
NREL is a national laboratory of the U.S. Department of Energy
Office of Energy Efficiency & Renewable Energy
Operated by the Alliance for Sustainable Energy, LLC
This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08GO28308

Conference Paper
NREL/CP-2C00-79645
September 2021

Preparing an Incompressible-Flow
Fluid Dynamics Code for Exascale-
Class Wind Energy Simulations
Preprint
Paul Mullowney,1 Ruipeng Li,2 Stephen Thomas,1
Shreyas Ananthan,1 Ashesh Sharma,1 Jon S. Rood,1
Alan B. Williams,3 and Michael A. Sprague1

1 National Renewable Energy Laboratory
2 Lawrence Livermore National Laboratory
3 Sandia National Laboratories

Presented at the International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC21)
Nov 14–19, 2021

NREL is a national laboratory of the U.S. Department of Energy
Office of Energy Efficiency & Renewable Energy
Operated by the Alliance for Sustainable Energy, LLC
This report is available at no cost from the National Renewable Energy
Laboratory (NREL) at www.nrel.gov/publications.

Contract No. DE-AC36-08GO28308

National Renewable Energy Laboratory
15013 Denver West Parkway
Golden, CO 80401
303-275-3000 • www.nrel.gov

Conference Paper
NREL/CP-2C00-79645
September 2021

Preparing an Incompressible-Flow
Fluid Dynamics Code for Exascale-
Class Wind Energy Simulations
Preprint
Paul Mullowney,1 Ruipeng Li,2 Stephen Thomas,1
Shreyas Ananthan,1 Ashesh Sharma,1 Jon S. Rood,1
Alan B. Williams,3 and Michael A. Sprague1

1 National Renewable Energy Laboratory
2 Lawrence Livermore National Laboratory
3 Sandia National Laboratories

Suggested Citation
Mullowney, Paul, Ruipeng Li, Stephen Thomas, Shreyas Ananthan, Ashesh Sharma, Jon
S. Rood, Alan B. Williams, and Michael A. Sprague. 2021. Preparing an Incompressible-
Flow Fluid Dynamics Code for Exascale-Class Wind Energy Simulations: Preprint.
Golden, CO: National Renewable Energy Laboratory. NREL/CP-2C00-79645.
https://www.nrel.gov/docs/fy21osti/79645.pdf.

https://www.nrel.gov/docs/fy21osti/79645.pdf

NOTICE

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable
Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding
provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy. The views
expressed herein do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government
retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains
a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or
allow others to do so, for U.S. Government purposes.

This report is available at no cost from the National Renewable
Energy Laboratory (NREL) at www.nrel.gov/publications.

U.S. Department of Energy (DOE) reports produced after 1991
and a growing number of pre-1991 documents are available
free via www.OSTI.gov.

Cover Photos by Dennis Schroeder: (clockwise, left to right) NREL 51934, NREL 45897, NREL 42160, NREL 45891, NREL 48097,
NREL 46526.

NREL prints on paper that contains recycled content.

http://www.nrel.gov/publications
http://www.osti.gov/

Preparing an Incompressible-Flow Fluid Dynamics Code for
Exascale-Class Wind Energy Simulations

Paul Mullowney
∗

Paul.Mullowney@nrel.gov

National Renewable Energy Lab

Golden, Colorado, USA

Ruipeng Li

li50@llnl.gov

Lawrence Livermore National Lab

Livermore, California, USA

Stephen Thomas

Stephen.Thomas@nrel.gov

National Renewable Energy Lab

Golden, Colorado, USA

Shreyas Ananthan

Shreyas.Ananthan@nrel.gov

National Renewable Energy Lab

Golden, Colorado, USA

Ashesh Sharma

Ashesh.Sharma@nrel.gov

National Renewable Energy Lab

Golden, Colorado, USA

Jon S. Rood

Jon.Rood@nrel.gov

National Renewable Energy Lab

Golden, Colorado, USA

Alan B. Williams

william@sandia.gov

Sandia National Laboratories

Albuquerque, New Mexico, USA

Michael A. Sprague

Michael.A.Sprague@nrel.gov

National Renewable Energy Lab

Golden, Colorado, USA

ABSTRACT
The U.S. Department of Energy has identified exascale-class wind

farm simulation as critical to wind energy scientific discovery. A pri-

mary objective of the ExaWind project is to build high-performance,

predictive computational fluid dynamics (CFD) tools that satisfy

these modeling needs. GPU accelerators will serve as the computa-

tional thoroughbreds of next-generation, exascale-class supercom-

puters. Here, we report on our efforts in preparing the ExaWind

unstructured mesh solver, Nalu-Wind, for exascale-class machines.

For computing at this scale, a simple port of the incompressible-flow

algorithms to GPUs is insufficient. To achieve high performance,

one needs novel algorithms that are application aware, memory

efficient, and optimized for the latest-generation GPU devices. The

result of our efforts are unstructured-mesh simulations of wind tur-

bines that can effectively leverage thousands of GPUs. In particular,

we demonstrate a first-of-its-kind, incompressible-flow simulation

using Algebraic Multigrid solvers that strong scales to more than

4000 GPUs on the Summit supercomputer.

KEYWORDS
CFD, Overset, Computational Linear Algebra, GPU Computing,

Algebraic Multigrid

ACM Reference Format:
Paul Mullowney, Ruipeng Li, Stephen Thomas, Shreyas Ananthan, Ashesh

Sharma, Jon S. Rood, Alan B. Williams, and Michael A. Sprague. 2021.

Preparing an Incompressible-Flow Fluid Dynamics Code for Exascale-Class

∗
All authors contributed equally to this research.

Publication rights licensed to ACM. ACM acknowledges that this contribution was

authored or co-authored by an employee, contractor or affiliate of the United States

government. As such, the Government retains a nonexclusive, royalty-free right to

publish or reproduce this article, or to allow others to do so, for Government purposes

only.

SC ’21, November 14–19, 2021, St. Louis, MO, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8442-1/21/11. . . $15.00

https://doi.org/10.1145/3458817.3476185

Wind Energy Simulations. In The International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC ’21), Novem-
ber 14–19, 2021, St. Louis, MO, USA. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3458817.3476185

1 INTRODUCTION
High-fidelity modeling of wind farms requires high-performance

computational fluid dynamics (CFD) tools. Predictive simulations

(i.e., those that capture dynamics spanning from micron-scale blade

boundary layers to the tens of kilometers of wind farms) are a com-

putational grand challenge requiring exascale-class high-performance

computing (HPC) [1, 2]. Predictive simulations must not only be

able to capture the geometry of the turbine blades and thin bound-

ary layers; they must do so in the context of turbine rotation and

deflection in a turbulent atmospheric environment. Ultimately such

tools must handle even more challenging cases such as offshore

operation, which includes multiphase fluid dynamics and large

platform motions [3]. The development of reliable, high-fidelity,

high-performing software will be an invaluable tool for scientific

discovery for wind farm design, operation, and optimization.

As part of the U.S. Department of Energy Exascale Comput-

ing Project (ECP) [2, 4], the ExaWind project aims to simulate

the whole wind farm on next-generation exascale-class computers,

which in the United States will be accelerated by graphics process-

ing units (GPUs). The primary physics codes in the open-source

ExaWind simulation environment [5] are Nalu-Wind, AMR-Wind,

and OpenFAST. Nalu-Wind and AMR-Wind are finite-volume-based

CFD codes for the incompressible-flow Navier-Stokes equations,

whereas OpenFAST is a wind turbine structural dynamics solver.

Nalu-Wind is an unstructured-grid solver that resolves the com-

plex geometry of wind turbine blades and the thin blade boundary

layers. AMR-Wind is a block-structured-grid solver with adaptive

mesh refinement (AMR) capabilities that captures the background

turbulent atmospheric flow and turbine wakes. Nalu-Wind and

AMR-Wind models are coupled through overset meshes handled

by the Topology Independent Overset Grid Assembler (TIOGA),

which is an open-source automated overset mesh assembly library

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

1

https://doi.org/10.1145/3458817.3476185
https://doi.org/10.1145/3458817.3476185

[6, 7]. The CFD models consist of the mass-continuity, Poisson-type
equation for pressure and Helmholtz-type equations for transport
of momentum and other scalars (e.g., those for turbulence models).
For Nalu-Wind, simulation times are dominated by linear-system
setup and solution for the continuity and momentum equations.
AMR-Wind is built on the AMReX software stack [8] and its geo-
metric multigrid is the primary solver, although it has the option
of using the hypre library [9] as a solver at the coarsest AMR level.
When hypre is not used as the bottom solver, linear-system setup
and solve are quite fast in comparison to unstructured mesh solvers.
When hypre is used, AMR-Wind computational throughput and
scaling is dictated by the linear system solver performance, just as
with Nalu-Wind.

