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Emergency Voltage Regulation in Power Systems via Ripple-Type
Control

Guido Cavraro, Manish K. Singh, and Andrey Bernstein

Abstract— With increasing penetrations of volatile renewable
generation and cyber-physical disruptions, ensuring the safe
operation of bulk power systems has become unprecedentedly
challenging. Because communication and computational costs
restrict centralized system dispatch to being called upon every
few minutes, and because purely local schemes are shown
to be insufficient, distributed controls have been advocated
for handling unanticipated system conditions in real time.
The applicability of distributed control schemes, however, is
fundamentally limited by their need for widespread commu-
nication and model cognizance. In this context, we put forth
a hybrid, low-communication, saturation-driven protocol for
the coordination of control agents that are distributed over a
physical system and are allowed to communicate with peers
over a ”hotline” communication network. Under this protocol,
when agents observe a constraint violation based on local
measurements, they respond locally until their control resources
saturate, in which case they send a beacon for assistance to
peer agents. The scheme ensures that minor violations are
efficiently mitigated via fast local controls, whereas severe
violations can be handled by collaboration among a relatively
small set of agents. We evaluate the performance of this scheme
via numerical tests on the IEEE 14-bus test feeder, where agents
act upon noisy measurements under diverse scenarios of load
variations and severe low-/high-voltage events.

I. INTRODUCTION

Power transmission networks were traditionally operated
by centralized dispatchers, mainly by using bulk generation
units to satisfy fairly predictable demands; however, network
management is becoming formidably challenging due to
rapid developments in policy and technology. For instance,
the global push toward deregulation and data privacy calls for
distributed privacy-preserving system operation. Moreover,
increasing penetrations of distributed energy resources and
flexible loads result in increased system volatility. Amidst
these challenges, increasing occurrences of natural disasters
and other critical cyber and physical disruptions undermine
the stable and efficient operation of power systems. Bulk
power systems are managed by system operators who aim
to satisfy consumer demands in a cost-effective manner while
meeting the related operational and physical constraints.
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Such tasks constitute the family of optimal dispatch problems
(ODP). Consider a networked system modeled by an undi-
rected graph G = (N , E). The node set N with cardinality
N hosts controllable agents, and vector u ∈ RN represents
their control inputs. Often it is desired to regulate certain
nodal variables within a desired range; thus, consider a
subset of agents Y ⊂ N of cardinality M that take local
observations, which are stacked in vector y ∈ RM . The
entries of y, henceforth referred to as outputs, are to be
regulated within a desired range. We assume that given an
input u, the system has a locally unique output y, determined
by a mapping F : RN → RM . Heed that the mapping F might
not necessarily have an explicit form and might be time
varying. Network operators manage the respective systems
by periodically computing the control set points that agents
should implement. Usually, the control set points for time t
are the solution of an ODP of the form:

u∗ ∈ arg min
u

c(u,y) (P1)

s.to y = F(u) (1a)
h(u,y) ≤ 0, (1b)
u ≤ u ≤ u (1c)
y ≤ y ≤ y (1d)

where c(u,y) is a function that could depend on the inputs
and outputs of the system; the mapping in (1a) corresponds to
the physical laws governing the network operation, whereas
inequality constraints can be divided into two categories:

1) The constraint in (1b) incorporates requirements that
might be important for efficient system operation but can
in principle be safely violated (particularly for a brief time
interval). We refer to these as soft constraints.

2) Constraints (1c) and (1d) impose limitations on input
and output variables, respectively. The constraints on inputs
are imposed by physical limitations, such as equipment rated
capacity. The limits on output are often imposed by the
operational, regulatory, or security requirements that must
be satisfied at all times; therefore, these are referred to as
hard constraints.

Typically, a network operator would solve ODPs at regular
intervals based on anticipated demands and network con-
ditions. Although ODP solutions might be able to ensure
reliable system operation during normal conditions, their
efficacy is limited during occurrences of unanticipated ex-
treme disruptions that might undermine system operation;
thus, to enhance resilience to these events, emergency control
schemes are required that can operate in real time toward
preventing system collapse.

