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Abstract: FeSe is classed as a Hund’s metal, with a multiplicity of d bands near the Fermi level.
Correlations in Hund’s metals mostly originate from the exchange parameter J, which can drive a
strong orbital selectivity in the correlations. The Fe-chalcogens are the most strongly correlated of the
Fe-based superconductors, with dxy the most correlated orbital. Yet little is understood whether and
how such correlations directly affect the superconducting instability in Hund’s systems. By applying
a recently developed ab initio theory, we show explicitly the connections between correlations in dxy

and the superconducting critical temperature Tc. Starting from the ab initio results as a reference,
we consider various kinds of excursions in parameter space around the reference to determine what
controls Tc. We show small excursions in J can cause colossal changes in Tc. Additionally we consider
changes in hopping by varying the Fe-Se bond length in bulk, in the free standing monolayer M-FeSe,
and M-FeSe on a SrTiO3 substrate (M-FeSe/STO). The twin conditions of proximity of the dxy state
to the Fermi energy, and the strength of J emerge as the primary criteria for incoherent spectral
response and enhanced single- and two-particle scattering that in turn controls Tc. Using c-RPA, we
show further that FeSe in monolayer form (M-FeSe) provides a natural mechanism to enhance J. We
explain why M-FeSe/STO has a high Tc, whereas M-FeSe in isolation should not. Our study opens
a paradigm for a unified understanding what controls Tc in bulk, layers, and interfaces of Hund’s
metals by hole pocket and electron screening cloud engineering.

Keywords: unconventional superconductivity; spin susceptibilities; vertex functions; hund’s metals

1. Introduction

Iron-pnictogen and iron-chalcogen based superconductors (IBS) are classed as Hund’s
metals, meaning correlations mostly originate from the Hund’s exchange parameter J. In
recent years a consensus has evolved that strong Hund’s correlations drive the ubiquitous
bad metallicity observed in their phase diagrams [1,2]. Such metals have a multiplicity of
bands near the Fermi level EF; in particular FeSe [3–5] has all five Fe d states active there.
Correlations are observed to be highly orbital-selective [5,6] (a signature of “Hundness”)
with dxy the most strongly correlated orbital. In recent years, the role of Hund’s exchange
J is explored in determining the orbital-selectivity [7] and triplet pairing in Uranium
based superconductors [8]. However, very little is known whether Hund’s correlation can
generate glue for superconducting pairing and control Tc in singlet-pairing channel.

Tc is a mere 9 K in bulk, but it has been observed to increase to ∼75 K when grown
as a monolayer on SrTiO3 [9] (M-FeSe/STO), and 109 K on doped SrTiO3 [10]. Thus while
“Hundness” has been found to be important in controlling the single- and two-particle
spectral properties of bulk FeSe, the multiplicity of factors (orbital character, spin-orbit
coupling, shape of Fermi surface and dispersion of states around it, differences in suscepti-
bilities, nematicity, electron-phonon interaction) obfuscate to what extent Hundness, or
other factors, drive superconductivity, and whether ‘Hundness’ can at all explain the jump
in Tc going from bulk to M-FeSe/STO.
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In this work we calculate the superconducting instability using a new high fidelity,
ab initio approach [11,12]. For the one-particle Green’s function it combines the quasipar-
ticle self consistent GW (QSGW) approximation [13] with CTQMC solver [14,15] based
dynamical mean field theory (DMFT) [16]. This framework [17,18] is extended by com-
puting the local vertex from the two-particle Green’s function by DMFT [19,20], which is
combined with nonlocal bubble diagrams to construct a Bethe-Salpeter equation [21–23].
The latter is solved to yield the essential two-particle spin and charge susceptibilities χd

and χm — physical observables which provide an important benchmark. Moreover they
supply ingredients needed for the particle–particle Bethe–Salpeter equations, which yields
eigenvalues and eigenfunctions that describe instabilities to superconductivity. We will
denote QSGW++ as a shorthand for the four-tier QSGW+DMFT+BSE.

The numerical implementation is discussed in Pashov et al. [12] .
QSGW++ has high fidelity because QSGW captures non-local dynamic correlation

particularly well in the charge channel [12,24], but cannot adequately capture effects of
spin fluctuations. DMFT does an excellent job at the latter, which are strong but mostly
controlled by a local effective interaction given by Hubbard parameters U and J. These
are calculated within the constrained RPA [25] from the QSGW Hamiltonian using an
approach [12] similar to that of Ref. [26]. That it can well describe superconductivity in a
parameter-free manner has now been established in several Hund’s materials [21,22]. In
FeSe, we have also shown [27] that it reproduces the main features of neutron structure
factor [28,29].