Blade-resolved simulations of wind turbines lead to unstructured
grids with challenging features. In particular, one often finds mesh
cells with high aspect ratio or mesh cells that are vastly different in
size. This leads to poorly conditioned linear systems, especially for
the pressure-Poisson equation, which can only be solved efficiently
with sophisticated algorithms such as Algebraic Multigrid (AMG)

[10]. In contrast, the momentum and turbulent scalar transport
equations can be rapidly solved with nonsymmetric Krylov methods
such as GMRES [11]. However, even these algorithms still require
redesigned preconditioners to find the solutions on highly parallel
architectures.

Efficient scaling of unstructured, blade-resolved simulations on
large GPU-based machines is a challenging endeavor. In what
follows, we will describe our efforts to build a GPU-accelerated
CFD package capable of performing blade resolved-simulations
for petascale-class simulations. We will show, in detail, the strong
scaling characteristics for low- and high-resolution blade-resolved
models, and we include a breakdown of the most time consuming
model components. Lastly, we provide an important cross machine
comparison between Summit at Oak Ridge National Laboratory
(ORNL) [12] and Eagle at the National Renewable Energy Labora-
tory (NREL). These results show the critical influence played by
processor architecture and Message Passing Interface (MPI) imple-

mentation on the strong scaling performance of an unstructured
mesh solver.

Specifically, we r eport on our efforts to ac celerate th e Nalu-
Wind application when running it primarily on GPUs and using
the hypre solvers. We describe our techniques for addressing each
of the critical algorithmic components, including linear-system
assembly, AMG setup, and the design of effective GPU precondi-
tioners/smoothers. Some aspects of these critical components are
implemented and executed in the Nalu-Wind software stack includ-
ing the mesh motion and physics algorithms as well as the graph
computation and local linear system assembly. Other algorithms,
such as the global-linear-system assembly, AMG setup, and solve
are implemented in hypre.

This study of the Exawind software stack performance differs
from other studies of scalable CFD packages, which can be used to
simulate wind turbines, in several, key aspects. The Fun3D CFD
simulator can handle both compressible and incompressible flows,
but they have only reported on highly scaleable GPU solvers in
the compressible regime where the global pressure-Poisson solve
is not required [13]. In contrast to Exawind, Fun3D uses high order
elements in order to increase the flops per memory access ratio and

thereby achieve excellent strong and weak scaling. The OpenFOAM

package uses the Nvidia AMGx library for its GPU accelerated lin-

ear solves [14]. AMGx has previously demonstrated excellent weak

scaling on up to 512 Kepler class GPUs [15], although those simula-

tions consisted of structured grid models whose matrices arise from

a seven-point stencil. While their scaling studies addressed elliptic

solves, the matrices were well conditioned and thus straightforward

to handle by AMG methods. This contrasts with our study, which

focuses on poorly conditioned matrices that lack structure. More

specifically, we focus on the strong scaling behavior down to 10
5

DoFs per GPU whereas [15] addressed problems whose minimum

size was an order of magnitude larger. Ellipsys3D [16–18] was re-

cently validated against Nalu-Wind for turbine blade modelling

[19]. This code uses a block structured formulation in curvilinear

coordinates to solve the underlying physics equations and multigrid

methods for solving the global pressure-Poisson equation. Although

this codes achieves near perfect strong scaling with MPI, this soft-

ware is not, to our knowledge, GPU-accelerated.

This paper is organized as follows. In §2, we give a brief overview

of our meshing and domain decomposition strategy and our ap-

proach to handling mesh motion. This is followed by descriptions

of linear-system assembly algorithms in §3. In §4, the hypre AMG

setup (§4.1) and smoother algorithms (§4.2) are covered. We give

detailed performance results in §5. It should be emphasized that

our efforts could not be characterized as a simple GPU port. New

algorithm development, designed and optimized for highly parallel

architectures, as well as run-time parameter tuning, were necessary

steps to achieve the performance reported in this paper.

2 EXAWIND MESHING STRATEGY
In the present work, we use the Nalu-Wind solver to model the

flow past a wind turbine using overset-mesh methodology. The

computational model is composed of multiple independent meshes

for different flow regimes; for example, the rotor is modeled using

a body-fitted mesh that is embedded in a wake-capturing unstruc-

tured mesh. The Nalu-Wind meshes are, in general, moving with

the turbine through rotor rotation. Meshes are coupled through

the overset method, for which connectivity must be continually

updated as the meshes move. As an example, Figure 1 shows repre-

sentative unstructured-grid overset meshes for a turbine blade. As

described in [20] for Nalu-Wind-only models, the linear systems

(associated with the discrete governing equations) are created inde-

pendently and the solution of the global coupled linear system is

accomplished with an additive Schwarz algorithm; in other words,

the solution to the equivalent global linear systems is approximated

through outer iterations that couple (potentially many) smaller

linear systems. While there is an acceptable accuracy reduction,

the approach provides enormous benefits. For example, we avoid

the need to reduce challenges in weak scaling to the huge prob-

lem sizes envisioned (especially for the global pressure-Poisson

equation), we simplify the mesh-creation process, we remove the

need to re-initialize matrices for each mesh as they move, and we

enable our AMR-Wind/Nalu-Wind multi-solver approach. We refer

the reader to [20] for details regarding the algorithm, verification,

and validation of the approach in the context of Nalu-Wind-only

meshes.

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

2

Figure 1: Example of the overset-meshing approach used in
ExaWind. Shown are three overlapping Nalu-Wind meshes
used to simulate the NREL Phase VI turbine [20].

In this paper, we focus on the performance of Nalu-Wind, for

which the underlying mesh data structures are implemented with

the Sierra Toolkit (STK) libraries [21] that are distributed with the

Trilinos Project [22]. The STK mesh module is used to store the

computational mesh and fields, and it provides data access and

traversal on GPU platforms. Trilinos provides access to ParMETIS

partitioning [23], for mesh rebalancing, through the Zoltan2 soft-

ware package [24]. The Kokkos library [25] is used heavily, both

within the STK mesh library and directly in Nalu-Wind, to provide

execution constructs (looping mechanisms as well as data struc-

tures) that allow performance portability across traditional CPUs

as well as GPU platforms. These data structures and programming

constructs allow one to easily write device-portable algorithms for

evaluating the key physics algorithms on themesh. These quantities

serve as the input to the local linear-system assembly algorithms

which also run on device via Kokkos.

3 NALU-WIND/hypre LINEAR SYSTEM
ASSEMBLY

Once the terms appearing in the governing equations for incompressible-

flow surrounding the wind turbine are evaluated on the mesh,

sparse linear systems are built for the solvers embedded in a non-

linear Picard iteration. The construction of the linear system for

each governing equation has three stages:

Stage 1: Nalu-Wind graph computation

Stage 2: Nalu-Wind local assembly

Stage 3: hypre global assembly

Alternative local assembly strategies based on matrix-matrix

multiplication patterns have shown good performance, on the or-

der of 5× faster, when compared with CPU-only algorithms [26].

These approaches are attractive in that they could potentially com-

bine the first two stages into a single algorithm. For our application

though, this would impose a significant redesign of the Nalu-Wind

application and thus we cannot directly compare these two ap-

proaches. Moreover, our computational results show that other

algorithmic components including AMG setup and solve, are still,

despite being GPU-accelerated, a more dominant computational

cost than assembly. Thus, our attention remains focused on making

improvements in those areas.

3.1 Nalu-Wind Graph Computation
The graph-computation stage computes the exact sparsity pattern

of a linear system for each governing equation. All of the differ-

ent components of the mesh elements including, edges, faces, and

nodes are traversed sequentially. Contributions to each degree of

freedom (DoF) are stored. Boundary-condition nodes, including

periodic, Dirichlet, and overset DoFs are accounted for precisely.

Coordinate (COO) matrices, which includes the row and column

indices, are computed for both the owned and shared DoFs. These

matrices are sorted in row-major format. Several auxiliary data

structures are also constructed that enable matrix element location

determination in the next stage. Most of this computation runs on

the CPU although at the very end, key data structures are either

moved or computed on the GPU device for use in the next stage.

The graph computation is sequential, but it could be made more

amenable to parallel computation by using parallel scan algorithms

to compute the amount of memory needed as well as the indexing

data structures needed for computing the graph in parallel threads.

This would require multiple traversals through the mesh.

