimization problem becomes linear. This method has the advantage of shorter computational
time. However, compared to high-fidelity nonlinear models, it may lose some model fidelity and the
ability to simulate certain system dynamics by making simplifications. In this work, linear models are
accurate enough for our application scenario.

In this work, following methods found in the literature [12,13,15,17,23], the building’s electrical
loads are categorized into four types: sheddable, modulatable, shiftable, and critical. The primary
classification criteria include the assumed occupants’ preference during emergency circumstances and
the electrical characteristics of different appliances. Only loads that are related to safety (e.g., lighting
at night) or food preservation (e.g., refrigerator) are considered critical. Sheddable loads are those that
can be fully disconnected without impacting the occupant’s essential needs during the studied time
period, such as coffee makers. Modulatable loads are those categorized by varying power amplitudes
such as the HVAC system. Shiftable loads are those that need to be operated but are flexible with
respect to the time of day that they are scheduled. Examples are washers and driers. From practical
point of view, categorizing building loads can help avoid dealing with thousands of individual load
models especially when the problem scales up. It can significantly reduce the computational effort.
Figure 2 visualizes the logic we followed to categorize the loads.
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Additionally, at this layer, different optimization objective functions are compared to evaluate
their performance in satisfying selected key performance indices (KPIs); namely, unserved load ratio,
thermal comfort, PV curtailment, and required battery installation size. Two objectives are considered:
(1) minimizing unserved load ratio, and (2) maximizing thermal comfort.
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It is to mention that we included uncertainty in the weather-related parameter forecasts to account
for prediction errors. Chance constraints for the indoor temperature range are, thus, implemented
to ensure thermal comfort is maintained with high probability. The following section presents the
detailed mathematical formulation of the two-layered control architecture with equations.

3. Formulation of the Optimization Problem

3.1. Community Operator Layer

The COL determines the allowable load of each building through MPC-based optimization that
takes into account forecasted PV generation, building load flexibility, priority and occupancy of each
building. The flexibility of building loads depends on the power demand of the controllable loads,
i.e., the sum of sheddable, modulatable, and shiftable loads. Note that the HVAC load flexibility is
reflected in the temperature range constraints and is not summed here. The mathematical formulation
of the load flexibility for each building i is given by:

Pt
load, f lex,i =

Nshed, i∑
j=1

P̂t
shed,i, j +

Nmodu,i∑
j=1

P̂t
modu,i, j +

Nshi f ,i∑
j=1

P̂t
shi f ,i, j, (2)

where P̂t
shed,i, j, P̂t

modu,i, j, and P̂t
shi f ,i, j denote the prediction data of each individual sheddable, modulatable,

and shiftable load in building i, respectively. The Nshed, i, Nmodu,i, and Nshi f ,i represent the number of
appliances under each category. The constraints of the flexible load are defined as:

Pt
load,i =

Ncrit,i∑
j=1

P̂t
crit,i, j, (3)

P
t
load,i = Pt

load,i + Pt
load, f lex,i, (4)

Pt
load,i ≤ Pt

load,i ≤ P
t
load,i, (5)

where P̂t
crit,i, j stands for the prediction data of each critical load in building i. Pt

load,i is an optimization
variable that represents the actual consumed power at each timestep, which is bounded by the critical

load Pt
load,i and the total desired load P

t
load,i.

Equations (6)–(10) define the power balance and its constrains at the community level:

αt
i ∗ Pt

pv − Pt
curt,i = Pt

load,i − Pt
shed,i, (6)

s.t. 0 ≤ Pt
curt,i ≤ α

t
i ∗ Pt

pv, (7)

0 ≤ Pt
shed,i ≤ Pt

load,i, (8)

0 ≤ αt
i ≤ 1, (9)

I∑
i=1

αt
i = 1, (10)

where αt
i ∗Pt

pv is the PV power allocated to building i at timestep t. Equation (7) defines the range of the
PV curtailment, where the variable Pt

curt,i denotes the curtailment of allocated PV power in the case that
allocated PV power exceeds the upper bound of Pt

load,i. Similarly, Pt
shed,i is the variable of load shedding

for situations when the available PV power is less than the lower bound of Pt
load,i. Equation (8) enforces

that the value of load shedding cannot exceed the lower bound of Pt
load,i. Equations (9) and (10) define
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the range of the PV allocation factor αt
i and the sum of all allocation factors at any timestep must equal

1. The total number of buildings in the community is given by parameter I.
The objective of the COL is to minimize the total PV curtailment and load shedding over the

whole MPC prediction horizon at the community level. The mathematical formulation of the objective
function is defined as:

fcost(t, {xt
}
H
t=1) =

I∑
i=1

H∑
t=1

(Pt
curt,i + Pt

shed,i), (11)

min
{xt}Ht=1

fcost(t, {xt
}
H
t=1), (12)

where H denotes the prediction horizon. Let xt be the vector of all optimization variables of the COL:

xt =
[
{Pt

curt,i}
H
t=1, {Pt

shed,i}
H
t=1, {Pt

load,i}
H
t=1, {αt

i}
H
t=1

]
, i ∈ {1, 2, . . . , I}, t ∈ {1, 2, . . . , H}. (13)

For scenarios where a certain building is prioritized over other buildings, a weighting factor
wt

i > 1 is introduced into the cost function shown in Equation (11) to obtain:

fcost(t, {xt
}
H
t=1) =

I∑
i=1

H∑
t=1

(Pt
curt,i + wt

i ∗ Pt
shed,i). (14)

This will ensure that a prioritized building will experience less load shed Pt
shed,i. For constant

weighting scenarios, wt
i of the prioritized building is twice as large as the rest of the buildings over

the whole simulation. For occupancy-based time-varying weighting scenarios, wt
i of any building is

doubled when that building is occupied.

