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U.S. market deployed 288 MWh in Q2 2020

Shorter-duration systems resulted in a MWh total that is still the fifth-highest on record

400
« At 288 MWh, Q2 deployments grew 38% compared to Q1, indicating
350 that installations have remained resilient through the lockdown period.
« The front-of-the-meter market, driven this quarter by a single short-
300 duration system, made up only one-third of the market in MWh terms,
compared to more than half the market in MW terms
g 250 » Q2 2020 was the strongest Q2 on record; other strong quarters have
é generally been Q1 or Q2. This could indicate that deployments
o continue to scale up outside of traditionally busy seasons.
é 200 = The non-residential segment contracted slightly in Q2, buoyed by
3 deployments in California.
‘?.3- 150 « The residential market secured another record quarter in Q2.
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m Residential = Non-Residential = Front-of-the-Meter

Source: WoodMac U.S. Energy Storage Monitor. https://www.woodmac.com/research/products/power-and-renewables/us-energy-storage-monitor/
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Why use Behind-the-Meter Batteries?

* Control objectives: EARARHEY S PR QWD )
— Energy arbitrage Ve |
— Demand charge reduction el 4
— Resilience
— Reduced degradation

* Considerations:
— Battery power and losses
— Battery temperature
— Building load e Ostaughnessy et

https://www.sciencedirect.com/science/article/pii/S0306261918310766

X. Lin et al. http://dx.doi.org/10.1016/j.jpowsour.2014.01.097 NREL | 3



Current Battery Controls

e Control methods:
— Time-based schedule
— Load following
— Model predictive control (MPC)

e Current methods do not consider
uncertainty in:

— Building load
— Battery temperature
— Energy prices

Sources:
https://www.nrel.gov/docs/fy180sti/68614.pdf
https://www.researchgate.net/figure/lllustration-of-model-predictive-control_figl 242397596
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Proposed Control
Framework




Proposed Model and Controller

* Stochastic Model Predictive Control (SMPC) for
behind-the-meter stationary batteries

— Gaussian distribution of inputs and states T = i Feng — —— Fais
— Kalman Filter for state estimation

dTb 1 ( ) 1 - Ty Ta — Tb)
_ _ —= = — (1 — np) Peng + —— Pais
* Stochastic model includes: dt Cn v ’ B
— Battery SOC
— Battery temperature t=Ax+ Bau+ Gz
— Uncertainty in building load and ambient
temperature [SOO] {Pchg] { T, ]
: S P e PN R b &
— Measurement noise b dis load
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SMPC Formulation

. . . Tk
* Objective includes: T=Y" cousTs P
— Time-varying rate k=1
0Ol P a load '!0
— *Demand charge +C"eakkélfla\ (P = Pt G0 i )
— Degradation costs +3PZ P2, + P2 )

— Benefit of remaining SOC
+.BT Z max (Tb,k — Thigh: 0)2

e Constraints include: +Cm:1%me
— Non-negativity constraints
— SOC bounds up >0
— *Max temperature bound SOChin < SOCk < SOCrmax

Ty p < Thax — CTOT, 1
T = ATp_1 + Bugp_1 + GZr_1
Vk e [1 -nk]

— State equation

* includes back-off magnitude
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Results




e Tested control algorithms:

MPC, perfect forecast

MPC, baseline forecast

SMPC, baseline forecast

SMPC, with high risk

SMPC, with AR Model

SMPC, with high risk + AR Model

* Scenario parameters:

1 residential customer with PV
TOU rate

1-month period for demand charge
30-min time resolution

24-hour horizon

Power (kW)

Temperature (C)

1 I 1 1 I I I
00:00 04:00 08:00 12:00 16:00 20:00 00:00
Time of Day
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Results: MPC vs. SMPC

MPC — Perfect MPC — Baseline SMPC - Baseline
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Results: Forecast Accuracy and Risk Tolerance

SMPC — Baseline SMPC — AR Model SMPC — AR + High Risk
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Results: Cost Comparison

Scenario TOU Cost Demand Cost Other Costs Total Cost

No Battery $-2.01 $40.47 $0 $38.47
Perfect Forecast $-26.62 $14.74 $10.81 $-1.07
MPC Baseline $-33.20 $41.64 $11.50 $19.94
SMPC Baseline $-31.17 $35.07 $11.10 $15.01
SMPC, High Risk $-32.89 $35.07 $11.23 $13.41
SMPC, AR Model $-23.62 $25.96 $10.49 $12.83
AR + High Risk $-30.65 $29.52 $10.69 $9.56
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Conclusions

 Proposed method includes:
— Thermo-electric battery model

— Stochastic MPC battery control with TOU and
demand charge costs

* Findings:
— SMPC performs better than MPC with uncertainty
in the forecast

— Reducing forecast uncertainty improves SMPC
performance

— SMPC enables risk tolerance to vary the
performance of relative costs
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