Sr2RuO4 was the first system where we implemented our QSGW++ ability. We
found a dense spectrum of triplet and singlet superconducting instabilities therein [21].
Lacking at that time the ability to calculate U, J, we borrowed values from an earlier
LDA+DMFT study [30]. Later we were able to build our own c-RPA calculated from
QSGW (QSGW+cRPA), and found U, J to be approximately 2/3 of the original values.
Our initial study concluded that the triplet instability was slightly stronger than the
B1g − dx2−y2 singlet in unstrained Sr2RuO4. Redoing the procedure with U, J calculated
from QSGW+cRPA [31] the conclusions did not qualitatively change, except the singlet
eigenvalue became larger than the triplet. Thus the original study [21] did not predict the
correct ground state. From a prior study we discovered that the superconducting instability
can be sensitive to the exact choices of U, J. Here we show small changes in J have a
dramatic effect on spin susceptibility and superconductivity in FeSe. For that reason we
recalculate QSGW+cRPA for for all cases we report here, on bulk and layered variants of
FeSe. This is a step forward in making the calculations as ab-initio as possible, and as we
discuss later in the paper, this provides us with a remarkable unified understanding of
both bulk and layered variants of FeSe, the correlations and superconducting instabilities
therein.

To isolate the effect of Hundness we make excursions about the ab initio reference
point, by treating J as a free parameter. One of our primary conclusions is that intense
and broad low energy spin fluctuations in the vicinity of an antiferromagnetic ordering
vector is the primary glue for pairing and the controlling element for Tc in several variants
of FeSe (both bulk and layered); and that this in turn is controlled by J. We further show,
using c-RPA, that J can be tuned by varying the screening through, e.g., changes in the
geometry such as the change from bulk to monolayer. We also consider excursions in Fe-Se
bond length, and can find correlation can be enhanced or suppressed by changes in it. For
Hund’s coupling to be effective in driving Tc it needs a certain ‘universal’ band feature: the
Fe dxy state must be in close proximity to the Fermi energy.

The paper organised as follows. We:

• Present the mathematical formulation and implementation of different susceptibilities
in spin, charge and superconducting channels;

• List the structural and Hubbard parameters used for different materials, and present
ab initio results bulk FeSe;
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• By treating J and the Se height as free parameters, show how they affect correlations
and superconductivity in bulk FeSe;

• Show results for a standing monolayer of FeSe (M-FeSe);
• Show results for a monolayer of FeSe on SrTiO3 (M-FeSe/STO);
• Interpret these results to explain what controls Tc.

2. Methodology

The QSGW+DMFT implementation is discussed in our method paper [12]. The
one-body part of QSGW is performed on a 12 × 12 × 12 k-mesh and charge has been
converged up to 10−6 accuracy, while the (relatively smooth) many-body static self-energy
Σ0(k) is constructed on a 8× 8× 8 k-mesh from the dynamical GW Σ(k, ω). Σ0(k) is
iterated until convergence (RMS change in Σ0<10−5 Ry). DMFT is solved for all five Fe-3d
orbitals using a Continuous time Quantum Monte Carlo technique (CTQMC) [14] on a
rotationally invariant Coulomb interaction. From CTQMC-DMFT we sample the local full
and connected two-particle Green’s functions. The DMFT for the dynamical self energy
is iterated, and converges in ∼20 iterations. Calculations for the single particle response
functions are performed with 109 QMC steps per core and the statistics is averaged over
64 cores. The two particle Green’s functions are sampled over a larger number of cores
(30,000-50,000) to improve the statistical error bars. We compute the local polarisation
bubble from the local single-particle Green’s function. In order to extract Γirr

loc, we employ
the local Betlpeter equation which relates the local two-particle Green’s function (χloc)
sampled by CTQMC, with both the local polarisation function (χ0

loc) and Γirr
loc.

Γirr,m(d)
loc α1,α2

α3,α4
(iν, iν′)iω = [(χ0

loc)
−1
iω − χ

m(d)−1
loc ] α1,α2

α3,α4
(iν, iν′)iω. (1)

Γ is the local irreducible two-particle vertex functions computed in magnetic (m) and
density (d) channels. Γ is a function of two fermionic frequencies ν and ν′ and the bosonic
frequency ω.

The non-local polarisation bubble in the p-h channel is computed from single-particle
DMFT Green’s functions embedded into the QSGW bath.

χ0
α1σ1,α2σ2
α3σ3,α4σ4

(iν, iν′)q,iω = − T
Nk

∑
k

Gα2α1,σ1(k, iν) · Gα3α4,σ3(k + q, iν + iω) · δiν,iν′ · δσ1σ2 · δσ3σ4

(2)
Spin (χm) and charge (χd) susceptibilities are computed from momentum dependent

Bethe-Salpeter in magnetic (spin) and density (charge) channels.

χ
m(d)
α1,α2
α3,α4

(iν, iν′)q,iω = [(χ0)−1
q,iω − Γirr,m(d)

loc ]−1
α1,α2
α3,α4

(iν, iν′)q,iω. (3)

The susceptibilities χm(d)(q, iω) are computed by closing χ
m(d)
α1,α2
α1,α2

(iν, iν′)q,iω with spin

or charge bare vertex γ (γ=1/2 for spin and γ=1 for charge) and summing over frequencies
(iν,iν′) and orbitals (α1,2).

