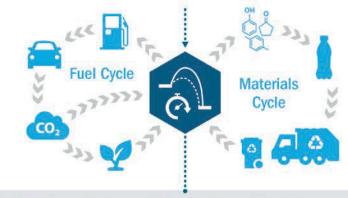

BETO 2021 Peer Review:

Overview of the Chemical Catalysis for Bioenergy Consortium

Josh Schadle

Catalytic Upgrading March 9th, 2021



Project Overview: ChemCatBio Mission

Mission: Accelerate the catalyst and process development cycle for bioenergy applications

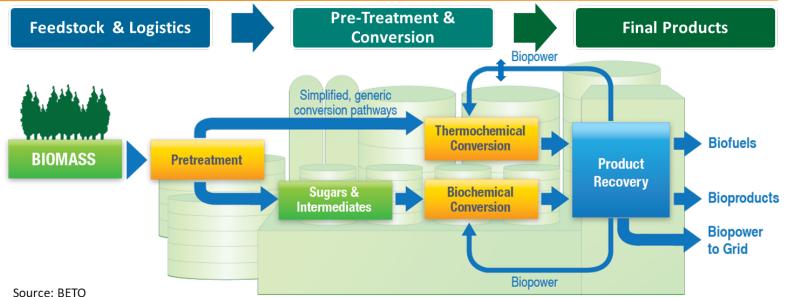
Vision: A rapid transition to a circular carbon economy

Catalysis enables a circular carbon economy. 85% of industrial chemical processes rely on catalysts.

ChemCatBio is accelerating catalyst development for bioenergy applications

Potential Future Impact of Catalysis

In the chemicals industry alone, improvements in catalysts and related processes could save as much as 13 exajoules of energy and 1 gigatonne of CO₂-equivalent per year by 2050 versus a "business-as-usual" scenario.*


*International Energy Agency, <u>Technology Roadmap: Energy and GHG Reductions in the Chemical Industry via Catalytic Processes</u>, 2013.

ChemCatBio

Project Overview: Potential Impact of a Billion-Ton Bioeconomy

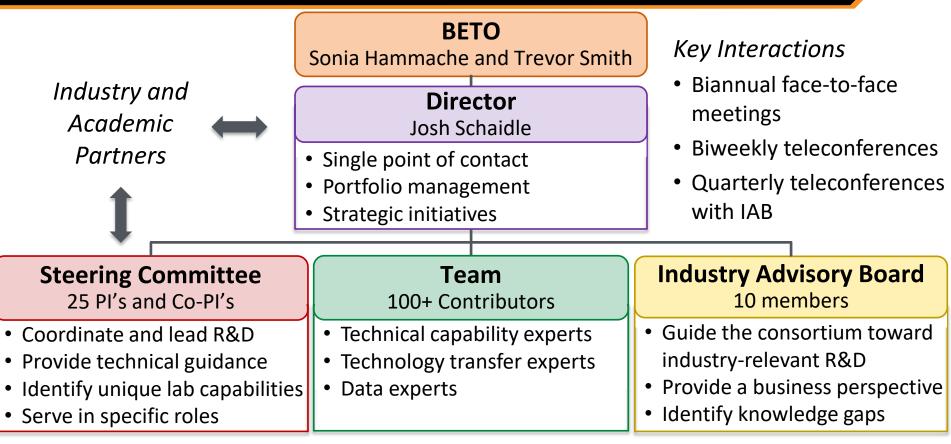
Project Overview: Catalysis Challenges are Pervasive in Conversion of Biomass and Waste Feedstocks

Key Catalytic Bioenergy Processes

- Catalytic Upgrading of Biological Intermediates
- Synthesis Gas Upgrading
- Catalytic Fast Pyrolysis
- Catalytic Upgrading of Aqueous/Gaseous Waste Streams
- Catalytic Hydroprocessing
- Lignin Deconstruction and Upgrading

Challenges due to Biomass Composition

- High oxygen content \rightarrow Broad reaction space
- Diverse chemical functionalities \rightarrow Competing reactions
- High water content ightarrow Degradation of catalyst supports
- Impurities (S, N, alkali metals, Cl, etc.) \rightarrow Poisoning
- Multiple states and compositions (solid, liquid, or gas)
- Complex, heterogeneous mixture \rightarrow Difficult to model


Project Overview: Catalysis Challenges are Pervasive in Conversion of Biomass and Waste Feedstocks