This paper focuses on the design of emergency control
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mechanisms that can ensure the satisfaction of system op-
erational requirements during the time interval between two
ODP actions. We refer to the proposed strategy as ripple-type
control. It draws features from local, distributed, and event-
triggered control. In local control rules, agents take decisions
based on locally available measurements. For example, in [1],
[2], power generators control their reactive power output
given their local power injection and voltage; however,
local schemes have limited efficacy [3]. To overcome such
limitations while avoiding computationally expensive cen-
tralized interventions, distributed control strategies have been
widely proposed. In such schemes, agents compute their
control action after sharing information with neighbors on
a communication network [4]. For instance, reference [5]
proposes a primal-dual feedback approach in which every
constraint violation results in the corresponding Lagrange
multipliers being nonzero. Given that the inverter power
outputs depend on all the Lagrange multipliers, in an event
of a constraint violation, it’s possible that all the agents in
the network participate in corrective actions. Further, such
schemes require widespread, frequent communication to up-
date the values of the Lagrange multipliers. To avoid wasting
resources and to communicate only when it is needed, event-
triggered control techniques have been advocated in [6], [7].
Every agent locally evaluates a triggering function, e.g., in
a consensus setup, the mismatch between the current state
and the state that was last sent to neighbors [8]. When
the triggering function takes some specified values, agents
communicate and update their control rule.

Contrary to the previous approaches, in the proposed
ripple-type control, agents first try to satisfy their local
constraints via purely local control. Only when the local
control efforts are saturated to their limits, assistance is
sought from neighboring agents on a communication graph.
The process is continued until all agents satisfy their lo-
cal constraints. The proposed algorithm does not require
knowledge of the system model parameters, and hence it is
particularly suitable for real-time emergency control settings,
wherein accurate model information is not readily available.
In this paper, we extend the algorithm originally proposed
in [9]. Further, we provide more extensive numerical tests
investigating the performance of the proposed controller
acting upon noisy measurements under diverse scenarios of
random load variations and severe low-/high-voltage events.

Notation: Lower- (upper-) case boldface letters denote col-
umn vectors (matrices). Sets are represented by calligraphic
symbols. Symbol > stands for transposition. All-zero and
all-one vectors are represented by 0 and 1; the respective
dimensions are deducible from context. The dg(·) operator
places a vector on the principal diagonal of a matrix.

II. SYSTEM MODELING

A power system is modeled by an undirected graph G =
(N , E). Nodes in the set N , of cardinality N , are associated
with electrical buses. For each bus n, denote its:
• Voltage magnitude and angle as (vn, θn);
• The active and reactive power injection as (pn, qn);

and collect the aforementioned quantities in the vectors
v,θ,p,q ∈ RN . A positive active (reactive) power means

that active (reactive) power is produced, whereas a negative
active (reactive) power means that active (reactive) power is
absorbed. In a power network, usually a node is modeled as:
• A PQ bus whose active and reactive power injections

are fixed at a known set point;
• A PV bus that controls its active power injection and

voltage magnitude to a given set point;
• A slack bus able to set its voltage magnitude and angle.

For each of these bus types, having fixed two variables from
(vn, θn, pn, qn), the remaining are determined by the
power flow equations. Loads are classically described as PQ
buses absorbing a fixed amount of active and reactive power,
generators as PV buses, and finally the biggest generator as
the slack bus. The goal of the slack bus is to provide for any
power deficit in the overall network at all times.

Edges in E are associated with power lines. Transmission
lines are often approximated as lossless because their resis-
tance is much smaller than their reactance; thus, ignoring
line resistance, denote the admittance for line ` = (m,n) by
−jbmn, with bmn > 0. The full AC power flow equations
describe the relation between the nodal voltages and power
injections; however, appending the lossless approximation
with an assumption of small voltage angle differences across
neighboring buses decouples the power flow equations into
separate p− θ and q− v systems. Therefore, voltage mag-
nitudes can be approximated as a function of only reactive
power injections. Because our goal is to develop an algorithm
for voltage control, we focus on the q− v model [10]:

q = dg(v)Bv. (2)

where matrix B ∈ RN×N is a Laplacian matrix with line
susceptances as weights. Specifically, it is defined as:

[B]mn =

{
−bmn, n 6= m∑

k 6=n bkn, n = m.