3.2 Nalu-Wind Local Assembly
Once the components of the governing equations are evaluated on

the STK mesh, the Nalu-Wind assembly phase can use the graph

to fill the matrix and RHS elements in a data-parallel manner. El-

ements of a particular type, such as an edge or face, are grouped

together and iterated over in a parallel fashion. In this formulation,

neighboring elements can contribute to the same matrix element

value. Because of the massively parallel nature of the underlying

implementation, it is possible that the update of these values occurs

simultaneously from different threads. To overcome this, we use

device atomic operations. While this precludes guaranteed bitwise

reproducibility from run to run, the accuracy of the governing-

equation discretization is unaffected. Moreover, a reproducible al-

gorithm was implemented although it required significantly more

memory and a global sorting algorithm–both of which yield signifi-

cant performance degradation. For the Nalu-Wind application, both

speed of execution and device-memory consumption are primary

optimization targets that have been deemed more important than

reproducibility. One could perform compensated summation [27]

to minimize the effect of the potential discrepancies, but this has

not yet been implemented. The output of this stage are the matrix

values for the COO matrices, both owned and shared, as well as the

right-hand vector entries, both owned and shared. The underlying

kernels have been written using the Kokkos API.

Significant efforts were made to optimize this step. This includes

the use of (1) both linear and binary search algorithms to deter-

mine the matrix write locations as well as (2) read-only, texture

memory to query the auxiliary data structures. These auxiliary data

structures help determine the write location quickly.

3.3 hypre Global Assembly
On a distributed-memory computer, hypre distributes the matrix

and the vectors in a 1D block-row fashion among the MPI processes.

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

3

Thus, in the Nalu-Wind application code, we assemble two COO
matrices on each rank as described above. The first matrix contains
rows for DoFs owned by the calling MPI rank. The second matrix
contains contributions to rows for DoFs owned by other MPI ranks.
Viewed from the perspective of the receiver rather than the donor,
the received contributions from other MPI ranks either are added
to existing row elements or are inserted as new entries. Each COO
matrix is sorted in row-major format and contains no duplicates.
Given this structure of the assembled matrices, a straightforward
algorithm can be written that combines these per rank matrices
into a globally consistent linear system.

The procedure shown in Algorithm 1 can be efficiently imple-

mented on massively parallel architectures such as GPUs. Our
initial version has been implemented in hypre using the CUDA
Toolkit and Thrust library. Other GPU architectures can be sup-
ported provided implementations exist for the stable_sort_by_key
and reduce_by_key algorithms. Moreover, Algorithm 1 can be imple-

mented to minimize memory usage, which can be critical to the per-
formance, provided the following assumptions are met on 𝐴own =
{𝑖own, 𝑗own, 𝑎own, 𝑛𝑛𝑧own} and 𝐴

send = {𝑖
send

, 𝑗
send

, 𝑎
send

, 𝑛𝑛𝑧
send
}:

• 𝑛𝑛𝑧
local

= 𝑛𝑛𝑧own +max(𝑛𝑛𝑧
send

, 𝑛𝑛𝑧recv),
• 𝑖own and 𝑖

send
are stacked in a contiguous buffer of size

𝑛𝑛𝑧
local

,

• 𝑗own and 𝑗
send

are stacked in a contiguous buffer of size

𝑛𝑛𝑧
local

, and

• 𝑎own and 𝑎
send

are stacked in a contiguous buffer of size

𝑛𝑛𝑧
local

.

Here, 𝑛𝑛𝑧recv is the total number of COO entries received from all

other ranks on a given MPI rank. This value is easily computed

using MPI_Allreduce API calls after the graph-computation step

completes (§3.1).

Algorithm 1 Global Matrix Assembly algorithm

Input 𝐴own, 𝐴send
, 𝑛𝑛𝑧own, 𝑛𝑛𝑧send, 𝑛𝑛𝑧recv

Output 𝐴
diag

, 𝑛𝑛𝑧
diag

, 𝐴
offd

, 𝑛𝑛𝑧
offd

1: procedure Global Matrix Assemble

2: MPI_Send 𝐴
send

to appropriate ranks

3: MPI_Recv 𝐴recv from appropriate ranks

4: Stack all received buffers : 𝐴
all

= [𝐴own, 𝐴recv]
5: stable_sort_by_key: 𝐴

all
= {𝑖

all
, 𝑗
all
, 𝑎

all
}

6: reduce_by_key: {𝑖nnz, 𝑗nnz, 𝑎nnz} ← {𝑖all, 𝑗all, 𝑎all}
7: Split {𝑖nnz, 𝑗nnz, 𝑎nnz} into {𝑖

diag
, 𝑗
diag

, 𝑎
diag
} and

{𝑖
offd

, 𝑗
offd

, 𝑎
offd
}

8: end procedure

The set 𝐴recv = {𝑖recv, 𝑗recv, 𝑎recv, 𝑛𝑛𝑧recv} will likely include

duplicate 𝑖, 𝑗 entries and will not be sorted because nearby mesh el-

ements that are owned by different MPI ranks can contribute to the

same matrix elements. Once all receive elements are collected, they

are copied onto the contiguous buffers described above immediately

after the owned portion. This is where the pre-computation of the

𝑛𝑛𝑧recv is essential as it allows one to allocate enough space at the

outset, thus avoiding expensive device allocation and memcpy calls

in the middle of the algorithm. The reduce_by_key algorithm finds

all nearby elements in the data structure that have the same 𝑖 , 𝑗 pair

values and sums them together. The last line splits the matrix into

diagonal and off-diagonal blocks, an efficient decomposition for

performing a Sparse Matrix Vector Multiplies (SpMV), in parallel.

SpMVs are the primary workhorse of Krylov and AMG algorithms.

A comparable procedure exists for multi-GPU vector assembly

based on similar assumptions. Given the data structures 𝑅𝐻𝑆own =

{𝑖own, 𝑟own} and 𝑅𝐻𝑆
send

= {𝑖
send

, 𝑟
send
} assembled on an MPI

rank, we assume:

• 𝑛
local

= 𝑛own +max(𝑛
send

, 𝑛recv),
• 𝑖own and 𝑖send are stacked in a contiguous buffer of size 𝑛local
• 𝑟own and 𝑟send are stacked in a contiguous buffer of size𝑛local
• 𝑛own is exactly equal to the number of DoFs owned by a

particular rank.

𝑛recv is the total number of RHS entries received from all other

ranks on a given rank and can be pre-computed after the graph

compute step. 𝑅𝐻𝑆recv will likely include duplicates and will not

be sorted. The global vector assembly is given in Algorithm 2,

Algorithm 2 Global Vector Assembly algorithm

Input 𝑅𝐻𝑆own, 𝑅𝐻𝑆
send

, 𝑛own, 𝑛send, 𝑛recv
Output 𝑅𝐻𝑆

1: procedure Global Vector Assemble

2: MPI_Send 𝑅𝐻𝑆
send

to appropriate ranks

3: MPI_Recv 𝑅𝐻𝑆recv from appropriate ranks

4: stable_sort_by_key: 𝑅𝐻𝑆recv = {𝑖recv,𝑟recv}
5: reduce_by_key: {𝑖new, 𝑅𝐻𝑆new} ← {𝑖recv, 𝑅𝐻𝑆recv}
6: 𝑅𝐻𝑆 ← 𝑅𝐻𝑆own
7: 𝑅𝐻𝑆 [𝑖new] += 𝑅𝐻𝑆new [𝑖new]
8: end procedure

A key distinction between the vector (Algorithm 2) and matrix

(Algorithm 1) assemblies is that in the vector assembly, the sort

and reduce steps are only performed over the values received from

other ranks. This is because 𝑅𝐻𝑆own is sorted and the length of

these data structures is exactly equal to the number of rows owned

by this rank. After the copy (Step 6 in Algorithm 2), the reduced

received values are added to the correct elements in a parallel

manner. One could simply apply the stable sort and reduce by key

over the entire stacked data structure; however, sorts are typically

expensive algorithms. Because 𝑛recv ≪ 𝑛own, applying the sort

and reduce steps over a much smaller data structure has shown

nontrivial performance advantages.

We have experimented with a similar approach in the global

matrix assembly. Since 𝑛𝑛𝑧recv ≪ 𝑛𝑛𝑧own, one might expect signif-

icant performance benefits. In contrast to the vector case where the

final steps include a copy and a scatter-add, the matrix algorithm

transforms into the addition of two sparse matrices that can be

completed using the cuSPARSE library for NVIDIA architectures.

Numerical experiments have shown little performance benefit over

Algorithm 1. This is because in all likelihood, sparse matrix addi-

tion is implemented using sorting algorithms. One benefit of this

approach is the memory usage–profiling has indicated a smaller

memory footprint than the full sorting approach.

The description above refers to algorithms developed in a branch

of the hypre source code. From the application perspective, the

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

4

assembled COO matrices are injected into hypre API methods to

build the global matrix.

HYPRE_IJMatrixSetValues2,
HYPRE_IJVectorSetValues2,
HYPRE_IJMatrixAddToValues2, and
HYPRE_IJVectorAddToValues2.