3.2. Building Agent Layer

The BAL performs MPC-based optimal load scheduling with detailed device models. The overall
optimization problem is a MILP since our device models include binary variables. Each building
agent coordinates the electricity usage of an HVAC model, four types of building loads, and a battery.
Since all the equations in this section apply for every individual building i, to avoid redundancy,
we have removed the notation of building index i in the following discussion. For each of the studied
buildings, the power balance that must be satisfied at each timestep is given by:

Pt
pv − Pt

curt = Pt
ch − Pt

dis + Pt
load + Pt

hvac, (15)

where PV curtailment is limited by how much PV generation is available:

s.t. 0 ≤ Pt
curt ≤ Pt

pv. (16)

Two different cost functions are designed to be compared: (1) to minimize unserved load ratio:

fcost(t, {xt
}
H
t=1) =

H∑
t=1

(P
t
load − Pt

load) +
H∑

t=1

γPt
ch +

H∑
t=1

γ′Pt
curt, (17)

min
{xt}Ht=1

fcost(t, {xt
}
H
t=1), (18)

and (2) to maximize thermal comfort:

fcost(t, {xt
}
H
t=1) =

H∑
t=1

Tt
room −

Troom + Troom

2

2

+
H∑

t=1

γPt
ch +

H∑
t=1

γ′Pt
curt, (19)
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min
{xt}Ht=1

fcost(t, {xt
}
H
t=1). (20)

In Equation (17), P
t
load is the same predicted load upper bound discussed in Section 3.1 in

Equation (4). The difference between this upper bound and the actual operated loads Pt
load is minimized

to achieve maximum served load. In Equation (19), the first term penalizes when the indoor air
temperature Tt

room deviates from the desired temperature range given by Troom and Troom, which are
the lower and upper bounds of the indoor air temperature. To avoid simultaneous charging and
discharging of the battery as well as PV curtailment, the objective function also includes small
penalizations of charging γPt

ch and curtailment γ′Pt
curt [24].

The room temperature is predicted with a linear regression model shown in Equations (21)–(23).
The independent variables include the ambient temperature Tt

amb, indoor room temperature Tt
room,

and solar irradiance Qt
sol of the past two timesteps, and the speed of the HVAC equipment of the past

one timestep rt
hvac. The normalized speed ranges from 0 to 1. The resulted HVAC system power is thus

the product of the speed ratio rt
hvac and the nominal power Phvac,nom. The choice of regression over two

past terms is to reflect the impact of building thermal mass on indoor temperature evolution while
balancing prediction accuracy and computational time [25]. In this model, the internal heat gain was
not included as it is calculated from the actual operated devices (i.e., optimization variables). Having
it in the temperature prediction model will further couple the temperature calculation and the load
scheduling, causing the computational effort to be greater. Additionally, compared to the solar heat
gain, the internal heat gain accounts for less than 10% of the total heat gain in our case. Due to the
above reasons, we did not include the internal heat gain in this model.

Tt+1
room = β1Tt

amb + β2Tt−1
amb + β3Tt

room + β4Tt−1
room − β5rt

hvac + β6Qt
sol + β7Qt−1

sol (21)

0 ≤ rt
hvac ≤ 1 (22)

Pt
hvac = rt

hvac ∗ Phvac,nom (23)

To account for the uncertainty in the outdoor air temperature and solar irradiance forecasts,
we use chance constraints to ensure that thermal comfort is maintained with a high probability [26].
The chance constraints are given by:

Pr(Troom ≤ Tt
room) ≥ 1− εT, (24)

Pr(Tt
room ≤ Troom) ≥ 1− εT, (25)

where εT is the maximum violation probability of the chance constraint. We assume that the forecasting
errors for all timesteps follow the same normal distribution and are independent for each timestep:

Tt
amb,e ∼ N(µt

T, (σt
T)

2), (26)

Qt
sol,e ∼ N(µt

Q, (σt
Q)

2). (27)

The outdoor temperature and solar irradiance predictions can, thus, be represented as:

Tt
amb = Tt

amb, f + Tt
amb,e, (28)

Qt
sol = Qt

sol, f + Qt
sol,e, (29)

where Tt
amb, f and Qt

sol, f are the forecasts of ambient temperature and solar irradiance while Tt
amb,e and

Qt
sol,e are the forecast errors. The chance constraint shown in Equation (25) can be rewritten as:

Pr(χt+1
T ≤ 0) ≥ 1− εT, (30)
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where:
χt+1

T = Tt+1
room − Troom. (31)

Then, by substituting Equations (21), (28), and (29) for Tt+1
room, the above equation becomes:

χt+1
T = β1(Tt

amb, f + Tt
amb,e) + β2(Tt−1

amb + Tt−1
amb,e) + β3Tt

room + β4Tt−1
room − β5rt

hvac

+β6(Qt
sol, f + Qt

sol,e) + β7(Qt−1
sol + Qt−1

sol,e) − Troom.
(32)

Since Tt
amb,e and Qt

sol,e are normally distributed, χt+1
T is also normally distributed with the following

mean µt and standard deviation σt:

µT = β1(Tt
amb, f + µt

T) + β2(Tt−1
amb + µt

T) + β3Tt
room + β4Tt−1

room − β5rt
hvac + β6(Qt

sol, f + µt
Q)

+β7(Qt−1
sol + µt

Q) − Troom,
(33)

σt =
√
(β1σt

T)
2 + (β2σt

T)
2 + (β6σt

Q)
2 + (β7σt

Q)
2. (34)

Hence, the chance constraint in Equation (30) can be reformulated as:

Pr
(
χt+1

T ≤ 0
)
= Φ

(
0− µt

σt

)
≥ 1− εT, (35)

where Φ(·) is the cumulative distribution function (CDF) of the standard normal distributionN(0, 1).
Finally, by taking the inverse CDF of both sides in Equation (35), we obtain the chance constraint
for ensuring the indoor temperature not exceeding the upper bound of Troom with the probability of
(1− εT) as follows:

Troom − β1(Tt
amb, f + µt

T) − β2(Tt−1
amb + µt

T) − β3Tt
room − β4Tt−1

room + β5rt
hvac − β6(Qt

sol, f + µt
Q)

−β7(Qt−1
sol + µt

Q) ≥ Φ−1(1− εT)
√
(β1σt

T)
2 + (β2σt

T)
2 + (β6σt

Q)
2 + (β7σt

Q)
2.