Value Proposition: Reduce risks for biofuel and biochemical production and enable accelerated market adoption of bioenergy technologies by overcoming critical catalysis challenges

Source: BETO	Biopower
	 High oxygen content → Broad reaction space Diverse chemical functionalities → Competing reactions High water content → Degradation of catalyst supports Impurities (S, N, alkali metals, Cl, etc.) → Poisoning Multiple states and compositions (solid, liquid, or gas) Complex, heterogeneous mixture → Difficult to model

1. Management: Consortium Structure

Centralized Website for Outreach: Chemcatbio.org

1. Management: Communication

Steering Committee Roles

Meeting Coordination: Organize annual Face-to-Face and ACS Symposium

Dan Ruddy

Huamin Wang

Susan Habas

Zhenglong Li

Industry Outreach:

Engage with potential partners, collect feedback, and translate into action items

Kim Magrini

Mariefel Olarte Karthi Ramasamy

(Co-Optima)

(CCPC)

Mike Griffin (Technology Transfer)

Mark Nimlos

Consortia Liaison: Foster collaboration between BETO Consortia

Points of Contact: Facilitate effective intra-consortium communication

Rick Elander (FCIC)

Kurt Van Allsburg Carrie Farberow (DataHub)

1. Management: ChemCatBio Foundation – FY19

Integrated and collaborative portfolio of catalytic technologies and enabling capabilities

Catalytic Technologies Catalytic Upgrading of Biochemical Intermediates (NREL, PNNL, ORNL, LANL)

Catalytic Upgrading of Indirect Liquefaction Intermediates (NREL, PNNL, ORNL)

> Catalytic Fast Pyrolysis (NREL, PNNL)

Electrocatalytic and Thermocatalytic CO₂ Utilization (NREL, ORNL) Enabling Capabilities Advanced Catalyst Synthesis and Characterization (NREL, ANL, ORNL, SNL)

Catalyst Cost Model Development (NREL, PNNL)

Consortium for Computational Physics and Chemistry (ORNL, NREL, PNNL, ANL, NETL)

Catalyst Deactivation Mitigation for Biomass Conversion (PNNL)

Cross-Cutting Support

ChemCatBio Lead Team Support (NREL)

ChemCatBio DataHUB (NREL)

Industry Partnerships (Directed Funding)

Gevo (NREL)

ALD Nano/JM (NREL)

Vertimass (ORNL)

Opus12 (NREL)

Visolis (PNNL)

Lanzatech (PNNL) - Fuel

Gevo (LANL)

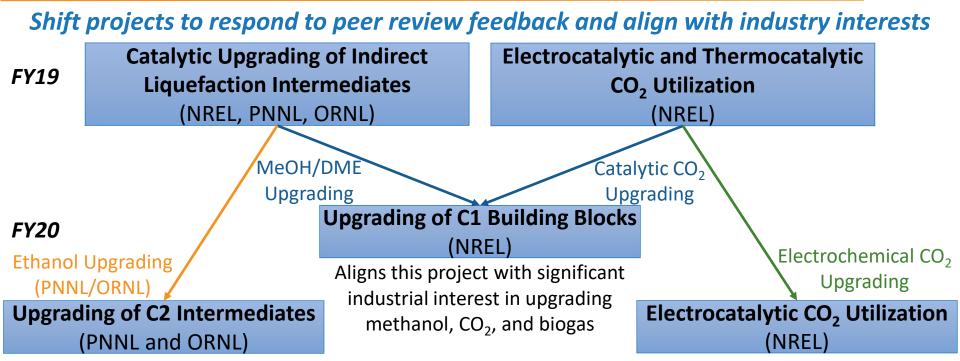
Lanzatech (PNNL) - TPA

Sironix (LANL)

1. Management: Active Portfolio Management

Integrated and collaborative portfolio of catalytic technologies and enabling capabilities

Catalytic Technologies


Enabling Capabilities

Catalytic Upgrading of Biochemical	Advanced Catalyst Synthesis and	(Directed Funding)
Intermediates	Characterization	Gevo (NREL)
(NREL, PNNL, ORNL, LANL)	(NREL, ANL, ORNL, SNL)	ALD Nano/JM (NREL)
	Closed out following successful	Vertimass (ORNL)
Reorganized in FY20	tool development	Selected for Phase II
Catalutia Fast Duralusia	Consortium for Computational	Selected for Phase II
Catalytic Fast Pyrolysis (NREL, PNNL)	Physics and Chemistry (ORNL, NREL, PNNL, ANL, NETL)	Lanzatech (PNNL) - Fuel
		Gevo (LANL)
Reorganized in FY20	Added in FY19 based on IAB	Lanzatech (PNNL) - TPA
	feedback	Selected for Phase II
	Cross-Cutting Support	
Chem	CatBio Lead Team Support (NREL)	