Partition the node set N into generator buses (both PV
buses and the slack bus) and load buses as N = NG ⊕NL,
where the cardinality ofNG andNL is G and L, respectively.
Accordingly, partition vectors (v q) and matrix B as:

v =

[
vG

vL

]
,q =

[
qG

qL

]
,B =

[
BGG BGL

BLG BLL

]
with vG,qG ∈ RG, vL,qL ∈ RL, BGG ∈ RG×G, BLL ∈
RL×L, BGL = B>LG ∈ RG×L. Equation (2) becomes:[

qG

qL

]
=

[
dg(vG) 0

0 dg(vL)

] [
BGG BGL

BLG BLL

] [
vG

vL

]
. (3)

Assume that the agents at all nodes measure the respective
bus voltage magnitude. Because the voltages at generator
buses are directly controled, our goal is to maintain the load
voltages vL within the stipulated limits; thus, the output y
for the voltage regulation application comprises load voltage
measurements. To regulate the load voltages, we suppose
control flexibility at all buses. Specifically, generators are
able to directly control their output voltage, whereas loads
could partially control their reactive injections by exploiting
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inverters, capacitor banks, and flexible AC transmission sys-
tems; thus, depending on the bus type, the control variables
for bus n are defined as:

un :=

{
qn , n ∈ NL

vn , n ∈ NG

and are collected in the control vector u ∈ RN . Given
the control input (qL, vG), output vL is determined from
the second block equation of (3) as an implicit relation.
Generally, load voltages do not admit an explicit expression
of the form vL(u) : RN → RL. Nevertheless, in later
developing our voltage control algorithm, we will rely on
the following monotonicity assumption

Assumption 1. The load voltages are nondecreasing in the
control inputs, that is:

∂vn
∂um

≥ 0, n ∈ NL, m ∈ N

Assumption 1 essentially implies that the load voltages
may be increased (decreased) by increasing (decreasing) the
control inputs. Although such a monotonic assumption might
seem simplistic at the outset, the next result provides a
sufficient condition for Assumption 1 to hold.

Proposition 1. Assumption 1 is satisfied if dg(gL)+BLL �
0 where gL := [dg(vL)]

−2
qL.

Proof. Adopting the implicit differentiation approach, apply
the differential operator on the second block of (3):

∂qL = (dg(iL) + dg(vL)BLL) ∂vL + dg(vL)BLG ∂vG

(4)
where iL := BLGvG + BLLvL. Because (qL,vG) are
independent, it holds ∇qL

vG = 0 so that (4) yields:

∇qL
vL = (dg(iL) + dg(vL)BLL)

−1
. (5)

And because ∇vG
qL = 0, equation (4) also provides:

∇vG
vL = − (dg(iL) + dg(vL)BLL)

−1
dg(vL)BLG. (6)

For the Jacobian matrices ∇qL
vL and ∇vG

vL to have
nonnegative entries, it suffices to show that the inverse of
G := dg(iL) + dg(vL)BLL has nonnegative entries. This is
because vL > 0 and BLG ≤ 0.

To establish G−1 ≥ 0, note that the off-diagonal entries
of G are nonpositive; hence, proving G � 0 would make G
an M-matrix so that G−1 ≤ 0. The assumption dg(gL) +
BLL � 0 stated in this proposition ensures G � 0, as
we show next. From (4), it follows that qL = dg(vL)iL.
Substituting iL = dg(vL)−1qL in the stated condition
yields:

dg(iL) dg(vL)−1 + BLL � 0 =⇒
dg(iL) + dg(vL)1/2BLL dg(vL)1/2 � 0 =⇒
dg(iL) + dg(vL)BLL = G � 0

where the first transition follows from Sylvester’s law of
inertia for congruent matrices, and the second follows from
the similarity transformation involved.