(36)

Taking a similar derivation process for Equation (24), we obtain the chance constraint for the
temperature lower bound:

β1(Tt
amb, f + µt

T) + β2(Tt−1
amb + µt

T) + β3Tt
room + β4Tt−1

room − β5rt
hvac + β6(Qt

sol, f + µt
Q) + β7(Qt−1

sol + µt
Q)

−Troom ≥ Φ−1(1− εT)
√
(β1σt

T)
2 + (β2σt

T)
2 + (β6σt

Q)
2 + (β7σt

Q)
2.

(37)

As mentioned above, the electrical loads consist of four types: sheddable, modulatable, shiftable,
and critical, which are summed in the following equation:

Pt
load =

Nshed∑
j=1

Pt
shed, j +

Nmodu∑
j=1

Pt
modu, j +

Nshi f∑
j=1

Pt
shi f , j +

Ncrit∑
j=1

Pt
crit, j. (38)

where Pt
shed, j, Pt

modu, j, Pt
shi f , j, and Pt

crit, j are the optimization variables for individual loads in each

category. The mathematical formulation of the sheddable load is shown in Equation (39), where ut
shed, j

is a binary optimization variable and P̂t
shed, j is the original sheddable load power demand data. The

actual sheddable load after optimization Pt
shed, j is determined by the ON/OFF status represented by the

binary variable.
Pt

shed, j = ut
shed, j ∗ P̂t

shed, j, j ∈ {1, . . . , Nshed} (39)
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Equation (40) sets the lower and upper bound of the optimization variable Pt
modu, j, which represents

the modulatable load power demand. The actual demand is modulated between zero and the original
demand data P̂t

modu, j.

0 ≤ Pt
modu, j ≤ P̂t

modu, j, j ∈ {1, . . . , Nmodu} (40)

Equation (41) states that the actual critical load Pt
crit, j must be exactly equal to the critical power

demand data P̂t
crit, j.

Pt
crit, j = P̂t

crit, j, j ∈ {1, . . . , Ncrit} (41)

The shiftable loads are scheduled through scheduling matrices [15]. First, using the power
data [27], we extracted the average cycle time nshi f , j and the average power demand Pshi f , j,avg of each
shiftable load. The starting time of a shiftable load tshi f , j,s is optimized over the MPC horizon. At the
scheduled starting time, the binary variable vt

shed, j equals 1 and is 0 otherwise:

vt
shi f , j =

{
1, t = tshi f , j,s
0, t , tshi f , j,s

,

∀t ∈ {1, . . . , H − nshi f , j + 1}, j ∈ {1, . . . , Nshi f }.
(42)

Once the starting time of a load is selected, the power demand of the load is then fixed until it
finishes its cycle. The appliance must finish its cycle before the horizon ends (t ∈ {1, . . . , H − nshi f , j + 1}).
Here, we assume that each shiftable load operates once and only once in each horizon, which is
enforced by:

H−nshi f , j+1∑
t=1

vt
shi f , j = 1. (43)

Next, a scheduling matrix Sshi f , j of shape H × (H − nshi f , j + 1) is generated for each shiftable load.
The actual power shape of the load, denoted Pt

shi f , j, is calculated by:

Pt
shi f , j = Sshi f , j ×


v1

shi f , j
...

v
H−nshi f , j+1
shi f , j

× Pshi f , j,avg. (44)

For instance, when H = 12, nshi f , j = 3, an appliance scheduling matrix of shape 12 × 10 is
generated as follows:

Sshi f , j =



1 0 0 0
1 1 0 0
1 1 0 0
0 1 0 0
... 0 · · ·

... 0

0
... 0

...
0 0 1 0
0 0 1 1
0 0 1 1
0 0 0 1



(45)

The linear battery model adopted in this work is shown in Equations (46)–(48). The battery
state of charge (SOC) Et+1

bat depends on the SOC of the previous timestep Et
bat, as well as the battery

charging or discharging during each step and the battery charging/discharging efficiencies ηch and ηdis.
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Constraints in Equations (47) and (48) enforce the acceptable limits for charging/discharging power
and battery SOC:

Et+1
bat = Et

bat + ηchPt
ch∆t−

1
ηdis

Pt
dis∆t (46)

0 ≤ Pt
ch, Pt

dis ≤ Pbat (47)

0 ≤ Et
bat ≤ Ebat (48)

The optimization variables in each building agent are collected in vector xt:

xt =

 {P
t
curt}

H
t=1, {Pt

ch}
H
t=1, {Pt

dis}
H
t=1, {rt

hvac}
H
t=1, {ut

shed, j}
H
t=1,

{Pt
modu, j}

H
t=1, {vt

shi f , j}
H−nshi f , j+1
t=1 , {Tt

room}
H
t=1, {Et

bat}
H
t=1

 (49)

4. Case Study

The proposed architecture has been tested with a case study based on a real-world community
located in Anna Maria Island, FL [28]. It is a net-zero energy community made up of residential
units and small commercial buildings with on-site PV panels. To demonstrate the idea of dynamic
power sharing among buildings, the data for three buildings of different types are used in the case
study [27]. The selected buildings are: one residential building (area: 93.8 m2), one ice cream shop
(area: 160.5 m2), and one bakery (area: 410 m2). All buildings use heat pumps as the HVAC equipment.
All data for the case study have been exported from a validated physics-based model of the studied
community [29]. The weather file embedded in the model is typical meteorological year (TMY) data for
the weather station at Tampa International Airport [30]. The load data consists of power submetering
data provided by the community [27]. The solar irradiance data are collected through a local solar
station. The indoor temperature data are simulation results generated by the physics-based room
models [31]. The simulations are run in Python 2.7 with Gurobi 9.0 [32] as the optimization engine.
The average simulation time of each scenario is about 20 s in Windows 7 operating system on a DELL
T5810 workstation with 32 GB RAM and a 3.50 GHz Intel Xeon CPU (E5-1620 v4) processor.