ChemCatBio DataHUB (NREL

Industry Partnerships

1. Management: Catalytic Technologies Reorganization

Aligns this project with significant industrial interest in generating drop-in fuels and valuable chemicals from ethanol

Responds to peer review feedback that project should focus on electrocatalytic CO_2 utilization and emphasize development and evaluation of realistic reactor (MEA) configurations

1. Management: ChemCatBio Foundation – FY21

Integrated and collaborative portfolio of catalytic technologies and enabling capabilities

Catalytic Technologies Catalytic Upgrading of Biochemical Intermediates (NREL, PNNL, ORNL, LANL)

Upgrading of C1 Building Blocks (NREL)

Upgrading of C2 Intermediates (PNNL, ORNL)

> Catalytic Fast Pyrolysis (NREL, PNNL)

Electrocatalytic CO₂ Utilization (NREL) Enabling Capabilities Advanced Catalyst Synthesis and Characterization (NREL, ANL, ORNL)

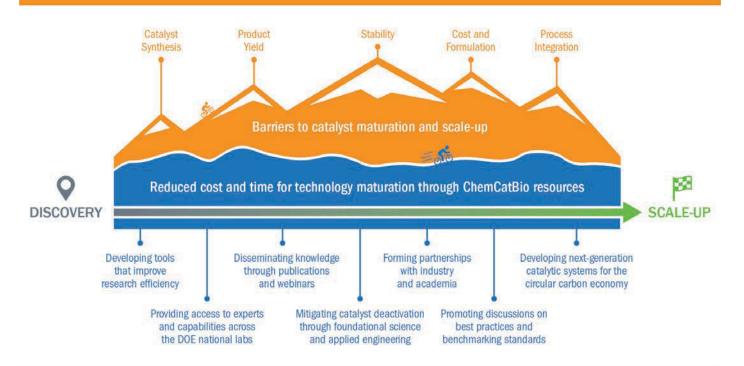
Consortium for Computational Physics and Chemistry (ORNL, NREL, PNNL, ANL, NETL)

Catalyst Deactivation Mitigation for Biomass Conversion (PNNL) Industry Partnerships (Phase II Directed Funding)

Opus12 (NREL)

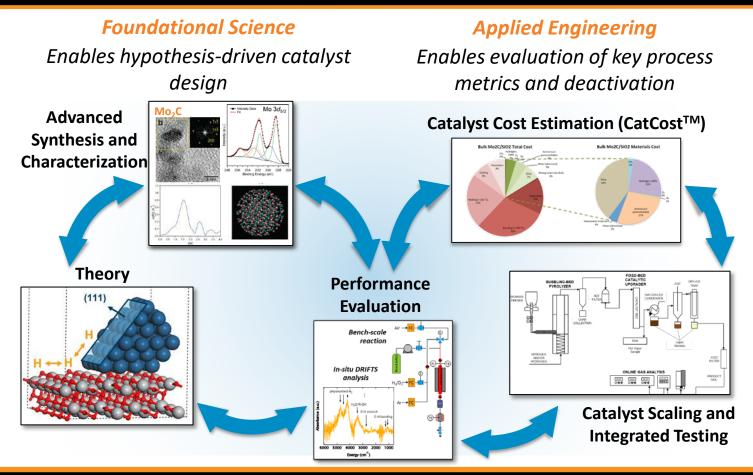
Visolis (PNNL)

Sironix (LANL)


Cross-Cutting Support

ChemCatBio Lead Team Support (NREL)

ChemCatBio DataHUB (NREL)

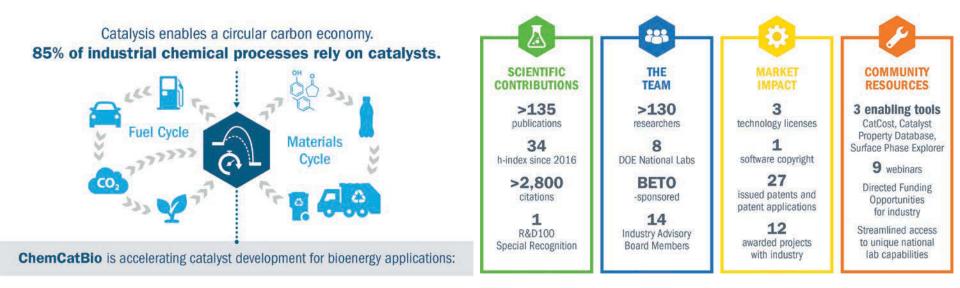

2. Approach: Acceleration

The path to catalyst deployment is slow and difficult.