Proposition 1 shows that Assumption 1 holds for the grid
model in (2) under the identified conditions. Numerically
verifying dg(gL) + BLL � 0 for real-world systems led us
to an interesting observation, described next. For the IEEE 5-
, 39-, and 118-bus systems, we scaled up the nominal qL by
a scalar until the power flow solver MATPOWER [11] failed
to converge. At every step, we also observed the minimum
eigenvalue of dg(gL) + BLL. Interestingly, the minimum
eigenvalue kept decreasing for increasing qL but remained
positive until the last successful power flow instance for all
networks. This indicates a relation between dg(gL)+BLL �
0 and the solvability of the AC power flow equations, but its
analytical investigation goes beyond the scope of this work.

III. RIPPLE-TYPE NETWORK CONTROL

Transmission system operators’ rendition of (P1) is often
referred to as an optimal power flow (OPF) problem. A
typical OPF formulation can be mapped to (P1) as follows:
• The function to be minimized c(u,y) usually models

the power generation cost or the power losses [12];
• Constraint (1a) represents the power flow equations;
• The inequality (1b) models soft constraints, which are

relatively less time-sensitive, for instance, line flow
limits;

• Constraint (1c) models limits on generator output volt-
ages and available load power flexibility;

• Inequality (1d) models load voltage constraints that
could lead to instability if violated. These limits are
typically modeled via box constraints as:

vmin ≤ vL ≤ vmax. (7)

After solving (P1), given the mapping F, the system
operator dispatches the optimal control set points u∗ to
agents. Ideally, this process shall be repeated every time there
is a change in the system model that modifies the underlying
definition of F, such as a load variation or a network topology
change. Constrained by communication and computational
resources, however, problem (P1) is solved only at finite time
intervals. As a consequence, the set points u∗ might become
obsolete or even result in network constraint violations.

Such limitations motivate the design of mechanisms to at
least ensure that critical operational requirements are met
between two centralized dispatch actions, i.e., to make the
control vector u belong to the security-focusing feasible set:

F = {u : u ≤ u ≤ ū, vL = F′(u),vmin ≤ vL ≤ vmax}

in which F′ is the input-output mapping defined after a
change in the system model. Set F considers only the hard
constraints of (P1), namely, (1c) and (1d). The algorithm pro-
posed next is designed to possess the ensuing key features:
F1) Prioritize local control: Agent n ∈ Y controls un

locally based on a measurement of yn. If the hard
constraints (7) are violated, local control resources are
used first.

F2) Communicate when saturated: Agent n transmits bea-
con signals to a few peer agents over a “hotline”
communication network only if un ∈ {un, ūn}, i.e.,
only when local control resources reach their limits; and
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F3) Model-free: The control scheme is unaware of the
model parameters, i.e., it is a model-free approach not
requiring explicit knowledge of operator F′.

The communication network is modeled as an undirected
graph Gc = (N , Ec). The topology of Gc is agnostic and
unrelated of the power network graph G; thus, the com-
munication links Ec do not necessarily coincide with the
transmission lines. As a consequence, the communication
graph Gc remains unchanged during topology reconfigura-
tions in the power network. Graph Gc is henceforth assumed
to be connected, and denote its adjacency matrix as A, where
Amn = 1 if there is a direct communication link between
nodes m and n, i.e., (m,n) ∈ Ec; and Amn = 0 otherwise.

Next, let function f : RN → RN
+ denote a piecewise linear

function quantifying the violation of constraint (1d) (or (7)).
Specifically, function f(·) is defined entry-wise as:

fn(u) :=


y
n
− yn(u), yn(u) ≤ y

n
, n ∈ Y

yn − yn(u), yn(u) ≥ yn, n ∈ Y
0, yn(u) ∈ [y

n
, yn], n ∈ Y

0, n /∈ Y.

(8)

Note that fn zero when (1d) holds true, whereas it is positive
(negative) if the lower (upper) constraint is violated. Further,
it is zero-padded for buses not in Y . Our control algorithm
is reported next.