First we apply the “SetValues2” routines to set the matrix/RHS

of the owned rows on the calling MPI rank. To add the off-rank

matrix/RHS elements, we then call "AddToValues2" routines using

the shared matrix/RHS elements as input. Then, we can all the

assembly routines

HYPRE_IJMatrixAssemble, and
HYPRE_IJVectorAssemble,

which encapsulate Algorithms 1 and 2 entirely. The advantage of

this implementation is that it completes the assembly in six hypre
API calls. It then leverages the internal-messaging structure of

hypre to properly build the full matrix and RHS. Details on hypre’s
unstructured interface and IJ object assembly on GPUs can be found

in [28].

4 hypre AMG SOLVER
In this section, we provide an overview of the AMG method ex-

ploited in this work using hypre’s BoomerAMG on GPUs. As dis-

cussed in [29], this is a particularly powerful method for solving

these challenging systems.

4.1 AMG Setup
AMG methods [10, 30, 31] are widely used and efficient scalable

solvers/preconditioners for large-scale linear systems arising from

partial differential equations (PDEs) due to their optimal complexity,

numerical scalability and good parallelism [32]. In the setup phase

of AMG methods, a multilevel hierarchy that consists of linear sys-

tems with exponentially decreasing sizes on coarser levels is built.

A strength-of-connection (SoC) matrix 𝑆 , is typically first computed

to indicate directions of algebraic smoothness used in coarsening

algorithms. The construction of 𝑆 can be performed efficiently on

GPUs, because each row of 𝑆 can be computed independently by

selecting entries in the corresponding row of 𝐴 with a prescribed

threshold value 𝜃 . BoomerAMG currently only provides the parallel

maximal independent set (PMIS) coarsening [33] on GPUs, which

is a modified from Luby’s algorithm [34] for finding maximal in-

dependent sets using random numbers. The process of selecting

coarse points in this algorithm is massively parallel, which makes

it appropriate for GPUs. The random numbers used in PMIS are

generated by the cuRAND library.

Interpolation operators in AMG transfer residual errors between

adjacent levels.Many interpolation schemes are available in Boomer-

AMG on CPUs. The so-called direct interpolation [31] is straightfor-

ward to port to GPUs because the interpolatory set of a fine point 𝑖 is

just a subset of the neighbors of 𝑖 , so that the interpolation weights

can be determined solely by the 𝑖-th equation. A bootstrap AMG

(BAMG) [35] variant of direct interpolation is generally found to

be better than the original formula. The weights𝑤𝑖 𝑗 are computed

by solving local optimization problem

min

𝑎𝑖𝑖𝑤T
𝑖 + 𝑎𝑖,𝐶𝑠

𝑖

2

s.t. 𝑤T
𝑖 𝑓𝐶𝑠

𝑖
= 𝑓𝑖 , (1)

where 𝑤𝑖 is the vector that contains 𝑤𝑖 𝑗 , 𝐶
𝑠
𝑖
denotes strong C-

neighbors of 𝑖 and 𝑓 is a target vector that needs to be interpolated

exactly. For elliptic problems where the near null space is spanned

by constant vectors (i.e., 𝑓 = ®1), closed-form solution of (1) is given

by

𝑤𝑖 𝑗 = −
𝑎𝑖 𝑗 + 𝛽𝑖/𝑛𝐶𝑠

𝑖

𝑎𝑖𝑖 +
∑
𝑘∈𝑁𝑤

𝑖
𝑎𝑖𝑘

, 𝛽𝑖 =
∑

𝑘∈{𝐹𝑖∪𝐶𝑤
𝑖
}
𝑎𝑖𝑘 , (2)

where 𝑛𝐶𝑠
𝑖
denotes the number of points in 𝐶𝑠

𝑖
, 𝐶𝑤

𝑖
the weak C-

neighbors of 𝑖 , 𝐹𝑖 the F-neighbors, and 𝑁𝑤
𝑖

the weak neighbors. A

known issue of PMIS coarsening is that it can result in F-points

without C-neighbors [36]. In these situations, distance-one interpo-

lation algorithms often work well, but interpolation operators that

can reach C-points at a larger range, such as the extended interpo-

lation [36], can generally yield much better convergence. However,

implementing extended interpolations is much more complicated

mainly because the sparsity pattern of the interpolation operator

cannot be determined a priori, which would require dynamically

combining C-points in a distance-2 neighborhood, and furthermore,

efficient implementation can be even more difficult on GPUs. With

minor modifications to the original form, it turns out that the ex-

tended interpolation operator can be rewritten in standard sparse

matrix computations such as matrix-matrix (M-M) multiplications

and diagonal scalings with certain 𝐹𝐹 - and 𝐹𝐶-submatrices. For

instance, the so-called “MM-ext” interpolation takes the form

𝑊 = −
[
(𝐷𝐹𝐹 + 𝐷𝛾)−1 (𝐴𝑠

𝐹𝐹 + 𝐷𝛽)
] [
𝐷−1
𝛽
𝐴𝑠
𝐹𝐶

]
with 𝐷𝛽 = diag(𝐴𝑠

𝐹𝐶
®1𝐶) and 𝐷𝛾 = diag(𝐴𝑤

𝐹𝐹
®1𝐹 + 𝐴𝑤

𝐹𝐶
®1𝐶), where

𝐴 is assumed to be decomposed into 𝐴 = 𝐷 + 𝐴𝑠 + 𝐴𝑤
, the di-

agonal, the strong part and the weak part respectively, and 𝐴𝑤
𝐹𝐹

,

𝐴𝑤
𝐹𝐶

, 𝐴𝑠
𝐹𝐹

and 𝐴𝑠
𝐹𝐶

are the corresponding submatrices of 𝐴𝑤
and

𝐴𝑠
. This formulation allows simple and efficient implementations

that can utilize available optimized sparse kernels on GPUs. Similar

approaches that are referred to as “MM-ext+i” are modified from

the original extended+i algorithm [36]. “MM-ext+e” are also avail-

able in BoomerAMG. See [37] for details on the class of M-M based

interpolation operators.

Aggressive coarsening can reduce the grid and operator complex-

ities of the AMG hierarchy, where a second coarsening is applied to

the C-points obtained from the first coarsening to produce a smaller

set of final C-points. In this work, we use the A-1 aggressive coars-

ening strategy described in [31]. The second PMIS coarsening is

performedwith the𝐶𝐶 block of 𝑆 (𝐴) = 𝑆2+𝑆 that has nonzero entry
𝑆
(𝐴)
𝑖 𝑗

if 𝑖 is connected to 𝑗 with at least a path of length less than or

equal to two. Aggressive coarsening is usually used with two-stage

interpolation [38] which computes a second-stage interpolation

matrix 𝑃2 and combined with the first-stage 𝑃1 as 𝑃 = 𝑃1𝑃2. The

aforementioned MM-based interpolation is also available for the

second stage.

Finally, Galerkin triple-matrix products are used to build coarse-

level operators. This computation is performed using parallel prim-

itives from Thrust and routines from cuSPARSE or hypre’s own
sparse kernels. We refer to [28] for the details we omit here on the

algorithms used in hypre for computing distributed sparse M-M

multiplications on GPUs.

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

5

4.2 Two-Stage Gauss Seidel Smoother
The Nalu-Wind time integrator employs the one-reduce GMRES lin-
ear solver for the momentum and pressure-Poisson governing equa-
tions as described in [39]. The momentum solver is preconditioned
with a two-stage Gauss-Seidel relaxation scheme as described below.
The pressure-Poisson preconditioner is based on an AMG algorithm
using aggressive PMIS coarsening at the first two levels combined
with the matrix-based approach for the second-stage interpolation
and it applies a two-stage Gauss-Seidel relaxation as the smoother
within an AMG 𝑉 -cycle [40].

To solve a linear system 𝐴x = b, the Gauss-Seidel (GS) iteration
is based on the matrix splitting 𝐴 = 𝐿 + 𝐷 + 𝑈 , where 𝐿 and 𝑈
are the strictly lower and upper triangular parts of the matrix 𝐴,
respectively. Then, the traditional GS updates the solution based
on the following recurrence,

x𝑘+1 := x𝑘 +𝑀−1r𝑘 , 𝑘 = 0, 1, 2, . . . (3)

where r𝑘 = b − 𝐴x𝑘 , 𝐴 = 𝑀 − 𝑁 , and 𝑀 = 𝐿 + 𝐷 , 𝑁 = −𝑈
or 𝑀 = 𝑈 + 𝐷 , 𝑁 = −𝐿 for the forward or backward sweeps,

respectively. In the following, we use a𝑗 to denote the 𝑗–th column

of a matrix 𝐴, while 𝑎𝑖, 𝑗 or 𝑥𝑖 is the (𝑖, 𝑗)–th element of 𝐴 or the

𝑖–th element of a vector x, respectively. To avoid explicitly forming

the matrix inverse𝑀−1 in (3), a sparse-triangular solve is used to

apply𝑀−1 to the current residual vector r𝑘 .
To improve the solver scalability, hypre implements a hybrid

variant of Gauss-Seidel [41], where the neighboring processes first

exchange the elements of the solution vector on the boundary,

but then each process independently applies the local relaxation.