χm(d)(q, iω) = 2γ2 ∑
iν,iν′

∑
α1α2

χ
m(d)
α1,α2
α1,α2

(iν, iν′)q,iω. (4)

The superconducting pairing susceptibility χp−p is computed by dressing the non-
local pairing polarisation bubble χ0,p−p(k, iν) with the pairing vertex Γirr,p−p using the
Bethe-Salpeter equation in the particle–particle channel.

χp−p = χ0,p−p · [1 + Γirr,p−p · χ0,p−p]−1 (5)
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The particle–particle vertex in the singlet channel has odd-symmetry under exchange
of two external spins (and even symmetry in the triplet channel),

Γp−p,s =
1
2
[Γp−p
↑↓
↓↑
− Γp−p

↓↑
↓↑

] (6)

Γp−p,t =
1
2
[Γp−p
↑↓
↓↑

+ Γp−p
↓↑
↓↑

] (7)

The irreducible particle–particle vertex function channel Γp−p,irr which provides the
pairing glue to form Cooper pairs, consists of the fully irreducible vertex function Γ f ,irr

and the reducible vertex functions computed in the particle-hole channels

Γ̃p−h = Γ f ull,p−h − Γirr,p−h (8)

The reducible magnetic/charge vertex Γ̃irr,p−h is obtained from the non-local mag-
netic/charge susceptibilities and magnetic/charge irreducible vertex functions by

Γ̃p−h,m/d
α2,α4
α1,α3

(iν′, iν)q,iω = ∑iν1,iν2 ∑ α′2,α′4
α′3,α′1

Γirr,p−h,m/d
loc α2,α′2

α1,α′1

(iν, iν1)iωχ
p−h,m/d
q α′2,α′4

α′1,α′3

(iν1, iν2)iω

Γirr,p−h,m/d
loc α′4,α4

α3,′α3

(iν2, iν′)iω (9)

The irreducible particle–particle vertex function Γirr,p−p is finally written in terms of
the reducible magnetic/charge vertex Γ̃m/d functions.

Γirr,p−p
α2↑,α4↓
α1↑,α3↓

(k, iν, k′, iν′) = Γ f−irr
α2↑,α4↓
α1↑,α3↓

(iν, iν′)

− 1
2 [Γ̃

p−h,(d) (10)

−Γ̃p−h,(m)] α2,α3
α1,α4

(k′ − k, iν′ − iν)

+Γ̃p−h,(m)
α4,α3
α1,α2

(−k′ − k,−iν′ − iν)

Γirr,p−p
α2↓,α4↑
α1↑,α3↓

(k, iν, k′, iν′) = Γ f−irr
α2↓,α4↑
α1↓,α3↑

(iν, iν′)

− 1
2 [Γ̃

p−h,(d) (11)

−Γ̃p−h,(m)] α4,α3
α1,α2

(−k′ − k,−iν′ − iν)

−Γ̃p−h,(m)
α2,α3
α1,α4

(k′ − k, iν′ − iν)

Finally, exploiting the Equations (6) and (7) and Equations (10) and (11) we obtain the
Γirr,p−p in the singlet (s) and triplet (t) channels from the magnetic and density particle-hole
reducible vertices,

Γirr,p−p,s
α2,α4
α1,α3

(k, iν, k′, iν′) = Γ f−irr
α2,α4
α1,α3

(iν, iν′)

+ 1
2 [

3
2 Γ̃p−h,(m)

− 1
2 Γ̃p−h,(d)] α2,α3

α1,α4
(iν,−iν′)k′−k,iν′−iν (12)

+ 1
2 [

3
2 Γ̃p−h,(m)

− 1
2 Γ̃p−h,(d)] α4,α3

α1,α2
(iν, iν′)−k′−k,−iν′−iν
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Γirr,p−p,t
α2,α4
α1,α3

(k, iν, k′, iν′) = Γ f−irr
α2,α4
α1,α3

(iν, iν′)

− 1
2 [

1
2 Γ̃p−h,(m)

+ 1
2 Γ̃p−h,(d)] α2,α3

α1,α4
(iν,−iν′)k′−k,iν′−iν (13)

+ 1
2 [

1
2 Γ̃p−h,(m)

+ 1
2 Γ̃p−h,(d)] α4,α3

α1,α2
(iν, iν′)−k′−k,−iν′−iν

With Γirr,p−p in hand we can solve the p-p BSE to compute the p-p susceptibility χp−p.

χp−p = χ0,p−p · [1 + Γirr,p−p · χ0,p−p]−1 (14)

The critical temperature Tc is determined by the temperature where χp−p diverges.
The pairing susceptibility diverges when the leading eigenvalue approaches unity. The cor-
responding eigenfunction represents the momentum structure of χp−p. For such divergence
the sufficient condition is that at least one eigenvalue of the pairing matrix Γirr,p−p · χ0,p−p

approaches unity. Hence Tc, eigenvalues λ and eigenfunctions φλ associated with different
superconducting gap symmetries (in the singlet channel) can all be computed by solving
the eigenvalue equation,

T
Nk

∑
k′ ,iν′

∑
α2α4
α5,α6

Γirr,p−p,s
α2,α4
α1,α3

(k, iν, k′, iν′) · χ0,p−p
α5,α6
α2,α4

(k, iν′)φλ
α5α6

= λ · φλ
α5α6

(15)