Ripple-Type Control for Voltage Regulation
Let u(0) be the initial control variables. Introduce the
auxiliary variable λ ∈ RN , and initialize it as λ(0) = 0.
For times t ≥ 1:

1- Agents compute f(u(t)) according to (8).
2- A target set point is computed as:

û(t+ 1) = u(t) + dg(η1)f(u(t)) + dg(η2)Aλ(t) (9)

for positive η1 and η2. Note that for node n, the target ûn(t)
is computed using the local reading yn(t) and the entries of
λ sent from its peers (neighbor nodes of node n on Gc).

3- Agents compute the entries of the auxiliary vector λ
as:

λn(t+ 1) =

 η3,n(ûn(t+ 1)− ūn), ûn(t+ 1) ≥ un
η3,n(ûn(t+ 1)− un), ûn(t+ 1) ≤ un
0, otherwise

,

(10)
for a positive constant η3. Vector λ serves as a beacon

for assistance that is communicated across peer nodes.
4- The target set point is projected to the feasible range

and physically implemented.

un(t+ 1) =

 un, ûn ≥ un
un, ûn ≤ un
ûn un ≤ un ≤ un

(11)

The rationale behind the algorithm is the following. Sup-
pose that load n is experiencing an overvoltage. Then, it
starts decreasing its reactive power injection using its local
flexibility. Because of the monotonicity of Assumption 1,
this has the effect of decreasing vn. At this point, there are
two cases. First, load n is able to steer vn within the desired
limits in (7), and the corrective control actions end. Second,

Fig. 1. The IEEE 14-bus test system. Red edges (both solid and
dashed) represent communication links among buses. Dashed red edges
are communication links that are broken after the major disruption at time
t = 24 min.

load n is not able to fix its voltage level because it depletes its
control resources; therefore, λn becomes negative and is sent
to the neighbors on the communication graph, which start
decreasing their reactive power output, too. The process is
repeated until (7) is met. Similar considerations can be done
in the case in which load n is experiencing an undervoltage.
The participation of various agents toward alleviating a
voltage violation event propagates over neighboring nodes
in a ripple-type manner, hence inspiring the name.

The novel control scheme satisfies feature F1) by design.
Moreover, for a node n with target set points ûn(t+1) within
the local control limit ūn, the corresponding entry of λ(t+1)
is zero; thus the computation of ûm from (9) for nodes m that
are neighbors of n requires no communication from node n,
hence fulfilling F2). The scheme also meets F3) because it
is agnostic to changes in topology and/or demands.

IV. NUMERICAL TESTS

The ripple-type control scheme was tested on the IEEE
14-bus test feeder shown in Fig. 1. The red edges show
the undirected communication graph over which the agents
communicate. The generator at Bus 1 serves as the system
slack bus with voltage set to 1 p.u. Each sensor introduces
noise en(t) that, for every time t, belongs to a Gaussian
zero mean distribution with standard deviation of 10−2 [13];
namely, load n measures yn(t) = vn(t) + en(t). The
parameters for the developed scheme were numerically set
to η2 = 0.5 · 1,η3 = 1, whereas:

[η1]n =

{
0.01, n is a generator
1, n is a load

The maximum and minimum voltages are set to Vmax =
1.05 p.u. and Vmin = 0.95 p.u., and vmin = Vmin1,vmax =
Vmax1. The reactive power flexibility at the load buses is set
to ±2 MW with reference to their nominal values.

To comprehensively test and demonstrate the performance
of the proposed control scheme under varying scenarios
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Fig. 2. At time t = 5 min, a fault at Bus 10 makes it abnormally increase
its reactive power injections; hence, some voltages exceed Vmax

Fig. 3. Trajectories of the load bus-controled reactive power outputs.
Load buses 9, 10, and 11 perform the ripple-type control. Bus 10 and
Bus 11 saturate their reactive power output near time t = 8 and t = 13,
respectively.

of load variations and severe low-/high-voltage events, we
performed a second-based simulation lasting for 30 min.
Considering a typical centralized OPF dispatch interval of
15 min, our test witnesses three centralized dispatches of the
form (P1) at t = 0, 15, and 30 min. During the overall 30-
min duration, load variations, local measurements, and ripple
control actions are assumed to be updated every second. The
(re)active load variations are modeled as:

pn(t+ 1) = pn(t) + δpn(t)

qn(t+ 1) = qn(t) + δqn(t)

with δpn(t), δqn(t) drawn from a zero-mean Gaussian dis-
tribution with a standard deviation of 0.68p̄n and 0.68q̄n,
respectively, where p̄n and q̄n are the nominal active and
reactive power consumptions [14]. Next, we simulated two
extreme events causing extreme high and low voltages,
respectively.