Furthermore, in hypre, each process may apply multiple local GS

sweeps for each round of the neighborhood communication. With

this approach, each local relaxation updates only the local part of

the vector x𝑘+1 (during the local relaxation, the non-local solution

elements on the boundary are not kept consistent among the neigh-

boring processes). This hybrid algorithm is shown to be effective

for many problems [41].

x̂𝑘+1 := x̂𝑘 +𝑀−1 (b −𝐴x̂𝑘), 𝑘 = 0, 1, 2, . . . (4)

where𝑀−1 represents the approximate triangular system solution,

i.e.,𝑀−1 ≈ 𝑀−1. In our approach, a Jacobi-Richardson (or Jacobi)

inner iteration is employed. In particular, if g(𝑗)
𝑘

denotes the ap-

proximate solution from the 𝑗-th inner iteration at the 𝑘-th outer

GS iteration, then the initial solution is chosen to be the diagonally

scaled residual vector,

g(0)
𝑘

= 𝐷−1r𝑘 , (5)

and the (𝑗 + 1)–st JR iteration computes the approximate solution

by the recurrence

g(𝑗+1)
𝑘

:= g(𝑗)
𝑘
+ 𝐷−1 (r𝑘 − (𝐿 + 𝐷)g

(𝑗)
𝑘
) (6)

= 𝐷−1 (r𝑘 − 𝐿g
(𝑗)
𝑘
). (7)

When zero inner sweeps are performed, the two-stage GS recur-

rence becomes

x̂𝑘+1 := x̂𝑘 + g
(0)
𝑘

= x̂𝑘 + 𝐷−1 (b −𝐴x̂𝑘),
and this special case corresponds to Jacobi-Richardson for the global

system, or local system on each process. When 𝑠 inner iterations

are performed, it follows that

x̂𝑘+1 := x̂𝑘 + g
(𝑠)
𝑘

= x̂𝑘 +
𝑠∑
𝑗=0

(−𝐷−1𝐿) 𝑗𝐷−1r̂𝑘

≈ x̂𝑘 + (𝐼 + 𝐷−1𝐿)−1𝐷−1r̂𝑘 = x̂𝑘 +𝑀−1r̂𝑘 ,

where𝑀−1 is approximated by the degree-𝑠 Neumann expansion.

Note that 𝐷−1𝐿 is strictly lower triangular so that the Neumann

series converges in a finite number of steps.

The two-stage GS recurrence (4) can be also written as

x̂𝑘+1 := x̂𝑘 +𝑀−1 (b − (𝑀 − 𝑁)x̂𝑘) (8)

= (𝐼 −𝑀−1𝑀)x̂𝑘 +𝑀−1 (b + 𝑁 x̂𝑘) . (9)

In the classical one-stage recurrence (3), the preconditioner matrix

is taken as 𝑀−1 = 𝑀−1, and only the second term remains in the

recurrence (9), leading to the following “compact” form,

x𝑘+1 := 𝑀−1 (b + 𝑁x𝑘) . (10)

Hence, the recurrences (3) and (10) are mathematically equivalent,

while the recurrence (10) has a lower computation cost.

An effective preconditioner for the momentum equation is given

by a compact form of the two-stage symmetric Gauss-Seidel (SGS2)

relaxation that consists of the following steps for each outer itera-

tion

r𝑘 := 𝑏 − 𝐿g(𝑗)
𝑘

(11)

g(𝑗+1/2)
𝑘

:= 𝐷−1 (r𝑘 −𝑈 g(𝑗)
𝑘
) (12)

r𝑘 := 𝑏 −𝑈 g𝑘 (13)

g(𝑗+1)
𝑘

:= 𝐷−1 (r𝑘 − 𝐿 g(𝑗+1/2)
𝑘

) (14)

Two outer and two inner inner iterations often leads to rapid con-

vergence in less than five preconditioned GMRES iterations.

5 SIMULATION RESULTS
The performance of our implementation is measured through a

series of blade-resolved simulations of NREL 5-MW wind turbines

on the Summit supercomputer. The NREL 5-MW turbine [42] is a

notional reference turbine with a 126 meter rotor that is appropriate

for offshore wind studies. The simulations here use the model de-

scribed in [5], but with rigid blades, and they include low- and high-

resolution models of a single-turbine as well as a low-resolution

model of two turbines in sequence (see table 1). An example of

a flow field is shown in Figure 2. These models use inflow and

outflow boundary conditions in the directions normal to the blade

rotation and symmetry boundary conditions in other directions.

For each simulation, we perform 50 time steps from a cold start

with four Picard iterations per time step. The cold start implies that

the simulation will undergo an initial transient phase from a non-

physical initial solution guess before settling into a quasi-steady

solution state. This initial transient phase is more challenging for

the linear-system solvers and will require more GMRES iterations

per equation system. However, our simulations indicate the over-

head is less than 20%. For these studies we use all the available GPU

or CPU resources per Summit node; 42 Power9 CPU cores and 6

NVIDIA V100 GPUs for the CPU and GPU studies, respectively.

The data for the strong-scaling plots are computed as follows. For

each turbine simulation, a log file is generated that yields two sets

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

6

Figure 2: Flowfield (isosurfaces of Q-criterion colored by vor-
ticity magnitude and a plane with vorticity-magnitude iso-
contours) for the NREL 5-MW rotor with rigid blades oper-
ating in uniform inflow of 8 m/s. [5]

Table 1: NREL 5-MW turbine mesh sizes.

NREL5MW Mesh 1 Turbine 2 Turbines 1 Turbine Refined

Mesh Nodes 23,022,027 44,233,109 634,469,604

of data. For each time step, the log file outputs the time spent doing

nonlinear iterations (NLI) (i.e., GPU-accelerated physics and math

algorithms). This gives 50 distinct data points that have variation.

In the strong-scaling plots 3, 8, and 9, each point and its associated

error bar is computed by the mean and standard deviation of these

50 data points. At the end of the simulation, the application outputs

the total time spent in each equation system doing local assembly

and physics algorithms in Nalu-Wind, and global assembly, precon-

ditioner setup, and solve in hypre. Each of these data points are

scaled by 50 to get the per equation breakdowns shown in Figures

6 and 7.

5.1 Low-Resolution, Single-Turbine
Performance

The strong-scaling performance of the low resolution single-turbine

mesh is shown in Figure 3. We also show results from an earlier,

baseline GPU version of the implementation. The baseline results

contain the fast GPU implementations of AMG setup (§4.1) and the

two-stage Gauss-Seidel smoother (§4.2). The results also contain

a more general GPU implementation of linear system assembly

than what is described in §3. Without those implementations, the

baseline would be substantially slower than even the CPU results.

One could characterize the gain provided by those algorithms as

first-order optimizations as they resulted in an order of magnitude

performance gain. The improvements from the baseline, shown in

Figure 3, are second-order optimizations in that they add 30%-40%

improvement in performance, but not an order of magnitude.

Across the board, the current GPU implementation is substan-

tially faster than the baseline. The acceleration is particularly ev-

ident for 3-4 Summit nodes where the baseline implementation

slows down exactly in the regime where we expect accelerators to

Figure 3: Average nonlinear-iteration time per time step
(NLI) for the NREL 5-MW turbine mesh (table 1).

perform well (i.e., many mesh nodes per GPU). The performance

can be tied directly to the version of Nalu-Wind and hypre assembly

algorithms. hypre has a more general version of matrix assembly.

This generality comes with a price; it requires more device memory,

more data motion, and more complex algorithms to implement

fully. We refer the reader to [28] for details. Our implementation,

described in §3.3, is tuned to our particular use case although the

underlying implementation exists in a branch of the hypre source
code.

The optimized assembly algorithm accounts for a substantial

fraction of the performance gain as measured from the baseline

results, though not all. A rough empirical estimate of the gain

attributed to this optimization is 50%. Small but nontrivial gains

were attained through the use of read-only texture memory and

linear-search algorithms in the Nalu-Wind local assembly (see §3.2).