ChemCatBio is accelerating the catalyst and process development cycle.

2. Approach: Foundational Catalyst-Process R&D

2. Approach: Differentiators


Value Proposition: Reduce risks for biofuel and biochemical production and enable accelerated market adoption of bioenergy technologies by overcoming critical catalysis challenges

Differentiators:

- Working with realistic process streams (woody biomass, fermentation broth)
- Targeting both pathway-specific and overarching catalysis challenges
 - Emphasis on mitigating catalyst deactivation as a grand challenge
- Leveraging world-class national lab capabilities and expertise
- Guiding R&D through risk assessment, technoeconomic analysis/life-cycle assessment and input from our industry advisory board
- Advancing core catalytic upgrading technologies for BETO

3. Impact: Serving as a Central Hub of Knowledge

Addressing *critical catalysis challenges* limiting commercialization of bioenergy technologies and *facilitating industry access* to national lab capabilities and expertise

Maintain an updated website to facilitate community outreach: Chemcatbio.org

3. Impact: Path to Market

Addressing *critical catalysis challenges* limiting commercialization of bioenergy technologies and *facilitating industry access* to national lab capabilities and expertise

- 3 ChemCatBio technologies licensed by industry
 - Ethanol to jet fuel
 - Dimethyl ether to high-octane gasoline
 - Atomic Layer Deposition
- Multiple follow-on projects with industry (TCF, FOA, CRADA)
- Successfully completed Phase I Directed Funding Opportunities
 - R&D100 Special Recognition in Green Tech (Sironix)
 - Gevo: "The insight provided by ChemCatBio through *advanced characterization techniques that are not readily available to industry* has helped us to develop a better understanding of catalyst deactivation for important Gevo biofuels processes."
- FY20 CatCost[™] Utilization: 1,492 users / 2,077 sessions

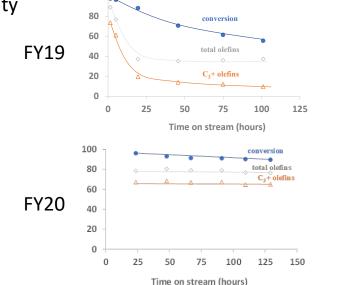
Enerkem LanzaTech

Energy lives here

world energy

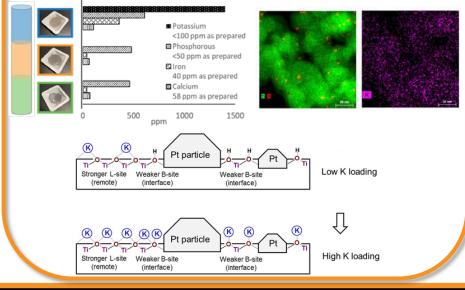
SIRONIX

RENEWABLES


4. Progress: Addressing Catalyst Deactivation

Catalyst deactivation is a critical risk for commercialization of bioenergy applications

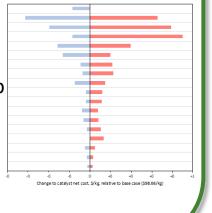
Ethanol Upgrading


Challenge: Coke formation **Accomplishment:** 3x reduction in coke formation through catalyst modification, resulting in enhanced

stability

Catalytic Fast Pyrolysis

Challenge: Potassium deposition **Accomplishment:** Developed a mechanistic understanding of K-induced deactivation through comprehensive catalyst characterization and testing


4. Progress: Tool Development

Expanding the development and utilization of tools that improve research efficiency and accelerate the catalyst-process development cycle

Enhanced capabilities of CatCost[™]

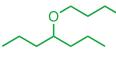
- Added Python scripts for Web-Excel interconversion
- Created printable outputs in Excel to support peer review
- Incorporated sensitivity analysis into the Web App
- Fixed bugs and improved performance