The gap function can be written in a symmetric and Hermitian form by

T
Nk

∑
k′ ,iν′

∑
α2α4α5
α6α7α8

(χ
0,p−p
α2,α4
α1,α3

(k, iν))1/2 · Γirr,p−p,s
α5,α7
α2,α4

(k, iν, k′, iν′) · (χ0,p−p
α6,α8
α5,α7

(k′, iν′))1/2 · φλ
α6α8

(k′, iν′) = λ · φλ
α1α3

(k, iν) (16)

However, it can also be explicitly shown that the eigenvalues of the non-Hermitian
gap equation are the same as eigenvalues of the Hermitian gap equation.

Finally, χp−p can be represented in terms of eigenvalues λ and eigenfunctions φλ of
the Hermitian particle–particle pairing matrix.

χp−p(k, iν, k′, iν′) = ∑
λ

1
1− λ

· (
√

χ0,p−p(k, iν) · φλ(k, iν))

·(
√

χ0,p−p(k′, iν′) · φλ(k′, iν′)) (17)

To solve this eigenvalue equation, the most important approximation we make is
to take the static limit of Γirr,p−p in the bosonic frequency iω = 0 (real frequency axis).
The explicit dependence on the fermion frequencies are kept, as are all the orbital and
momentum indices.

As is apparent from Equations (13) and (14) at what wave vector spin and charge
fluctuations are strong is of central importance to the kind of superconducting pairing
symmetry they can form. The entire momentum, orbital and frequency dependence of the
vertex functions are computed explicitly and the BSE equations are solved with them. The
crucial point is that the vertex structure has no predefined form-factor, so the emergent
superconducting gap symmetry is calculated in an unbiased manner. This provides an
unbiased insight into the superconducting gap symmetries, the strength of the leading
eigenvalues in different systems and, most importantly, allows for a fair comparison of
the relative strength of the leading superconducting instabilities in bulk FeSe and the
monolayer of FeSe/STO. Thus, our ability to predict these properties is limited mostly by
the fidelity of the Green’s functions that determine the vertices and χ.

There is a practical limitation, however. Since we compute the vertex functions from
CTQMC, which limits the temperatures down to which the vertex can be computed. We
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have observed in different materials that the leading eigenvalue λ does not have a simple,
analytic dependence on temperature [22], and hence λ can not be reliably extrapolated to
very low temperatures. For that reason, we avoid estimating Tc (the temperature at which
λ reaches 1) for different systems from our method, rather, we compare the strength of λ
for a given temperature in different materials, which is free from any ambiguities.

In some recent studies [32–36], the shortcomings of the standard Eliashberg formalism
in explaining some of the fundamental observation related to unconventional supercon-
ductivity has been highlighted and alternative formulation for a better theory is proposed.
While our particle–particle ladder approximation does not use the standard Eliashberg
formalism, it is an important task for future efforts, also for our own approach, to see
how these proposed formulations can be adapted for better description of unconventional
superconductivity.

3. Results and Discussion
3.1. Structural Parameters and c-RPA Estimates for U and J

Table 1 provides structural parameters used for simulating different systems, and the
correlation parameters calculated using QSGW+constrained-RPA. In the bulk crystal, Se
sits above and below the Fe plane with height hSe = 1.463 Å and bond length lFe−Se = 2.39 Å.
cRPA yields U = 3.4 eV and J = 0.6 eV, calculated from the QSGW band structure.

Table 1. Structural parameters, chalcogen height hSe and computed U and J for the correlated many
body Hamiltonian from our QSGW+c-RPA implementation. We also list the bare electronic band-
widths from QSGW which show how electronic correlations enhance in M-FeSe/STO in comparison
to the bulk as the bands get narrower. References indicate where the structural inputs were taken.

Variants a (Å) c (Å)
hse

(A0) U (eV) J (eV) dxy
(eV)

dyz,xz
(eV)

B-FeSe [37] 3.779 5.5111 1.463 3.4 0.60 2.5 3.3
B-FeSe (reduced hse) 3.779 5.511 1.27 3.9 0.69 3.1 4.3

M-FeSe [38] 3.905 1.39 4.3 0.71 2.4 3.2
M-FeSe/STO [38] 3.905 1.40 3.8 0.67 2.35 2.95

Over the large variety on iron based superconductors it is observed [6] that larger
chalcogen/pnictogen height (hse in our case) reduces the Fe-chalcogen/pnictogen-Fe hop-
ping and hence makes the systems more strongly correlated. We observe that hse is reduced
in both M-FeSe/STO and free-standing monolayer M-FeSe relative to the bulk FeSe (B-
FeSe), however, the Fe-Se bond lengths remain almost invariant in both monolayer variants
in comparison to the bulk (as a increases in layer) . It suggests that the monolayer variants
have similar or less electronic correlations (larger electronic hopping). However, as we
will show, the free standing monolayer is non-superconducting while both the bulk FeSe
and M-FeSe/STO are superconducting. Further, the c-RPA calculations for each materials
indicate that both U and J increase in the monolayer variants relative to the bulk.