In addition, the inclusion of a second inner iteration (equations 5-7

with 𝑗 == 1) in the two-stage Gauss-Seidel algorithm has proven

effective at reducing the number of GMRES iterations by roughly 2×
for the momentum and scalar transport equations. Lastly, parameter

tuning of the BoomerAMG preconditioner, which is used in the

pressure-Poisson equation, has also yielded modest, but nontrivial

gains particularly in the setup phase. These latter optimizations

account for 25% of the gain over the baseline, which is estimated

empirically.

Our original implementation used an RCB (recursive bisection)

algorithm for domain decomposition. We have observed for meshes

relevant to wind-turbine simulations that RCB can lead to imbal-

anced and/or skewed subdomains. This is illustrated in Figure 4. In

particular, the small, disconnected red and light blue slivers are of

great concern as they will lead to inefficient messaging patterns

during program execution.

To mitigate this problem, we introduced ParMETIS-based mesh

rebalancing as part of our simulation workflow. To measure the

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

7

Figure 4: Domain decomposition of an airfoil from a recur-
sive bisection algorithm.

Figure 5: Median NNZ per rank with error bars defined by
the minimum and maximum NNZ for RCB and ParMETIS
domain decompositions for the lower resolution, single-
turbine mesh.

amount of balance in the repartitioned linear systems, we com-

pute the median number of nonzeros per GPU (MPI rank). Figure

5 shows the median nonzeros per GPU for the pressure-Poisson

system. The error bars are given by the minimum and maximum

number of nonzeros per GPU. A similar plot using the standard

deviation of the nonzeros per GPU would show a very tight spread

for ParMETIS, but not for RCB. Indeed, the use of ParMETIS reduces

the variation in the nonzeros per rank by approximately ten for

all node configurations. We surmise that this reduction in spread

leads to substantially more efficient communication patterns. Over-

all, we estimate, empirically, that the use of ParMETIS accounts

for the remaining 25% of the performance gain from our baseline

implementation. Furthermore, intelligent domain partitioning will

benefit any component or algorithm of the program that uses MPI

communication including CPU-based algorithms. The blue scaling

plot in Figure 3 is also based on a ParMETIS domain decomposition.

RCB decompositions shift the blue curve upward by a nontrivial

amount.

Figure 6: CPU pressure-Poisson equation time breakdown
for the low resolution NREL 5-MW turbine mesh (table 1).

The average nonlinear iteration time per time step (NLI) can be

further subdivided into the time spent solving each equation sys-

tem. Figures 6 and 7 show the pressure-Poisson timing breakdowns

for the CPU and GPU respectively. We omit the momentum and

turbulent scalar transport results as they comprise a much smaller

fraction of the NLI than pressure-Poisson. The average time per

time step for each equation is given by the peak of these bar charts.

They can be summed, when including the momentum and scalar

transport terms, to get the mean NLI reported in Figure 3. For each

per equation breakdown plot, we use the same y-scale in order

to easily compare different equations across different compute re-

sources (i.e., CPU or GPU). The purple sub-bar captures the graph

computation (sparsity pattern) and physics algorithms. The green

sub-bar captures the local assembly. This particular stage shows

a 4× speedup over the CPU implementation which is competitive

with the gains observed in [26]. The red, blue, and orange sub-

bars capture the global assembly, preconditioner setup, and solve

phase, respectively. The time spent in the preconditioner setup

and solve phase dominates the pressure-Poisson component on

the CPU, but the scaling is quite good. On the GPU, the scaling

degrades considerably. As the number of DoFs per GPU decreases,

the scalable performance of AMG degrades–this is unsurprising

due to the additional communication burden that using accelerators

imposes. Though not shown in here, the performance of the precon-

ditioner setup degrades considerably when the cuSPARSE imple-

mentation (cusparseDcsrgemm, v10.2) of sparse matrix-matrix mul-

tiply (SpGEMM) is used. Thus, we use hypre’s hash-based SpGEMM

implementation, which exhibits superior throughput. There was

an anomaly in the GPU performance at eight Summit nodes, the

cause of which is unknown.

The cross-over point between CPU and GPU performance, as

measured by average time per time step, occurs around 20 Summit

nodes (120 NVIDIA V100 GPUs) or roughly 200,000 mesh nodes

per GPU. For the pressure-Poisson in isolation, the cross-over point

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

8

Figure 7: GPU pressure-Poisson equation time breakdown
for the low resolution NREL 5-MW turbine mesh (table 1).

occurs around 14 Summit nodes (270,000 mesh nodes/GPU); how-

ever, the momentum and turbulent scalar-transport solves show

better performance for fewer mesh nodes per device. These latter

equations are solved with a GMRES iteration and a simple two-

stage Gauss-Seidel preconditioner, and thus they do not have the

additional communication burdens of AMG. Although not shown

here, a standalone pressure-Poisson solve shows better scaling per-

formance when using fewer than 12 V100s as expected. In this

regime, though, the entire application consumes too much device

memory and thus slows down considerably. With sufficient device

memory, we would expect the GPU-MPI implementation to outper-

form the MPI CPU-only implementation by even greater margins if

the number of mesh nodes per GPU could be increased. It would be

interesting to measure the performance on machines with NVIDIA

A100 GPUs, as these devices have 80GB of device memory and are

5x the size of the V100 devices on Summit.

5.2 Dual-Turbine and High-Resolution,
Single-Turbine Performance

The average nonlinear iteration time per time step for the dual-

turbine and refined single-turbine meshes are given in Figures 8

and 9. The dual-turbine mesh shows very similar performance to

the lower resolution single-turbine mesh. There may be a bit more

variation in the time per time step, as indicated by the larger error

bars in the GPU curves in Figure 8 versus Figure 3. For the refined

single-turbine mesh, the scaling behavior is consistent with the

smaller meshes although there is far greater fluctuation. These

simulations employ up to 4,320 GPUs (30,420 CPUs) (i.e., 1/6 of the

Summit resources–a nontrivial percentage of the entire machine).

To our knowledge, this is one of the first physics applications to

run challenging, unstructured-mesh AMG solvers at this scale on

GPU architectures.

We use ParMETIS domain decompositions for both the dual-

turbine and the highly resolved single-turbine simulation for CPU

Figure 8: Average nonlinear iteration time per time step for
the NREL 5-MW two turbine mesh (table 1).

Figure 9: Average nonlinear iteration time per time step for
the NREL 5-MW refined turbine mesh (table 1).

and GPU simulations. For the highly resolved case, a plot of the

median nnz per rank and the corresponding spread, as measured

through the minimum and maximum nnz, is shown in Figure 10.

This plot shows a very different pattern from 5. While the use of

ParMETIS reduces the maximum, it also reduces the minimum.

Thus, the overall spread seems largely unchanged compared to

RCB. This may account for some of the variation in the NLI timings

for the highly refined single-turbine case. Indeed, there is some

empirical evidence to suggest the ParMETIS approach breaks down

at large processor counts [43]. It is worth noting that both the CPU

and GPU performance for high resolution models show greater

variability than low resolution models. Moreover, the CPU shows a

significant drop in strong scaling performance compared to the low

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

9

Figure 10: Median NNZ per rank with error bars defined by
the minimum and maximum NNZ for RCB and ParMETIS
domain decompositions for the refined single-turbinemesh.

resolution model; -.79 slope versus -.98. One could conclude that the

performance dropmay be due to the specific nature of this particular

problem–highly unstructured, imbalanced, with poorly conditioned

linear solves. It is likely though that the MPI implementation plays

some role and perhaps an important one. In particular, the interplay

of GPU communication and MPI is worth considering at a deeper

level.

5.3 Hardware, Software, and Architecture
Dependence

We also performed strong scaling studies of the lower resolution,

single-turbine mesh on the Eagle. This machine has 2 V100 PCIe

GPUs per node and 36 x86 CPU cores. Eagle is significantly smaller

than Summit and thus we were only able to perform simulations of

the small, single-turbine case. The software versions of Nalu-Wind

and Hypre are identical. ParMETIS domain decompositions are

performed for each simulation. Aside from hardware differences,

each system has different MPI implementations and base compiler;

Spectrum MPI and GCC 7.4.0 versus HPE MPT and GCC 8.4.0.

Moreover, the actual GPUs themselves are somewhat different;

V100 SXM2 versus V100 PCIe. The PCIe GPU has a slightly reduced

peak double precision performance.

In Figure 11, we compare the strong scaling performance of

Summit versus Eagle [44]. The difference in strong scaling per-

formance between these 2 systems is stunning. Indeed, 72 GPUs

on Eagle is nearly 40% faster than 144 GPUs on Summit. While

the slope of Eagle is still not optimal, it is drastically improved

compared with Summit. Moreover, a detailed breakdown shows

that the gains are made almost exclusively in the pressure-Poisson

AMG setup and solve. Consider the largest simulations for each

system of 72 GPUs (Eagle) and 144 GPUs (Summit). The average

time per time step spent doing AMG setup is 1.3s versus 2.0s on

Summit. The solve phase shows equivalent gains: .8s versus 1.1s.