4.1. Simulation Scenario Design

The optimal resource allocation and load scheduling MPC algorithm for the community when
disconnected from the grid was simulated for 48 h within Florida’s hurricane season on August 4
and 5. The timestep ∆t for both COL and BAL is 1 h and the MPC horizon H = 12 h to balance the
trade-off between forecast information and computational time. Table 1 lists the 10 scenarios covering
various weighting methods at the operator layer and two different objectives at the building layer.
In the following discussion, R stands for Residential, I stands for Ice Cream Shop, and B stands for
Bakery. Each scenario was run for all three buildings. In total, 30 simulations were run and analyzed.

Table 1. Designed simulation scenarios with varied weighting factors and objective functions.

Community Operator Layer

Equal
Weighting

Priority-Based Weighting
Occupancy-Based

WeightingPrioritize
Residential

Prioritize Ice
Cream Shop

Prioritize
Bakery

Building
Agent Layer

Minimize unserved
load ratio S11 S21_R S21_I S21_B S31

Maximize thermal
comfort S12 S22_R S22_I S22_B S32

In the room temperature constraints, the lower and upper temperature limits Troom and Troom are
governed by ASHRAE Standard 55–2017 [33], which recommends the temperature range for thermal
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comfort to be approximately between 67 ◦F and 82 ◦F (20–28 ◦C). Thus, Troom is 20 ◦C and Troom is
28 ◦C. Table 2 summarizes the coefficients of the HVAC linear regression models. The prediction
accuracy is measured with the root mean square error (RMSE). The nominal power of each heat pump
is listed in the last row of Table 2.

Table 2. Coefficients, accuracy, and nominal power of HVAC linear regression models.

Regression Variables Residential Ice Cream Shop Bakery

Coefficients

Tt−1
room 1.527 1.579 1.530

Tt−2
room −0.532 −0.586 −0.536

Tt−1
amb 0.037 0.044 0.050

Tt−2
amb −0.032 −0.036 −0.044

rt−1
HVAC −0.324 −0.688 −0.393
Qt−1

sol 0.350 0.486 0.206
Qt−2

sol −0.072 −0.219 0.098

RMSE (◦C) 0.196 0.230 0.295

Nominal Power (kW) 4.0 5.5 6.8

Table 3 summarizes the load categorization results following the classification proposed in
Section 2.2. In this study, we determine whether a load is sheddable from the building owner’s
perspective. For instance, the coffee maker and the soda dispenser in the ice cream shop are classified
as sheddable during the outage. Mixers with variable speed options, as well as the HVAC system,
are classified as modulatable loads due to their varying power amplitudes. Since some plug loads
in the dataset are unspecified, we sum those loads into one modulatable load. The washer, dryer,
and stovetop range are considered shiftable loads in this work as their operation schedules can be
flexible if needed. Lights, coolers, and display cases are classified as critical because they are related
with occupants’ need for safety and food preservation. Due to the islanded circumstances, some loads
commonly categorized as critical are considered to be sheddable (e.g., computer) in this paper.

Parameters related to battery configuration and penalty coefficients are summarized in Table 4.
We assumed the maximum charging/discharging power Pbat to be 40% of the battery energy bound
Ebat. Further, the initial battery SOC is assumed to be 50% of Ebat. The charging/discharging efficiencies
are ηch = ηdis = 0.9.

Table 3. Summary of load types in studied buildings.

Load Type Residential Ice Cream Shop Bakery

Sheddable Computer Coffee maker, soda dispenser,
outdoor ice storage Microwave

Modulatable HVAC HVAC Mixer, unspecified room
plugs, HVAC

Shiftable Range, washer, dryer None Range, oven, dishwasher

Critical Lights, refrigerator Lights, cooler, display case Lights, cooler, display case

Table 4. Parameters of battery configuration and penalty coefficients.

Parameter Residential Ice Cream Shop Bakery

Battery energy upper bound Ebat (kWh) 70 270 280
Maximum charging power Pbat (kW) 28 108 112

Penalty of charging γ 1.00 × 10−3 1.00 × 10−6 1.00 × 10−4

Penalty of curtailment γ′ 5.00 × 10−3 1.00 × 10−5 1.00 × 10−3
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4.2. Validation of the Chance Constraint

Before further evaluating the simulation results, we first need to validate the chance constraints.
The normally distributed error we introduced into outdoor temperature forecast is assumed to be
Tt

amb,e ∼ N(0, (0.2)2) and the solar irradiance forecast error is assumed to be Qt
sol,e ∼ N(0, (0.01)2).

The tolerance εT is 0.05, meaning that with the given error distribution of forecast, the temperature
range can be violated 5% of the time in the independent experiments.

Monte Carlo simulations were adopted for the constraint validation. For each timestep of the
simulation, normally distributed errors were generated randomly for 1000 times and then added into
the temperature prediction model in Equation (21) with the optimal HVAC operation decisions. Results
showed that all temperature predictions of 10 scenarios in all three buildings are within the range of
20–28 ◦C. As an example, Figure 3 compares the temperature predictions with and without uncertainty
using the simulation results for scenario S11. We see that, with the accumulation of prediction errors
(both positive and negative), the absolute difference between the temperature trajectories with and
without forecast error lies within the 0–0.5 ◦C range.
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4.3. Impact of Weighting Factor

This section first discusses the allocation factors αt
i generated by the operator layer, which later

serves as the input for the smart controllers at the building layer. Then, we compare the scheduled
load shapes, battery behavior, and indoor temperature of each building in different scenarios to further
discuss the impact of weighting factors on the KPIs.

