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Do wind turbine main shafts make harmful axial motion?
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Overview

Present study
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Texts on the web and in litterature refer vaguely to axial
movement as a risk both for the bearing and the drivetrain.

Often believed to relate to rapid dynamics

Quantification or fundamental criteria generally
missing. Unspecific experiences,
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Texts are not recognizing all the positive experience.
Not all turbines are problematic!

Here is an obvious knowledge gap!

We have turbine data that may help Clear hypotheses that can be tested are missing.
close the gap!

:_“‘L Wear normally happens when lubrication is insufficient,

Can the axial movements disturb the lubricant film formation?

What? S

MREL test turbine (GE 1.5 MW) instrumented to measure main shaft motion,

Evaluated measurements

Compared to experimental data to models on turbine level

Compared to bearing lubricant film conditions
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Specific Instrumentation

Four inductive sensors are fitted on the housing
looking at the side face of the locknut.

Post processing involves, for example:

e Correction for the geometric run-out of the
locknut

* Averaging the four channels to bring out the axial
component.
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Analytical Model—Quasi-Static and Dynamic

Rotor. thrust is estimated from.measured toyver Rotor hub e - m
bending moments and rotor pitch moment in the Tl o wa k
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At e-stop, aerodynamic thrust is no longer dominant,
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This rotor thrust is applied to the model shown at
right, and an expected axial displacement can be
derived to compare with the measured axial
displacement.



Main Bearing Under Constant Radial Load

Force

Axial force vs. axial displacement
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Emergency Stop
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Findings from Field Data

Measured axial displacements match with the quasi-static model )

»—( Mormal operation )—x— Differences in observed speed matches the different regions of brg stiffness. )
[ Findings } Maximum speed found <2 mm/s )
(—< Measured axial displacement and velocity matches the models )

M—C Emergency stop )—4—

Maximum speed found <2 mmfs)

Data show that the relative axial motion of the main shaft to housing happens at a speed that is quite
low in an everyday context—snail speed.

s this also a low speed from the perspective of a bearing lubricant film formation?



Axial Sliding in Contacts

The measured quantity is the relative axial motion between the shaft and the

housing, and this is taken to be the same as the ring-to-ring motion. This needs
to be related to contact conditions.

Axial sliding

: £
>—( Outer ring contact )—.__—.: Roller skew
N——

Axial sliding

: £
—( Inner ring contact )—i—i‘ Roller skew

About 50/50 split Again about 50/50 split

[ Ring-to-ring

Axial sliding in individual contacts will thus be on the order of 25% of the
ring-to-ring sliding speed.

Measured maximum axial ring-to-ring speed is on the order of 2 mm/s.
Axial sliding speed in individual contacts is on the order of 0.5 mm/s .
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Bearing Lubricant Film Formation—General

1. No noticeable effect on film thickness for

E\) i e /‘/’\ transverse speed <10% of the speed of
- g 0 rolling.

2. It begins to make an impact only for values
near 50% of the speed of rolling.
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3. The most important phenomenon leading
to this reduction is shear thinning of
lubricant.

No transverse sliding With transverse sliding

For the NREL test turbine main bearing at nominal speed, the speed of rolling is 352 mm/s.

The maximum speed of the axial sliding from the measurements is 0.5 mm/s, which is only 0.14% of
the speed of rolling. Thus, we can safely say that the level of axial motion found has no noticeable

effect on lubricant film formation.
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Summary

1. The NREL test turbine (GE 1.5 MW) has
been used as a test resource.

2. Axial motion has been studied in depth for
several operating situations.

3. The behavior has been compared to
analytic models, and there is good
agreement.

4. The axial motion is slow compared to the
speed of rolling, and it will not influence
film formation.
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