This is a 30%-40% gain with half the GPU resources! This suggests

Figure 11: Average nonlinear iteration time per time step for
the NREL 5-MW lower-resolution, single-turbine mesh (ta-
ble 1) for two machines: 1) System 1 is Summit which has
6 V100 GPUs per node with 42 Power 9 cores, and 2) Eagle,
which has 2 V100 GPUs per node with 36 x86 cores per node.

that the hardware-software configuration plays a critical role in the

strong scaling performance of an application using implicit solvers

on unstructured grids.

However, reaching optimal strong scaling remains a challenge

even for an x86-based machine. Considering the nature of row-

based decomposition for sparse matrices, it is inevitable that a

greater percentage of thematrix entrieswill move to the off-diagonal

block as one increases the number of compute resources (i.e. more

GPUs in the strong scaling limit). This incurs a greater messaging

overhead in the SpMV kernels and more computation that waits

on the completion of that messaging before it can execute. It may

be that applications whose linear systems have more entries per

row clustered around the main diagonal can effectively hide the

additional communication burden that strong scaling imposes. For

the Nalu-Wind case, we have on average eight entries per row,

which may not be enough to hide messaging costs in the strong

scaling limit, even on more optimal architectures such as Eagle.

6 DISCUSSION
In this paper, we have demonstrated the performance of the Nalu-

Wind CFD application on petascale-level computations for wind

turbine simulations. The simulations were designed to keep the

number of mesh nodes per GPU consistent across the three dif-

ferent strong-scaling studies, although it is difficult to be overly

precise here. Our objective with these studies was to approximate

the weak-scaling performance of our application for real turbine

meshes. Given that our largest mesh, with 640 million mesh nodes,

ran on 1/6 the total GPU resources on Summit, which has peak

double-precision computational throughput of 200 PetaFlops/sec,

we estimate that a mesh with approximately four billion nodes

would display similar strong scaling characteristics on the entire

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

10

Summit machine. Moreover, a mesh with 20-30 billion mesh nodes

would require exascale compute resources to handle properly.

Overall, the performance on GPU-accelerated architectures is en-

couraging, especially given the complexity of this particular physics

application. To our knowledge, this is first physics application to

run complex solvers such as AMG on unstructured-mesh problems

on somany GPU accelerators. However, it is worth emphasizing sev-

eral critical points about our implementation because other teams

with comparable physics applications may face similar challenges.

Though our baseline implementation had good performance,

ample evidence suggests that we were not operating in an optimal

manner. The most obvious indicator of this was the jump in per-

formance when reducing from four to three Summit nodes. Indeed,

implementations before the baseline showed a jump between four

and five Summit nodes. In each of these cases, the most common,

sub-optimal performance bottleneck was the overuse of device

DRAM and excessive data motion. In some cases, large device al-

locations occurred in between kernel launches. Although this is

inevitable to some extent, minimization of these is absolutely criti-

cal. With each identification of significant, inefficient memory use,

we gained not only the expected performance for fewer Summit

nodes (i.e., many mesh nodes per GPU), but we also observed an

overall downward shift in the strong scaling curve. Thus the overall

application moved closer to peak performance. This is not to say

that Nalu-Wind is operating at peak performance, but significant

strides have been made.

Many of the memory inefficiencies for our application, existed

within Nalu-Wind source code. Others exist or existed within the

hypre library. We made significant efforts to build a linear-system

assembly algorithm with the simplest possible structure in both

Nalu-Wind and hypre. Achieving this simplicity required detailed

knowledge of the hypre source code and data-flow patterns. We

concede that many other application teams may not have the re-

sources to justify such a deep dive into a complex code such as

hypre. When high performance is a top-level goal, this level of ef-

fort may be needed. Ultimately, our goal is to make our assembly

algorithm available in the main branch of hypre; however, we have
not yet found a way to write the implementation in such a way that

another application could easily take advantage of our algorithm.

When we introduced the ParMETIS-based domain decomposi-

tion, we were expecting to find strong-scaling slopes that were

closer to optimal. The reality is that although the baseline was

improved substantially (i.e., the overall curve shifted down), the

slope remained largely unchanged. This was true regardless of

the compute cluster used (i.e. Summit or Eagle). Figures 3 and 7

show that for 24 Summit nodes, the pressure-Poisson system con-

sumes 60%-70% of a time step. Thus the strong scaling of the entire

application is largely determined by the strong scaling of the AMG-

preconditioned GMRES solver for pressure-Poisson. As shown in

Figure 11, this is both highly hardware architecture andMPI-version

dependent. We hypothesize that the larger, refined mesh would per-

form substantially better if run on an appropriately sized machine

with the same hardware and software versions as are available on

Eagle. Given the drop in performance for the Summit architecture,

this suggests a greater collaboration is needed between application

scientists, the system engineers at super-computing facilities, and

the vendors who supply the critical libraries. AMG-based solvers

are critical tool for many applications and they require hardware

and software that can keep up with the data flow and computation

demands that these sparse algorithms impose.

ACKNOWLEDGMENTS
The National Renewable Energy Laboratory (NREL) is operated by

Alliance for Sustainable Energy, LLC, for the U.S. Department of

Energy (DOE) under Contract No. DE-AC36-08GO28308. Lawrence

Livermore National Laboratory operates under DOE Contract DE-

AC52-07NA27344 (LLNL-PROC-821116). Sandia National Labora-

tories is a multi-mission laboratory managed and operated by Na-

tional Technology & Engineering Solutions of Sandia, LLC, a wholly

owned subsidiary of Honeywell International Inc., for the DOE’s

National Nuclear Security Administration (NNSA) under contract

DE-NA0003525. This report followed the Sandia National Labora-

tories formal review and approval process (SAND2021-4327 C). As

such, the technical report is suitable for unlimited release. This

research was supported by the Exascale Computing Project (17-SC-

20-SC), a collaborative effort of the DOE Office of Science (SC) and

the NNSA, and was performed using computational resources of

the Oak Ridge Leadership Computing Facility, which is a DOE SC

User Facility supported under Contract DE-AC05-00OR22725, and

computational resources sponsored by the DOE’s Office of Energy

Efficiency and Renewable Energy and located at NREL. The views

expressed in the article do not necessarily represent the views of the

DOE or the U.S. Government. The U.S. Government retains and the

publisher, by accepting the article for publication, acknowledges

that the U.S. Government retains a nonexclusive, paid-up, irrev-

ocable, worldwide license to publish or reproduce the published

form of this work, or allow others to do so, for U.S. Government

purposes.

REFERENCES
[1] M.A. Sprague, S. Boldyrev, P. Fischer, R. Grout,W. Gustafson Jr., and R. Moser. Tur-

bulent flow simulation at the Exascale: Opportunities and challenges workshop.

Technical report, U.S. Department of Energy, Office of Science, Advanced Scien-

tific Computing Research, 2017. Published as Tech. Rep. NREL/TP-2C00-67648

by the National Renewable Energy Laboratory.

[2] F. Alexander et al. Exascale applications: skin in the game. Phil. Trans. R. Soc.A,
378, 2020.

[3] T. T. Tran and D. Kim. A CFD study into the influence of unsteady aerodynamic

interference on wind turbine surge motion. Renewable Energy, 90:204–228, 2016.
[4] P. Messina. The exascale computing project. Computing in Science Engineering,

19(3):63–67, 2017.

[5] M.A. Sprague, S. Ananthan, G. Vijayakumar, and M. Robinson. Exawind: A

multifidelity modeling and simulation environment for wind energy. Journal of
Physics: Conference Series, 1452, 2020. 012071, https://iopscience.iop.org/article/
10.1088/1742-6596/1452/1/012071/pdf.

[6] B. Roget and J. Sitaraman. Robust and efficient overset grid assembly for parti-

tioned unstructured meshes. Journal of Computational Physics, 260:1–24, 2014.
[7] M.J. Brazell, J. Sitaraman, and D.J. Mavriplis. An overset mesh approach for

3D mixed element high-order discretizations. Journal of Computational Physics,
322:33–51, 2016.

[8] W. Zhang and et al. AMReX: A Framework for Block-Structured Adaptive Mesh

Refinement. Journal of Open Source Software, 4(37):1370, 2019.
[9] R. D. Falgout and U. Meier-Yang. hypre: A library of high performance precon-

ditioners. In International Conference on computational science, pages 632–641,
2002.

[10] J. W. Ruge and K. Stüben. Algebraic multigrid. In Multigrid methods, pages
73–130. SIAM, 1987.