As we will show below, the degree of correlation and resulting superconductivity are
highly sensitive to small changes in both quasiparticle levels and the Hubbard parameters
driving the correlations. Thus, the electronic origins of unconventional superconductivity
in FeSe can only be understood when the interplay between crystal structure, one-particle
properties, and Hubbard parameters is taken into account.

3.2. Fermi Surfaces and Spectral Functions

QSGW Fermi surfaces are generally smaller than DFT Fermi surfaces in the Fe super-
conductors [39]. However, in FeSe, both DFT and QSGW predict the dxy band to cross the
Fermi level forming a pocket around Γ (see Figure 1), apparently in contradiction to ARPES
measurements which place it at approximately −17 meV [40–42]. When Σ(ω) is further
dressed by DMFT this pocket shrinks further, but it still remains, leaving a discrepancy
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with ARPES of ∼20 meV. The dxy orbital character emerges as the most incoherent (see
Figure 2a) but its position is slightly higher than where ARPES places it.

Figure 1. Fermi surfaces are shown in the Γ-M (z = 0) plane for both bulk FeSe and monolayer
FeSe/STO from DFT + DMFT, and QSGW + DMFT. In each case the the U and J are used from
respective C-RPA calculations.
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Figure 2. The QSGW band structure and QSGW+DMFT spectral functions A(k, ω) are shown on a section of the Γ-M path
for: (a) bulk-FeSe (J = 0.6 eV); (b) bulk FeSe with reduced Se height above the Fe plane (h = 1.27 Å); (c) M-FeSe, a free
standing monolayer of FeSe; (d) M-FeSe/STO. In all four panels, the Fe-dxy state calculated by QSGW is depicted in blue
and the Fermi energy EF is at 0. Note the strongly marked incoherence in (a,d). In all cases DMFT narrows the width of dxy

relative to QSGW as is typical of narrow-band d systems [11,39], but incoherence is highly sensitive to the position of dxy. In
(a,d) dxy is proximate to EF and a high degree of incoherence is present. while in (b,c) dxy is pushed far below EF: and the
system has properties similar to a normal Fermi liquid. Panel (e) shows the imaginary part of the spin susceptibility χ(ω),
at the AFM nesting vector qAFM = (1/2, 1/2, 0) 2π/a for the four geometries (a):orange, (b): red, (c): purple, (d): brown.
Shown also in green is Imχ(ω) for bulk FeSe with J = 0.68–the highest Tc found among parameterised hamiltonians. The
more intense Im χ(ω→0) is, the larger the superconducting instability. Panel (f) shows how the leading eigenvalue λ of the
linearised particle–particle ladder BSE equation treating J as a free parameter (blue circles). The extreme sensitivity to J is
apparent. Shown also are λ for the four ab initio calculations (a–d), using the colour scheme in panel e. For (a) B-FeSe and
(d), FeSe/STO, dxy falls near EF and λ approximately coincides with the blue line; (b,c) do not.

3.3. Bulk FeSe

The most direct way to isolate the contributors to superconductivity is to make para-
metric adjustments to the ab initio results. Thus to assess the role of ‘Hundness’ we consider,
in addition to the ab initio QSGW++ calculations, how excursions in J between 0 and 1 eV
affect the single-particle scattering rate Γ, and the inverse Z factor, a measure of mass or
bandwidth normalisation.

The single-site DMFT ImΣ(iω) is fit to a fourth order polynomial in iω for low energies
(first 6 matsubara points at 1/β = 1/40 eV = 290 K). The mass enhancement, related to
the coefficient (s1) of the linear term in the expansion mDMFT/mQSGW = 1 + |s1| [43], and
the intercept |s0| = ΓmDMFT/mQSGW . mDMFT/mQSGW = Z−1 is resolved in different intra-
orbital channels. Γ is found to be insensitive to J for J < 0.4 eV, while for 0.4<J < 0.7 eV it
increases monotonically for all orbitals (see Figure 3). The size of the local moment also
increases steadily and reaches a value of 2.2 µB for J = 0.6 eV which is the atomic moment
experimentally observed in Fe. This observed moment in bulk FeSe is also very close to the
spin local moment estimated from NMR, INS and x-ray emission spectroscopy studies [44].
Thus there is smooth transition from coherence to incoherence with increasing J. 1/Z
increases from 1.33 at J = 0, reaching a maximum of 4.5 in the dxy channel at J∼0.68 eV.
Correlation increases for all states, but dxy is the heaviest and most incoherent, followed
by dxz + dyz (see Figure 3). For still larger J, both Γxy and 1/Zxy begin to slowly decrease
(see Figure 3). A similar non-monotonic behaviour was observed in a previous study of
Hund’s metals [45] Similar conclusions were drawn in a recent orbitally-resolved quasi-
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particle scattering interference measurement by Kostin et al. [5] in the low temperature
orthorhombic phase of FeSe, and the orbital selectivity was emphasised in Ref. [46].