Figure 4 compares the allocation factors for equally weighted buildings (baseline) with weightings
that prioritize each building over the others. Qualitatively, when all buildings are equally weighted in
the allocation process (second plot from top), we see a rather random behavior for the PV allocation
during the nighttime when no PV power is available. All three buildings take turn to get full PV power
(αt

i = 1) because they have the same objective function value. On the contrary, for the scenarios when
single building is prioritized, the prioritized building gets full PV power alone during the nighttime
(bottom three plots). During the daytime, when more PV generation is available, the allocation results
follow similar trends for all scenarios regardless of the weighting method. Although generally we
see less load shedding in the prioritized building, as well as a higher value of the allocation factor,
the allocation process is mostly constrained by the building load flexibility ranges. More specifically,
buildings with a higher load flexibility lower bound (i.e., ice cream shop) tend to get more allowable
load than other buildings.
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Figure 5 plots the allocation factors for occupancy-based weighting method against building
occupancy. Here, occupancy indicates whether the building is occupied. In this work, we do not
consider number of people in the building as we don’t have access to this level of data. From the
middle plot, we see that the residential building is mostly occupied during the night from about
7 P.M. to 8 A.M. Ice cream shop and bakery are occupied during the day from 10 A.M.–11 P.M. and
6 A.M.–7 P.M., respectively. From the bottom plot, we see that similar to single building prioritized
scenarios, when at night only residential building is occupied, it gets full PV allocation. However,
when the time reaches 5 A.M., the allocation factor of the residential building starts to decrease and
during the day only a few hours will it get PV power due to its unoccupied status. During the daytime,
when both the bakery and ice cream shop are occupied, the allocation basically follows the buildings’
power flexibility lower bounds as discussed before.

To further quantify the impact of different weighting methods, the mean values of the allocation
factors αt

i , as well as the total allocated PV energy are listed in Table 5. Due to the highly stochastic
allocation during nighttime when no PV power is available, we only counted hours when PV generation
is greater than zero in the calculation of αt

i . From the table, we noticed that having a lower mean
allocation factor does not necessarily mean less PV energy allocation. For example, in the scenario
where the residential building is prioritized, its αt

i is less than 22% while for the bakery it is almost
33%. However, the total PV energy allocated to the residential building is 33.42% more than that
allocated to the bakery. This is because the residential building has higher αt

i values during hours
with the most PV generation (i.e., around noon). This indicates that having a higher allocation factor
when more PV power is generated is more crucial. When looking at the occupancy-based weighting
scenario, the residential building PV energy exceeds that of the equal weighting scenario since the
shortly occupied hours during the day (e.g., hours 34–36) bring more allocation. Overall, no matter
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which weighting method is adopted, the ice cream shop is always allocated the most PV energy due to
its large refrigeration loads, while the residential building is always allocated the least amount of PV
energy (except when it is prioritized in scenarios S21_R and S22_R). This indicates that the impact of
power flexibility is more prominent than the weighting factors during the resource allocation.
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Table 5. Mean values of allocation factors and PV energy allocation for different weighting methods.

Building
Equal Weighting

Priority-Based Weighting
Occupancy-Based

WeightingPrioritize
Residential

Prioritize Ice
Cream Shop Prioritize Bakery

αt
i

Epv(kWh) αt
i

Epv(kWh) αt
i

Epv(kWh) αt
i

Epv(kWh) αt
i

Epv(kWh)

Residential 0.099 59.52 0.218 153.85 0.075 67.18 0.054 58.67 0.163 108.61
Ice Cream

Shop 0.499 350.07 0.455 309.51 0.669 356.00 0.454 346.20 0.581 308.51

Bakery 0.402 169.08 0.326 115.31 0.256 155.50 0.492 173.80 0.255 161.56

Next, the simulation results will be discussed for the various PV allocation methods. In the
following discussion, we highlight a subset of the results; however, the complete set of results are
available in Appendix A and quantitative results for all 30 simulations are summarized in Table A1.
In the following simulation results, the baseline power is the original load shape from data. The positive
battery power means charging and negative means discharging. The scheduled sheddable, modulatable,
shiftable loads, and critical loads are represented by color blocks. When evaluating the thermal comfort
results, the baseline temperature is the original indoor temperature with a setpoint of 24 ◦C without
optimization. For clarity, the label S21 in the temperature plots represents the scenario of the discussed
building being prioritized, as described in Table 1.

The residential building operation is compared in the scenario where all buildings are equally
weighted and where the residential building is prioritized in Figures 6 and 7, respectively. In both
scenarios, we see that shiftable loads are scheduled during the day when more PV power is available.
All sheddable and modulatable loads are satisfied in both cases (see Table A1 for details). When the
allocated PV power is more than doubled in the residential building due to it being prioritized, we see
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more battery charging and discharging in Figure 7. However, more than enough PV power is allocated
to the residential building in this case due to its high priority, resulting in 31.25% of the allocated PV
power being curtailed. Additionally, more power is allocated to the HVAC system in Figure 7, causing
the indoor temperature to be closer to the lower bound (Figure 8). Comparing S11, S21, S31 with various
weighting factors in Figure 8, we see that scenarios with more allocated PV power results in a lower
indoor temperature since more power is available for the HVAC load. In Figure 8, all temperatures are
within the comfort bounds. It is noted that in Figure 8, S12, S22, and S32 temperature curves have
almost the same trend that they cannot be differentiated from the plot.
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Figure 9 depicts the results for the ice cream shop with equal weighting while Figure 10 shows the
results with occupancy-based weighting. Since the total allocated PV energy in Figure 10 is reduced
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by about 12% that compared to Figure 9, we see much less battery charging and a slight reduction of
HVAC power in Figure 10. All sheddable loads are satisfied in both cases (see Table A1 for details).
In Figure 11, the indoor temperature trajectories of S11 and S21 overlap with each other as almost
the same amount of PV power is allocated to the ice cream shop in these two scenarios. The indoor
temperature in simulation scenario S31 first drops below those of scenarios S11 and S21 in the morning
due to a precooling between 6 to 9 A.M., and then exceeds them in the afternoon due to less power
available to operate the HVAC system. A similar trend is also seen in the following simulation day.
As in the residential building, Figure 11 shows that the indoor thermal comfort of the ice cream shop
was maintained within the given temperature bounds. It is noted that in Figure 11, S12, S22, and S32
temperature curves have almost the same trend that they cannot be differentiated from the plot.
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Figure 12 plots the results for bakery with equal weighting while Figure 13 with occupancy-based
weighting. Due to a reduction of PV power in Figure 13, much less power is allocated to the HVAC
system, especially during late afternoon (e.g., hour 16 and 40). The battery discharging is almost the
same in the two scenarios, both to satisfy the four types of loads present in this building. All sheddable
and modulatable loads are satisfied in both cases (see Table A1 for details). However, battery charging
only happens about once a day in scenario S31 given the focused allocated PV power shape. In Figure 14,
the indoor temperature for S31 is higher than S11 due to less power available to operate the HVAC
system. All temperatures are within the comfort temperature bounds. It is noted that in Figure 14, S12,
S22, and S32 temperature curves have almost the same trend that they cannot be differentiated from
the plot.
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To summarize, in this section, we discussed the PV resource allocation results under different
weighting methods. The resulted load shape, battery behavior, and indoor temperatures are also
discussed qualitatively. From the discussion, we found that the weighting method of the operator
layer directly affects the mean allocation factor of each building. When one building is prioritized,
we see an obvious increase of αt