[11] Y. Saad and M. Schultz. GMRES: A generalized minimal residual algorithm for

solving nonsymmetric linear systems. SIAM J. Sci. Comput., 7:856–869, 1986.
[12] Oak Ridge National Laboratory. ORNL Summit user guide. https://docs.olcf.ornl.

gov/systems/summit_user_guide.html.

[13] Andrew C. Kirby and Dimitri J. Mavriplis. Gpu-accelerated discontinuous

galerkin methods: 30x speedup on 345 billion unknowns. In 2020 IEEE High

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

11

https://iopscience.iop.org/article/10.1088/1742-6596/1452/1/012071/pdf
https://iopscience.iop.org/article/10.1088/1742-6596/1452/1/012071/pdf
https://docs.olcf.ornl.gov/systems/summit_user_guide.html
https://docs.olcf.ornl.gov/systems/summit_user_guide.html

Performance Extreme Computing Conference (HPEC), pages 1–7, 2020.
[14] Thilina Rathnayake, Sanath Jayasena, and Mahinsasa Narayana. Openfoam

on gpus using amgx. In Proceedings of the 25th High Performance Computing
Symposium, HPC ’17, San Diego, CA, USA, 2017. Society for Computer Simulation

International.

[15] M. Naumov, M. Arsaev, Patrice Castonguay, J. Cohen, J. Demouth, Joe Eaton,

S. Layton, N. Markovskiy, I.Z. Reguly, N. Sakharnykh, V. Sellappan, and R. Str-

zodka. Amgx: A library for gpu accelerated algebraic multigrid and precondi-

tioned iterative methods. SIAM Journal on Scientific Computing, 37:S602–S626,
01 2015.

[16] Michelsen J.A. Basis3d - a platform for development of multiblock pde solvers.

Technical Report AFM 92-05, Technical University of Denmark, 1992.

[17] Michelsen J.A. Block structured multigrid solution of 2d and 3d elliptic pdes.

Technical Report AFM 94-06, Technical University of Denmark, 1994.

[18] Paul Van der Laan. Ellipsys3d large eddy simulation data of single wind turbine

wakes in neutral atmospheric conditions. Technical report, Technical University

of Denmark, 2019.

[19] C. Grinderslev, G. Vijayakumar, S. Ananthan, N. Sørensen, F. Zahle, and

M. Sprague. Validation of blade-resolved computational fluid dynamics for

a mw-scale turbine rotor in atmospheric flow. Journal of Physics: Conference
Series, 1618:052049, 09 2020.

[20] A. Sharma, S. Ananthan, J. Sitaraman, S. J. Thomas, and M. A. Sprague. Over-

set meshes for incompressible flows: On preserving accuracy of underlying

discretizations. Journal of Computational Physics, 428:109987, 2021.
[21] H. Carter Edwards, A.B. Williams, G.D. Sjaardema, D.G. Baur, and W.K.

Cochran. Sierra toolkit computational mesh conceptual model. Technical Report

SAND2010-1192, Sandia National Laboratories, 2010.

[22] M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. J Hu, T. Kolda, R. Lehoucq,

K. Long, R. Pawlowski, E. Phipps, et al. An overview of the trilinos project. ACM
Trans. Math. Soft. (TOMS), 31:397–423, 2005.

[23] G. Karypis, K. Schloegel, and V. Kumar. Parmetis: Parallel graph partitioning and

sparse matrix ordering library. 01 1997.

[24] The Zoltan2 Project Team. The Zoltan2 Project Website.

[25] H. Carter Edwards, C. R. Trott, and D. Sunderland. Kokkos: Enabling manycore

performance portability through polymorphic memory access patterns. Journal
of Parallel and Distributed Computing, 74(12):3202 – 3216, 2014. Domain-Specific

Languages and High-Level Frameworks for High-Performance Computing.

[26] Rhaleb Zayer, Markus Steinberger, and Hans-Peter Seidel. Sparse matrix assembly

on the gpu through multiplication patterns. In 2017 IEEE High Performance
Extreme Computing Conference (HPEC), pages 1–8, 2017.

[27] W. Kahan. Pracniques: Further remarks on reducing truncation errors. Commun.
ACM, 8(1):40, January 1965.

[28] R. D. Falgout, R. Li, B. Sjogreen, and U. Meier-Yang. Porting hypre to heteroge-

neous computer architectures: Strategies and experiences. submitted to Parallel
Computing, 2020.

[29] S.J. Thomas, S. Ananthan, S. Yellapantula, J. J. Hu, M. Lawson, and M. A. Sprague.

A comparison of classical and aggregation-based algebraic multigrid precondi-

tioners for high-fidelity simulation of wind-turbine incompressible flows. SIAM
J. Sci. Comput., 41:S196–S219, 2019.

[30] A. Brandt, S. McCormick, and J. W. Ruge. Algebraic multigrid (AMG) for sparse

matrix equations. In Evans, editor, Sparsity and Its Applications. Cambridge

University Press, Cambridge, 1984.

[31] K. Stüben. Algebraic multigrid (AMG): an introduction with applications. In

Ulrich Trottenberg and Anton Schuller, editors, Multigrid. Academic Press, Inc.,

USA, 2000.

[32] A. H. Baker, R. D. Falgout, T. V. Kolev, and U.Meier-Yang. Scaling Hypre’s Multigrid
Solvers to 100,000 Cores, pages 261–279. Springer London, London, 2012.

[33] H. De Sterck, U. Meier-Yang, and J. J. Heys. Reducing complexity in parallel

algebraic multigrid preconditioners. SIAM Journal on Matrix Analysis and Appli-
cations, 27(4):1019–1039, 2006.

[34] M Luby. A simple parallel algorithm for the maximal independent set problem.

SIAM Journal on Computing, 15:1036–1053, 1986.
[35] T. Manteuffel, S. McCormick, M. Park, and J. Ruge. Operator-based interpolation

for bootstrap algebraic multigrid. Numerical Linear Algebra with Applications,
17(2-3):519–537, 2010.

[36] H. De Sterck, R. D. Falgout, J. W. Nolting, and U. Meier-Yang. Distance-two

interpolation for parallel algebraic multigrid. Numerical Linear Algebra with
Applications, 15(2-3):115–139, 2008.

[37] R. Li, B. Sjogreen, and U. Meier-Yang. A new class of AMG interpolation operators

based on matrix matrix multiplications. To appear SIAM Journal on Scientific
Computing, 2020.

[38] U. Meier-Yang. On long-range interpolation operators for aggressive coarsening.

Numerical Linear Algebra with Applications, 17(2-3):453–472, 2010.
[39] K. Świrydowicz, J. Langou, S. Ananthan, U. Meier-Yang, and S.J. Thomas. Low

synchronization Gram-Schmidt and GMRES algorithms. Num. Linear Alg. Appl.,
28:1–20, 2020.

[40] S. Thomas, I. Yamazaki, L. Berger-Vergiat, J. Hu, B. Kelly, , P. Mullowney, S. Raja-

manickam, and K. Świrydowicz. Two-stage Gauss–Seidel preconditioners and

smoothers for Krylov solvers on a GPU cluster. SIAM J. Sci Comput., 2021.
[41] A. H. Baker, R. D. Falgout, T. V. Kolev, and U. Meier-Yang. Multigrid smoothers

for ultraparallel computing. SIAM J. Sci. Comput., 33:2864–2887, 2011.
[42] J. Jonkman, S. Butterfield, W. Musial, and G. Scott. Definition of a 5-MW reference

wind turbine for offshore system development. Technical Report NREL/TP-500-

38060, National Renewable Energy Laboratory, 2009.

[43] F. Kong, R. Stogner, D. Gaston, J. Peterson, C. Permann, A. Slaughter, and R. Mar-

tineau. A general-purpose hierarchical mesh partitioning method with node

balancing strategies for large-scale numerical simulations. In 2018 IEEE/ACM
9th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems,
pages 65–72, 11 2018.

[44] National Renewable Energy Laboratory. Eagle computing system. https://www.

nrel.gov/hpc/eagle-system.html.

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

12

https://www.nrel.gov/hpc/eagle-system.html
https://www.nrel.gov/hpc/eagle-system.html

	Abstract
	1 Introduction
	2 ExaWind Meshing Strategy
	3 Nalu-Wind/hypre Linear System Assembly
	3.1 Nalu-Wind Graph Computation
	3.2 Nalu-Wind Local Assembly
	3.3 hypre Global Assembly

	4 hypre AMG solver
	4.1 AMG Setup
	4.2 Two-Stage Gauss Seidel Smoother

	5 Simulation Results
	5.1 Low-Resolution, Single-Turbine Performance
	5.2 Dual-Turbine and High-Resolution, Single-Turbine Performance
	5.3 Hardware, Software, and Architecture Dependence

	6 Discussion
	Acknowledgments
	References