Developed and publicly released the Catalyst Property Database

- Centralized, searchable compilation of published density functional theory adsorption data
- Standardization of 3000+ datapoints through development and implementation of dictionaries
- Key component of the Catalyst Design Engine Catalyst Design Engine Vision

catcost.chemcatbio.org

4. Progress: Engagement with other Consortia

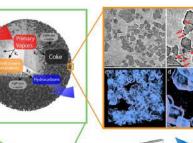

Rich cross-consortia collaboration enables broader impact to the bioenergy community

Improving efficiency of butanediol upgrading through advanced separations Wiped Film Evaporation Membrane Pervaporation Vacuum Polymer Membrane **Porous Ceramic Support**

Producing diesel blendstocks through catalytic upgrading of short-chain acids

4-Butoxyheptane

5-Ethyl-4-Propylnonane


X. Huo, et al., *Green Chem.* 21 (2019) 5813-5827.

G. Hafenstine, et al., *Green Chem.* 22 (2020) 4463-4472.

Co-Optimization of Fuels & Engines

Informing catalyst and process scale-up for CFP

M. Pecha, et al., *React. Chem. Eng.* 6 (2021) 125-137 CCCPC Consortium for Computational Physics and Chemistry

U.S. DEPARTMENT OF ENERG

4. Progress: Industry and Stakeholder Engagement

Industry engagement and partnerships help maintain commercial relevance

Revamped our Industry Advisory Board in 2020 to bring in new perspectives

- 10 members across the catalysis and bioenergy value chains
- Expanded to include academic members
- Members from Phillips66,
 W.R. Grace, Clariant,
 JohnsonMatthey, ExxonMobil,
 Columbia University, and
 Apeel Sciences
- Quarterly meetings

Initiated 3 Phase II industrial partnerships through Directed Funding Opportunity

VISOLIS CARBON NEGATIVE MATERIALS

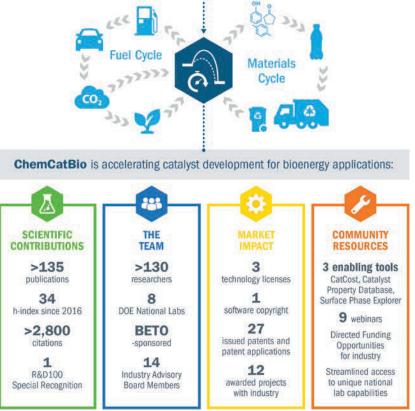
- SIRONIX OPU
- Building off success from
 Phase I projects to facilitate
 commercial impact
- Leveraging ChemCatBio capabilities in synthesis, characterization, and evaluation
- Advancing technology readiness level

Interviewed subject matter experts to guide ChemCatBio's evolution as a "Central Hub of Knowledge"

- Prior listening day feedback suggested ChemCatBio serve as a "Central Hub of Knowledge"
- Interviewed >25 industry experts to understand knowledge gaps and needs
- Outcome: Identified specific action items, including newsletter distribution and SOT updates through our website

Summary

Mission: Accelerate the catalyst and process development cycle for bioenergy applications


Approach: Active consortium management combined with a *collaborative R&D* approach guided by risks, TEA/LCA, and stakeholder/IAB input that targets both pathway-specific and overarching catalysis challenges

- Developing next-generation catalytic systems
- Mitigating deactivation
- Developing tools that improve research efficiency
- Establishing partnerships & disseminating knowledge

Outcome: Reduced cost, time, and risks for catalytic technology maturation

Relevance to Bioenergy Industry: Addressing *critical catalysis challenges* limiting commercialization of bioenergy technologies and *facilitating industry access* to national lab capabilities and expertise

Catalysis enables a circular carbon economy. 85% of industrial chemical processes rely on catalysts.

Acknowledgements

Steering Committee

Rajeev Assary (ANL) Fred Baddour (NREL) Rob Dagle (PNNL) Vanessa Dagle (PNNL) Rick Elander (NREL) Carrie Farberow (NREL) Jack Ferrell (NREL) Mike Griffin (NREL) Susan Habas (NREL) David Johnson (NREL) Ted Krause (ANL) Zhenglong Li (ORNL) Kim Magrini (NREL)

Cameron Moore (LANL) Mariefel Olarte (PNNL) Asanga Padmaperuma (PNNL) Jim Parks (ORNL) Karthi Ramasamy (PNNL) Roger Rousseau (PNNL) Dan Ruddy (NREL) Andrew Sutton (ORNL) Madhava Syamlal (NETL) Kinga Unocic (ORNL) Kurt Van Allsburg (NREL) Derek Vardon (NREL) Huamin Wang (PNNL)