i . However, a higher αt
i does not necessarily mean more PV energy

allocation. A higher allocation factor during time periods with more PV generation (e.g., around noon)
is more crucial than a higher mean value of the allocation factor overall. Additionally, we noticed that
the allocation process is mostly constrained by the building load flexibility ranges. More specifically,
buildings with a higher load flexibility lower bound (i.e., ice cream shop with large critical loads) tend
to get more allowable load than other buildings. Additionally, when prioritizing buildings according
to occupancy status, the building with longer occupant presence gets more PV power, which is not
necessarily a fair allocation method. For instance, in S31, 5.5% of the PV energy allocated to the
residential building was curtailed. Since the allocation process was according to building occupancy
time, more than enough power is allocated to the residential building in this case. Lastly, the resulting
load schedule, battery behavior, and indoor temperature are directly correlated with the available
PV power when other system settings are the same (e.g., battery charging constraints and penalty
coefficients).

4.4. Impact of Objective Function

This section discusses the impact of different objective functions on the scheduled load shapes,
battery behavior, and indoor temperature. Similar to the last section, qualitative discussions will first
be provided.

Figure 15 plots the results of the residential building with equal weighting and the objective is to
maximize thermal comfort. Compared with Figure 6, we see that when the objective switches from
minimizing unserved load to maximizing comfort, there is an obvious increase of HVAC power and
the temperature gets closer to the temperature setpoint of 24 ◦C (Figure 8). When comparing Figure 16
with Figure 7, we see a decrease of HVAC power usage because before (S21 in Figure 8), the indoor
temperature was below 24 ◦C; when the objective is to minimize the temperature deviation from 24 ◦C,
the required cooling power is actually less. The HVAC power is saved to get the indoor temperature
closer to the temperature setpoint.
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Figure 16. Residential building load shape, battery behavior, and PV power (S22_R: prioritizing
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Comparing Figure 17 with Figure 9, we see a decrease of serving in sheddable load when the
objective switches from minimizing unserved load to maximizing comfort. As a result, 63.72% of
sheddable load is unserved in this scenario (Table A1). However, the HVAC power also decreases in
order to increase the indoor temperature to the temperature setpoint. The saved PV power is charged
into the battery as we see an increase of battery charging in Figure 17. Similar observation can be
found if we compare Figure 18 with Figure 12, where unserved ratio of sheddable load increases to
99.03% and modulatable to 68.89% due to the change of objective function (Table A1).Energies 2020, 13, x FOR PEER REVIEW 21 of 30 
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To further quantify the impact of weighting factor and objective function, we summarized the
community overall KPIs in Tables 6 and 7. The KPIs include PV curtailment ratio, unserved load
ratio, temperature deviation from setpoint, and required battery size. The definition of the PV
curtailment ratio is the total curtailed PV energy over the generated energy during the simulation
horizon. The unserved load ratio is calculated by dividing the total unserved load by the total original
load over the simulation horizon. The definition of the temperature deviation from setpoint is adapted
from the root mean square deviation (RMSD), which is the root mean of the square of the deviation
between the indoor temperature and the temperature setpoint over the 48-h simulation denoted by:

RMSD =

√√√√∑H
t=1

(
Tt

room −
Troom+Troom

2

)2

N
, (50)

where N = 48 is the simulation horizon. Here, the temperature setpoint is selected to be the middle of
the comfort temperature range: 24 ◦C. Lastly, the required battery size is obtained by subtracting the
minimum battery SOC from the maximum value. This gives us a sense of how much of the battery
capacity has been utilized under different scenarios. Further, this could help to guide the battery sizing
to enhance community resilience.

Table 6. Community overall PV curtailment and unserved load ratio of each scenario.

Scenario PV Curtailment Ratio
Unserved Load Ratio

Sheddable Shiftable Modulatable Critical Overall

S11 0.00% 0.00% 10.94% 0.00% 0.00% 0.27%
S21_R 8.31% 0.00% 10.94% 0.00% 0.00% 0.27%
S21_I 0.00% 0.00% 10.94% 0.00% 0.00% 0.27%
S21_B 0.00% 0.00% 10.94% 0.00% 0.00% 0.27%

S31 1.03% 0.00% 10.94% 0.00% 0.00% 0.27%
S12 0.00% 64.14% 10.94% 68.89% 0.00% 9.25%

S22_R 13.18% 65.06% 10.94% 77.00% 0.00% 9.54%
S22_I 0.00% 64.13% 10.94% 72.83% 0.00% 9.34%
S22_B 0.00% 64.14% 10.94% 69.23% 0.00% 9.26%

S32 5.43% 65.49% 10.94% 73.64% 0.00% 9.51%

Table 7. Community overall room temperature deviation and required battery size of each scenario.