At time t = 0, the optimal generator set points are
computed and dispatched by the system operator. There-
after, random load fluctuations translate to variations in load
voltages; see Fig. 2. Despite small fluctuations, the voltages
remain within the desired limits for the first 5 min. At t = 5
min, an abrupt increase in reactive power injection at Bus
10 is simulated. Such an event could be caused by a sudden
capacitive load pickup or a faulty switching-in of a large
capacitor bank. The simulated event results in an increased
voltage causing overvoltages at buses 9, 10, and 11. Based

Fig. 4. The black lines cover the times when agents are performing the
ripple-type control. Here, buses 9, 10, and 11 start changing their power
injections at time t = 5 min, whereas Bus 6 intervenes near time t = 13.

Fig. 5. Generator voltage magnitudes trajectories. Only the generator at
Bus 6 participates in the ripple-type control.

on the local noisy measurements, the agents at buses 9, 10,
and 11 start reducing their reactive power demands based
on the ripple-type control; see Fig. 3. The involvement of
various nodal agents in the ripple-type control is shown in
Fig. 4. Initially, the agents at buses 9, 10, and 11 use their
local flexibility and decrease their reactive demand. Fig. 3
shows that Bus 10 depletes its control resources near time
t = 8 min. After that, it sends a beacon for assistance to its
neighbors on the communication graph, namely, buses 9 and
11. Because they are already taking corrective actions, the
number of active agents in Fig. 4 does not change; however,
near time t = 13 min, Bus 11 depletes its control resources,
too, and seeks help from its neighbors. Fig. 5 shows that
near t = 13 min, Generator 6 starts to reduce its output
voltage and subsequently reduces the load voltages to within
the desired limits. Notably, only a few buses had to change
their control inputs to successfully respond to the overvoltage
event.

The second centralized OPF dispatch occurs at t = 15
min, accommodating all intra-dispatch load variations, and
resetting the flexible deviations in load reactive power to
zero; see Fig. 6. An extreme disruption is simulated at
t = 24 min, causing a complete outage of generator Bus 6
and all the transmission and communication lines connected
to it. As an immediate consequence, buses 11 − 14 experi-
ence severe undervoltage conditions, potentially making the
system vulnerable to voltage collapse. Thus, buses 11 − 14
initially respond via local resources; see Fig. 6. Thereafter,
other agents start collaborating via corrective actions for
increasing the load voltages, subsequently succeeding near
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Fig. 6. Trajectories of the load bus-controled reactive power outputs.

Fig. 7. The black lines cover the times when agents are performing the
ripple-type control. First, buses 11, 12, 13, and 14 start changing their power
injections at time t = 24 min. After that, sequentially, all the other buses
take corrective actions, too.

t = 29 min; see Figs. 7, 8, and 9.

V. CONCLUSIONS

An emergency voltage control algorithm has been pro-
posed. Generators and controllable loads act based on local
control rules as long as local resources have not been
depleted. When this happens, agents solicit help from neigh-
bors in a communication network. The participation of
various agents toward alleviating a voltage violation event
propagates over neighboring nodes in a ripple-type manner.
Elaborate numerical tests demonstrate that minor violations
are efficiently tackled via fast local controls, whereas severe
violations can be handled by collaboration among a relatively
small set of agents; thus, the proposed algorithm is shown
to elegantly combine the advantages of local and distributed
controls, simultaneously foregoing the need for model cog-
nizance. Future research will be focused on formally proving
the stability of the control scheme and optimally deigning the
communication graph.
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