Figure 3. We compute the net local moment and its evolution with J. Orbitally resolved single-
particle scattering rate (Γ) and mass enhancement mDMFT/mQSGW for Bulk FeSe with varying
Hund’s coupling strength.

Small increases in J induce remarkable changes in the transverse spin susceptibility
χ(q, ω) (see Figure 4a,b). The peak near the antiferromagnetic nesting vector (1/2, 1/2) (in
2-Fe unit cell) and qz = 0 becomes markedly more intense as shown in Figures 2e and 4b.
In Figure 4, Im χ(q, ω) is plotted along the (0, 0) → (1/2, 0) → (1/2, 1/2) → (0, 0) lines
in the Fe2Se2 unit cell. The energy dispersion in Imχ also becomes strongly compressed.
Elsewhere [27] we perform a rigorous benchmarking of χ(q, ω) against inelastic neutron
scattering measurements [28,29,47] where we show that our calculations reproduce all
intricate structures of χ(q, ω) for all energies and momenta. Resolving Im χ into orbital
channels, dxy is seen to be the leading component. Along (1/2, 0)→(1/2, 1/2) it contributes
about 50% of the total with dz2 , dx2−y2 and dxz,yz combining to contribute the rest.
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Figure 4. Energy and momentum resolved spin susceptibility Imχ(q, ω) shown for (a) bulk FeSe (B-FeSe) (J = 0.6 eV),
(b) bulk FeSe with increased Hund’s correlation (J = 0.68 eV), (c) reduced Fe-Se height (hSe = 1.27 ), (d) 0.15 electron
doped bulk FeSe (a section on uniformly electron doped FeSe is included in the SM), (e) free standing monolayer of FeSe,
M-FeSe [38] (f) M-FeSe/STO [38]. The q-path (H,K,L = 0) chosen is along (0,0) − ( 1

2 , 0) − ( 1
2 , 1

2 ) − (0,0) in the Brillouin
zone corresponding to the two Fe-atom unit cell. The intensity of the spin fluctuations at ( 1

2 , 1
2 ) is directly related to the

presence of the Fe-dxy state at Fermi energy and its incoherence. The more incoherent the A(k,ω) is the more intense is the
Im χ(q = ( 1

2 , 1
2 , 0), ω).

How do these striking changes in Im χ correlate with superconductivity? We com-
pute the full two particle scattering amplitude in the particle–particle channel within our
DMFT framework, and solve Equation (17) in the BCS low energy approximation [19–22].
Resolving the eigenfunctions of the gap equation into inter- and intra-orbital channels,
two dominant eigenvalues λ are found. Both of them increase with J up to the point of
maximum intensity in χ (J = 0.68 eV) and then begin to decrease, as shown in Figure 2f. The
corresponding eigenfunctions have extended s-wave- cos(kx)+cos(ky) (leading eigenvalue)
and dx2−y2 − cos(kx) − cos(ky) structures (second eigenvalue) [48]. Calculations show that
these instabilities reside primarily in the intra-orbital dxy − dxy channel and the inter-orbital
components are negligible. In the bulk crystal, varying J from the ab initio value (λ = 0.067
at J = 0.60 eV), we find λ reaches its maximum 0.9 at the point where the spin susceptibility
is most intense, J=0.68 eV (see Figure 2f). We attribute the decrease for J > 0.68 eV to the
softening of electron masses and loss of spin fluctuations at q = (1/2, 1/2) as can be seen
in local moment

〈
M2〉1/2 plotted in Figure 3.

3.4. Excursion in Fe-Se bond length in Bulk FeSe

We next consider how parametric changes in the one-body Hamiltonian alter the
spectral function, χ and Tc. We first vary the Fe-Se bond length lFe−Se. When it is reduced
from its experimental value of 2.39 Å, the dxy band initially near EF at Γ, gets pushed down
well below EF. It is particularly easy to see at the QSGW level (blue band in Figure 2b),
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reaching about EF−160 meV when h=1.27 or lFe−Se = 2.275 Å. From c-RPA we compute the
corresponding U and J as 3.9 eV and 0.69 eV respectively. A similar shift is found in the
spectral function calculated by QSGW+DMFT (Figure 2b). Further, quasi-particles become
more coherent: orbital-selective 1/Z values range between 1.6 and 1.3 and scattering rates
become small (◦, Figure 5). The system behaves as an itinerant metal, and the peak in
Imχ(q, ω) at (1/2, 1/2) shifts to higher ω and becomes gapped (see Figure 4c). It also
becomes very weak and broad (Figure 2e). The leading eigenvalue of Equation (17) become
negligibly small (see Figures 2f and 5e), suggesting extremely weak or no superconducting
instability. λ also becomes completely insensitive to J. A similar observation was made in
our recent work on LaFe2As2 [22], where the collapsed tetragonal phase with lesser lFe−As
in comparison to its uncollapsed phase, loses superconductivity [49] as bands become
itinerant due to increased Fe-Fe hopping mediated via As. It suggests that a small pnicto-
gen/chalcogen height over the Fe-Fe square plane is not conducive for superconductivity
as the system gains significant amount of kinetic energy and electronic scatterings are
remarkably reduced. Similar observations are made for Fe based pnictides containing
Phosphorus, where the system has a Fermi liquid normal phase with dispersive electrons
and either they do not superconduct or have extremely small Tc’s [20].