Scenario Temperature Deviation (◦C) Battery Size (kWh)

S11 3.04 199.8
S21_R 4.05 215.55
S21_I 2.78 209.64
S21_B 3.10 194.61

S31 3.48 182.91
S12 0.53 218.07

S22_R 0.53 242.05
S22_I 0.53 237.91
S22_B 0.53 210.19

S32 0.53 199.52

From Table 6, we see that PV curtailment only happens when the residential building is prioritized
(S21_R and S22_R) or when occupancy-based weighting is implemented (S31 and S32). This is because
the residential building has a relatively small power demand compared to the other two commercial
buildings. When it is prioritized by the operator layer, more PV generation is allocated than needed,
resulting in PV curtailment. This also echoes our discussions above that allocating purely based on
building occupancy status could lead to unfair allocation situations. In the table, the shiftable load
unserved load ratio is the same for all scenarios. This is because of our assumption that each shiftable
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load operates once and only once every day. However, in the original data, some loads might have
operated more than once, causing “unserved load” for shiftable loads. Given this, we can consider that
all loads are satisfied for the scenarios to minimize unserved load (S11 to S31 in Table 6). When looking
at scenarios S12–S32 in Table 6, we see an increase of unserved load as the objective switches to
maximizing comfort. The largest unserved load ratio appears in the scenario where residential building
is prioritized. From Table 6, the scenarios that perform the best would be S11, S21_I, and S21_B if we
only consider PV curtailment and unserved load ratio. In these scenarios, the PV allocation is either
equally weighting all buildings or prioritizing those with larger power demand while minimizing the
unserved load ratio.

Next, we analyze the temperature deviation and necessary battery size shown in Table 7. We see
that all scenarios with the thermal comfort objective experience the fewest temperature deviations.
This means that the indoor temperature is well controlled to stay near the temperature setpoint. In the
remaining scenarios with the unserved load objective, large deviations in temperature can be seen.
For many scenarios, this is due to lower indoor temperatures than the temperature setpoint. Hence,
setting the temperature setpoint appropriately can save HVAC energy. However, in our case, the saved
energy was either curtailed or charged into the battery instead of satisfying the other loads. This also
leads to larger battery sizes in scenarios to maximize comfort (average size: 221.5 kWh) than scenarios
to minimize unserved load (average size: 200.5 kWh). Therefore, a co-optimization of thermal comfort
and unserved load is necessary with the benefit of less curtailment, smaller unserved load ratio, assured
thermal comfort, as well as smaller battery size.

The above simulation results highlight the impact of the objective function on KPI outcomes.
From the above discussions, we identified that if only PV curtailment and unserved load ratio are
considered, the best option is to allocate the PV resource either equally weighting or prioritizing
buildings with larger power demand while minimizing unserved load ratio. After further looking at
other indices, we noticed that choosing the optimization objective to track an appropriately selected
indoor room temperature setpoint will save HVAC energy. However, this will not lead to lower
unserved ratio for other load types. Instead, the PV curtailment could increase. The two objectives
have a competitive relationship: serving more HVAC power to increase thermal comfort will decrease
the other served load.

5. Conclusions

We proposed a novel decentralized control architecture for renewable resource allocation and
load scheduling of resilient communities. This MPC-based optimization architecture consists of a
community operator layer that allocates the daily PV power generation to achieve the community-wide
optimum and a building agent layer that schedules building loads to achieve its local optimum
in each building. Three allocation methods were tested for the operator layer: equally weighted,
weighted based on building priority, and weighted based on building occupancy. At the building level,
two objective functions were compared: minimizing unserved load ratio versus maximizing thermal
comfort. The proposed framework has the advantage of distributed computational effort and is easier
to be scaled up than traditional centralized control, which is not robust for large-scale deployment.
Additionally, the comparison between different combinations of allocation methods and objective
functions provides guidance for real-world deployment by community and microgrid operators.

Through a case study for an islanded community in FL for 48 h, we evaluated the proposed
architecture with respect to user-centric performance metrics (KPIs). We found that the allocation
process is mostly constrained by the building load flexibility. More specifically, buildings with less load
flexibility (i.e., ice cream shop with large critical loads) tend to be allocated more PV generation than
other buildings. Additionally, when prioritizing buildings according to occupancy status, the building
with longer occupancy duration is allocated more PV power, which may not result in a fair allocation
method and could lead to more PV curtailment.
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Additionally, through the analysis of different objective functions, we found that setting the
objective to target at an appropriately selected indoor temperature setpoint will result in increased
HVAC energy savings. However, in our case study this did not lead to lower unserved ratio for other
load types. Instead, the PV curtailment increased. The two objectives have a competitive relationship:
serving more HVAC power to increase thermal comfort will decrease the other served load. Therefore,
it is necessary for the building agent to have multi-objective optimization to minimize unserved load
ratio and maximize comfort simultaneously. This will bring the benefit of less curtailment, smaller
unserved load ratio, assured thermal comfort, as well as smaller battery size. However, the weighting
between the two objectives needs to be carefully selected as their scales are quite different.

For future work, we will conduct multi-objective optimization for the building agent layer
to investigate the trade-off between minimizing unserved load ratio and maximizing thermal
comfort. Uncertainty of PV generation should also be included to reflect the impact of different
weather conditions.

Author Contributions: Conceptualization: J.W., K.G., K.B., W.Z., and Y.Z.; data curation: J.W.; formal analysis:
J.W.; funding acquisition: D.V.; investigation: J.W.; methodology: J.W., K.G., and K.B.; project administration:
S.H.; resources: W.Z.; software: J.W. and K.G.; supervision: W.Z.; validation: J.W. and K.G.; visualization: J.W.;
writing—original draft: J.W.; writing—review and editing: K.G., K.B., W.Z., Y.Z., S.H., and D.V. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the U.S. Department of Energy, Energy Efficiency and Renewable Energy,
Building Technologies Office, under contract no. DE-AC05-76RL01830.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Notation Description

Sets

i ∈ I Set of buildings in the community
j ∈ Nshed Set of sheddable loads
j ∈ Nmodu Set of modulatable loads
j ∈ Nshi f Set of shiftable loads
j ∈ Ncrit Set of critical loads