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

BIOENERGY TECHNOLOGIES OFFICE

BETO

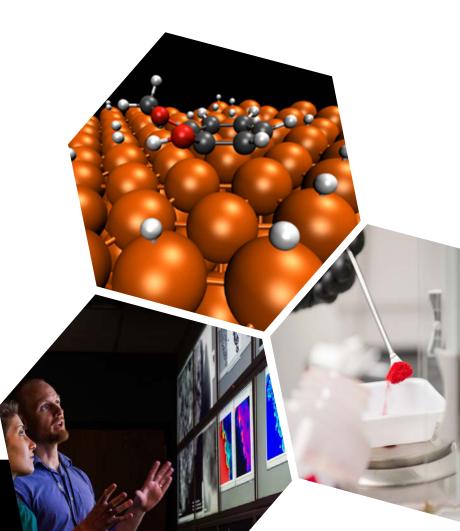
U.S. DEPARTMENT OF

Sonia Hammache Trevor Smith Nichole Fitzgerald Andrea Bailey Kevin Craig

Special thanks to all of our collaborators and industry advisory board members!

Thank you!

ChemCatBio Team


DOE Bioenergy Technologies Office (BETO) 2021 Project Peer Review

Overview of the Chemical Catalysis for Bioenergy Consortium

March 9th, 2021 Catalytic Upgrading

Josh Schaidle

Quad Chart Overview – ChemCatBio Lead Team Support (WBS 2.6.3.500)

Timeline

- Start Date: October 1st, 2019
- End Date: September 30th, 2022

	FY20	Active Project
DOE Funding	\$160,000	\$480,000

Barriers addressed Ot-B: Cost of Production

Reducing conversion cost contribution to MFSP

Ct-E/F: Improving yield and catalyst lifetime

Developing stable, selective catalysts

Ct-G: Decreasing time/cost to develop catalysts

Leverage national lab capabilities/expertise

Project Goal

Enable ChemCatBio to achieve its mission by providing leadership for the consortium, managing the R&D portfolio, serving as single point of contact for potential partners, pursuing action items identified from the stakeholder listening day, and developing strategic initiatives to position the consortium for the future.

End of Project Milestone

Establish ChemCatBio as a central public hub of knowledge, methods, and tools for catalytic bioenergy applications by (1) supporting development of the Catalyst Design Engine (including release of a computational catalyst database web application), (2) maintaining and expanding the capabilities of the CatCost tool, (3) developing and sharing content on our website about mitigation of catalyst deactivation, advancements in the state-of-technology for applicable conversion pathways, and the catalyst value factor, and (4) implementing action items based on feedback from the community in FY20.

Funding Mechanism Annual Operating Plan (AOP)

Acknowledgement

NREL/PR-5100-79457

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Additional Slides

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

BIOENERGY TECHNOLOGIES OFFICE

Responses to Previous Reviewers' Comments

Our overarching response to 2019 peer review feedback:

"Moving forward, we will continue to build upon the collaborative foundation of the consortium and our early-stage technical successes by (1) maintaining our responsiveness to stakeholder feedback, (2) emphasizing carbon utilization as a key metric for all catalytic conversion technologies, (3) strengthening existing partnerships and developing new partnerships, especially with industry and other BETO consortia (e.g., Separations Consortium), and (4) developing tools that broadly enable the research community to accelerate the catalyst and process development cycle for bioenergy technologies."

Publications, Patents, Presentations, Awards, and Commercialization

- Full list of ChemCatBio Publications: <u>https://www.chemcatbio.org/publications.html</u>
- Full list of ChemCatBio Webinars: https://www.chemcatbio.org/webinars.html
- See slides 15 and 16 regarding awards, patents, licenses, and industry collaborations

Project Overview: Historical Motivation

U.S. DEPARTMENT OF ENERGY BIOENERGY TECHNOLOGIES OFFICE

Feedback: Establish an "Experimental

Catalysis Consortium"

- Address overarching issues such as deactivation and physical stability
- Needs to be a highly-coordinated effort focused on advancing the state of technology for catalysis, not just pathwayspecific challenges
- Integrate valorization of waste streams

Goal: Accelerate the development of advanced materials for clean energy applications

U.S. Department of Energy

- Consists of national lab-led consortia
- Integrates all phases of R&D from *discovery* to scale-up

Energy Materials Network

 Facilitates *industry/stakeholder access* to a world-class network of capabilities, tools, and expertise