Figure 5. (a,b) Inverse Z factors and scattering rates Γ for Fe 3dxy (filled symbols) and 3dyz (empty symbols) orbitals in
three configurations of bulk FeSe (O,◦,�) O is the ab initio result (h = 1.463 Å, J = 0.60 eV); while � changes J to 0.68 eV;
◦ changes h and J to 1.27 Å and 0.69 eV. Shown also are an isolated FeSe monolayer with h = 1.39 Å and J = 0.71 eV (×),
a monolayer on STO with h = 1.40 Å and J = 0.67 eV (+). Correlation is sensitive to changes in lFe−Se and J. (c–f) leading
eigenvalue λ of the superconducting instability calculated at 290 K drawn against various measures of correlation: λ is
approximately proportional to Γxy and Γyz (c), and it is monotonic in 1/Zxy and 1/Zyz (d), and also in the strength of
Imχ[q= (1/2, 1/2), ω = 15 meV] (e) and suppression of the dispersion of the paramagnon branches (f). The graded intense
purple background separates the most strongly correlated systems with large λ from the weakly correlated systems with
small λ in weaker purple background.

3.5. Free Standing Monolayer of FeSe

We next turn to a free standing monolayer of FeSe, M-FeSe. For this study we take
the structural inputs from recent work by Mondal et al. [38] which finds the minimum-
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energy value for h to be 1.39 Å within a combined DFT+DMFT framework, while the lattice
parameter a is somewhat larger, close to that of SrTiO3. As a benchmark, the same work
found the equilibrium h to be close to the measured value in bulk crystalline FeSe [50].
DFT has a tendency to underestimate h; the error is not easily fixed by other kinds of
density-functionals. However, DFT does predict a similar change in δh between bulk and
monolayer which gives us some confidence in the value of h.

At the QSGW level, the dxy band is pushed to EF−300 meV on the Γ–M line (band
structure in Figure 2c and SM, bottom panel). c-RPA calculations yield U = 4.3 eV and J
= 0.71 eV, the increase arising from reduced screening. 1/Z is found from QSGW+DMFT
to be 1.5, 1.35, 1.3, 1.25 on xy, z2, yz+ xz, x2−y2 respectively (Figure 5b); also a negligible
scattering rate is found (Figure 5a). As a further indicator of a good metal, Im χ(q, ω)
shows negligible spin fluctuations in the dxy channel; and at q = (1/2, 1/2) spin excitations
are gapped and vanishingly small (see Figures 2e and 4e). The superconducting instability
is almost entirely suppressed (see Figures 2f and 5f). It is noteworthy that the reduction in
electronic screening reflects in a marked increment in J. Unfortunately, this beneficial effect
is more than counterbalanced by the fact that dxy is pushed far below EF on the scale of
magnetic excitation energies. Suppression of low energy one- and two-particle scattering is
not conducive for superconductivity.

3.6. Monolayer of FeSe/SrTiO3

How does the effect of a SrTiO3 substrate modify superconductivity in M-FeSe? M-
FeSe/STO is a subject of intense debate, since as noted above, Tc of M-FeSe/STO has
been measured to be an order of magnitude higher than bulk FeSe (In the Supplementary
Materials we include a small section on uniformly electron doped bulk FeSe). Many
explanations have been put forward, e.g., that superconductivity is boosted by large
electron-phonon coupling [51–53] as SrTiO3 is close to a ferroelectric instability (for a
contrary view see [54]), but the simplest explanation is that SrTiO3 modifies M-FeSe to
restore dxy to be proximate to EF. M-FeSe/STO is a partially formed Schottky barrier; we
can expect the Fermi level to sit in the SrTiO3 bandgap. SrTiO3 modifies M-FeSe in two
important ways: the interfacial dipole controls the Schottky barrier height and changes the
electron count in M-FeSe; also the STO (especially the O-p-derived bonding states) couple
to the Fe-d in an orbital-selective manner. Both effects are accurately incorporated by a
direct QSGW calculation of M-FeSe/STO. We consider 5-ML slab of SrTiO3 terminated on
the Sr side by M-FeSe. The structure is relaxed with DFT, subject to the constraint that h is
fixed to 1.40 Å, as predicted in Ref. [38]. This value is close to h = 1.39 Å (lFe−Se = 2.403 Å)
found for free-standing M-FeSe. Its value is critical, as we have seen in the bulk case, and
we cannot rely on DFT for it.

A c-RPA calculation for M-FeSe/STO yields U = 3.8 eV and J = 0.67 eV. Using QSGW +
DMFT, we extract the Fermi surfaces spectral functions (see Figures 1d and 2d). Remarkably,
while dxy is pushed far below EF in M-FeSe, its position returns near to EF in the M-
FeSe/STO case ( to EF−50 meV in QSGW and EF−100 meV in QSGW + DMFT as shown in
Figure 2d). This is fully consistent with ARPES studies [55]. Furthermore, its bandwidth is
slightly reduced relative to bulk, in keeping with a stretched a.