COL Parameters

Pt
load, f lex,i Flexible load at time t for building i

Pt
load,i/P

t
load,i Minimum/maximum load demand

Pt
pv Forecasted PV generation at time t

wt
i Weighting factor for building i at time t

COL Variables

Pt
load,i Power demand of building i at each time step

αt
i PV allocation factor for building i at time t

Pt
curt,i Curtailment of PV in building i

Pt
shed,i Critical load shed in building i

BAL Parameters

Pt
pv Available PV generation

Troom/Troom Indoor thermal comfort bounds
β1−7 Indoor air temperature model coefficients
Phvac,nom Nominal HVAC power draw when ON
P̂t

shed, j/P̂t
modu, j/P̂t

shi f , j/P̂t
crit, j Projected demand for each type of load

Ebat Maximum battery state of charge
Pbat Maximum battery charging/discharging power
ηch/ηdis Battery charging/discharging efficiency
nshi f , j Average cycle time of shiftable load
Pshi f , j,avg Average power demand of shiftable load

BAL Random Variables
Tt

amb Ambient outdoor drybulb temperature
Qt

sol Solar irradiance
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BAL Variables

Pt
curt PV curtailment

Pt
ch Power charged into the battery

Pt
dis Power discharged from the battery

ut
shed, j Binary indicating status of sheddable load

rt
hvac HVAC system speed ratio

Pt
modu, j Power demand of modulatable load

tshi f , j,s Start time of shiftable load
vt

shi f , j Binary indicating start time of shiftable load

Et
bat Battery state of charge

Tt
room Indoor air temperature

Abbreviations

PV Photovoltaic
COL Community Operator Layer
BAL Building Agent Layer
MPC Model predictive control
HVAC Heating, ventilation, and air-conditioning
DG Distributed generator
MILP Mixed-integer linear program
HEMS Home energy management system
GA Genetic algorithm
KPIs Key performance indices
CDF Cumulative distribution function
SOC State of charge
TMY Typical meteorological year
ASHRAE American Society of Heating, Refrigerating, and Air-Conditioning Engineers
RMSE Root mean square error
S Scenario
R Residential building
I Ice cream shop
B Bakery
H Prediction horizon
N Simulation horizon
RMSD Root mean square deviation
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Appendix A

Table A1. Detailed KPIs for each building and community overall of each scenario.

Temperature
Deviation

(◦C)

PV
Curtailment

Ratio

Unserved Load Ratio Battery
Size (kWh)Sheddable Shiftable Modulatable Critical Overall

S11

R 1.34 0.00% 0.00% 19.92% N/A 0.00% 5.99% 34.71
I 2.62 0.00% 0.00% N/A N/A 0.00% 0.00% 89.81
B 0.77 0.00% 0.00% 8.18% 0.00% 0.00% 0.38% 75.28

Community 3.04 0.00% 0.00% 10.94% 0.00% 0.00% 0.27% 199.80

S21_R

R 2.76 31.25% 0.00% 19.92% N/A 0.00% 5.99% 45.57
I 2.65 0.00% 0.00% N/A N/A 0.00% 0.00% 75.85
B 1.34 0.00% 0.00% 8.18% 0.00% 0.00% 0.38% 94.13

Community 4.05 8.31% 0.00% 10.94% 0.00% 0.00% 0.27% 215.55

S21_I

R 0.79 0.00% 0.00% 19.92% N/A 0.00% 5.99% 35.56
I 2.62 0.00% 0.00% N/A N/A 0.00% 0.00% 93
B 0.50 0.00% 0.00% 8.18% 0.00% 0.00% 0.38% 81.08

Community 2.78 0.00% 0.00% 10.94% 0.00% 0.00% 0.27% 209.64

S21_B

R 1.45 0.00% 0.00% 19.92% N/A 0.00% 5.99% 35.56
I 2.62 0.00% 0.00% N/A N/A 0.00% 0.00% 87.79
B 0.79 0.00% 0.00% 8.18% 0.00% 0.00% 0.38% 71.26

Community 3.10 0.00% 0.00% 10.94% 0.00% 0.00% 0.27% 194.61

S31

R 2.06 5.50% 0.00% 19.92% N/A 0.00% 5.99% 38.79
I 2.69 0.00% 0.00% N/A N/A 0.00% 0.00% 77.67
B 0.80 0.00% 0.00% 8.18% 0.00% 0.00% 0.38% 66.45

Community 3.48 1.03% 0.00% 10.94% 0.00% 0.00% 0.27% 182.91

S12

R 0.29 0.00% 86.50% 19.92% N/A 0.00% 10.80% 28.99
I 0.28 0.00% 63.72% N/A N/A 0.00% 12.74% 124.68
B 0.34 0.00% 99.03% 8.18% 68.89% 0.00% 4.32% 64.4

Community 0.53 0.00% 64.14% 10.94% 68.89% 0.00% 9.25% 218.07

S22_R

R 0.29 49.57% 31.49% 19.92% N/A 0.00% 7.74% 39.81
I 0.28 0.00% 65.17% N/A N/A 0.00% 13.03% 90.25
B 0.34 0.00% 100.00% 8.18% 77.00% 0.00% 4.77% 111.99

Community 0.53 13.18% 65.06% 10.94% 77.00% 0.00% 9.54% 242.05

S22_I

R 0.29 0.00% 85.89% 19.92% N/A 0.00% 10.77% 32.82
I 0.28 0.00% 63.72% N/A N/A 0.00% 12.74% 127.86
B 0.34 0.00% 99.03% 8.18% 72.83% 0.00% 4.54% 77.23

Community 0.53 0.00% 64.13% 10.94% 72.83% 0.00% 9.34% 237.91

S22_B

R 0.29 0.00% 86.50% 19.92% N/A 0.00% 10.80% 28.37
I 0.28 0.00% 63.72% N/A N/A 0.00% 12.74% 122.66
B 0.34 0.00% 99.03% 8.18% 69.23% 0.00% 4.34% 59.16

Community 0.53 0.00% 64.14% 10.94% 69.23% 0.00% 9.26% 210.19

S32

R 0.29 28.93% 46.01% 19.92% N/A 0.00% 8.55% 35.33
I 0.28 0.00% 65.47% N/A N/A 0.00% 13.09% 90.88
B 0.34 0.00% 100.00% 8.18% 73.64% 0.00% 4.58% 73.31

Community 0.53 5.43% 65.49% 10.94% 73.64% 0.00% 9.51% 199.52Energies 2020, 13, x FOR PEER REVIEW 26 of 30 
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