In the QSGW++ calculation, the hole pockets of dxz,yz character survive although are
significantly narrowed. This is a discrepancy with ARPES, which finds no such pock-
ets. However, their small size suggests that they should be sensitive to electron-phonon
coupling that can further renormalise them and push them down.

Using QSGW+DMFT we compute the orbital dependent 1/Z (4, 3.3, 3.2 2.7 on xy,
yz+ xz, z2, x2−y2) and Γ, which show significantly enhanced incoherence in the quasipar-
ticle spectrum relative to M-FeSe (see Figure 5a,b). Further, the dispersion in Im χ(q, ω) is
significantly narrower than the bulk, and the intensity is spread over momenta in the region
around (1/2, 1/2) (see Figures 2e and 4f). These signatures suggest that M-FeSe/STO is
more correlated than either the bulk or free standing monolayer. The leading extended-s
wave instability from the particle–particle ladder BSE equation survives but the second
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(dx2−y2) instability gets suppressed. Whenever the dxy state is pushed below EF at Γ and
yet continues to be present at the electron pockets, the only surviving superconducting
instability is the s± state, consistent with earlier predictions [56–58].

Experimentally, the superconducting gap of FeSe/STO show maxima on the bands
with dxy character [59]. Furthermore, in surface doped bulk FeSe where superconductivity
enhances, the appearance of the dxy electron pocket on the Fermi surface coincides with
the beginning of the second superconducting dome with higher Tc [60]. The leading λ for
superconducting instability is 0.34, which is five times larger that the estimate for bulk
FeSe. These ab initio results do not support a recently published results from Eliashberg
theory where it is claimed that spin fluctuations can, at most, account for only two fold
increment in Tc. [61] We also find that suppressing the dxz,yz contributions in Equation (17)
lead to only 6% reduction in λ. Thus, the dxy orbital is the determinative one.

Our estimate of five-fold increment is less than the eight-fold increment in Tc = 75 K
observed for M-FeSe/STO, but there can be many reasons for this. The comparison to
experiment is not direct: experimentally M-FeSe/STO has a buffer layer between M-FeSe
and STO, which our calculation omits. Furthermore, the calculated Tc is extremely sensitive
to J and h. Both are theoretically calculated; moreover h is assumed to be the same for the
Se planes above and below Fe, while there should be small differences. Finally the interface
can have several other effects we omitted such as an enhanced phonon contribution to Tc,
as others have suggested [51–53].

We close with a note on the origins of the discrepancies in QSGW++ spectral function
with ARPES. We have recently developed the ability to incorporate the electron-phonon
self-energy into QSGW++ via a field-theoretic technique. While initial results are very
preliminary, they suggest that much of the discrepancy we see with ARPES in bulk FeSe,
originates from this interaction. It is perhaps not surprising, given that the electron-phonon
interaction is expected to be stronger when pockets are small. These new findings, however,
are beyond the scope of this work.

4. Conclusions

To summarise, a unified picture of the origins of superconductivity in FeSe emerges
from evidence drawn from several parametric studies of FeSe around a high-fidelity ab
initio theory. Superconducting glue mainly originates from low-energy spin fluctuations
concentrated in a region near the antiferromagnetic ordering vector. The instability and
the single- and two-particle correlations characterised by the band renormalisations 1/Z,
scattering rate Γ and Imχ(q, ω) are all closely linked as summarised in Figures 2 and 5. The
Fe dxy orbital is the most strongly correlated and contributes maximally to the pairing glue
as long as it is auspiciously near the Fermi level and further, that the Hund’s J is sufficiently
large to induce a high degree of ‘bad metallic’ behaviour. Further, the superconducting
instability is found to lie predominately in the dxy channel.

We show that in the bulk, Tc is extremely sensitive to J over a certain energy window.
At the optimum J λ increases by nearly 15 times its value at the ab initio J, even though the
increment in J is only 10–15%. This indicates that a possible way to enhance Tc is to reducing
the electron screening. We presented two scenarios where a structural modification induces
a change in J (M-FeSe and M-FeSe/STO), and further that this enhancement drives a five
fold enhancement in λ, in M-FeSe/STO relative to the bulk. M-FeSe and M-FeSe/STO
differ in the latter preserves the proximity of the dxy channel to EF while M-FeSe does not.
This provides a natural explanation for the enchantment in superconducting M-FeSe/STO
as a purely electronic one: the two dominant factors are J and the proximity of the dxy band
to EF.

Controlling number of layers, applying pressure to tune Fe-chalcogenide bond length,
doping and intercalation are some other possibilities. At the same time it is important to
realise it is necessary to control both the screening and specific features of the single-particle
spectrum. Our calculations show that one promising directions for reaching an optimised
Tc appears to be controlling number of layers and interfaces to simultaneously satisfy both
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conditions: lesser electron screening leading to a larger Hund’s correlation and larger dxy
contribution to the Fermiology.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-899
4/13/2/169/s1.
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