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THE BIGGER PICTURE Large-scale ab initio calculations combined with advances in structure prediction
have been instrumental in inorganic functional materials discovery. Currently, only a small fraction of the
vast chemical space of inorganic materials has been discovered. The need for accelerated exploration of
uncharted chemical spaces is shared by experimental and computational researchers. However, structure
prediction and evaluation of phase stability using ab initio methods is intractable to explore vast search
spaces. Here, we demonstrate the importance of a balanced training dataset of ground-state (GS) and
higher-energy structures to accurately predict their total energies using a generic graph neural network.
We demonstrate that the model satisfactorily ranks the structures in the correct order of their energies
for a given composition. Together, these capabilities allow the model to be used for fast prediction of GS
structures and phase stability and for the facilitation of new materials discovery.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
The discovery of new inorganic materials in unexplored chemical spaces necessitates calculating total en-
ergy quickly and with sufficient accuracy. Machine learning models that provide such a capability for both
ground-state (GS) and higher-energy structures would be instrumental in accelerated screening. Here,
we demonstrate the importance of a balanced training dataset of GS and higher-energy structures to
accurately predict total energies using a generic graph neural network architecture. Using �16,500 density
functional theory calculations from the National Renewable Energy Laboratory (NREL) Materials Database
and �11,000 calculations for hypothetical structures as our training database, we demonstrate that our
model satisfactorily ranks the structures in the correct order of total energies for a given composition.
Furthermore, we present a thorough error analysis to explain failure modes of the model, including both pre-
diction outliers and occasional inconsistencies in the training data. By examining intermediate layers of the
model, we analyze how the model represents learned structures and properties.
INTRODUCTION

With the advances in computing power and methodologies,

computational chemistry and materials science have made

great strides in accelerating discovery of molecules and

materials with tailored properties.1,2 The ability to perform

large-scale ab initio calculations, in particular those based

on density functional theory (DFT), has been instrumental in
This is an open access article und
inorganic functional materials discovery.3–7 However, compu-

tational searches have largely focused on known materials

documented in crystallographic databases. Currently, there

are �200,000 entries in the Inorganic Crystal Structure

Database (ICSD),8 which represents only a small part (>1012

plausible compositions considering up to quaternary

compounds)9 of the vast chemical phase space of inorganic

materials. The need for accelerated exploration of uncharted
Patterns 2, 100361, November 12, 2021 ª 2021 The Author(s). 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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B Figure 1. Model trained on ICSD structures

GNN model developed in this work trained on DFT

total energy of ICSD structures fromNRELMaterials

Database.31

(A) Themodel predicts DFT total energy of 500 held-

out crystal structures with a MAE of 0.041 eV/atom

(0.95 kcal/mol).

(B) Histogram of prediction errors (relative to DFT

total energy) for the 500 test set structures; 82% of

the structures are predicted within an error of ± 0.05

eV/atom.

(C) Learning curve shows that >104 training struc-

tures are needed to achieve MAE %0.05 eV/atom.
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chemical spaces is shared by experimental and computa-

tional researchers.

The discovery of new inorganic compositions necessitates ac-

curate structure predictionmethods, which is a burgeoning field in

itself. The general approach involves navigating the configuration

space defined by the structural parameters, using a rapidly

computable cost function such as total energy. The navigation

of configuration space can use a variety of techniques, including

simulated annealing,10 genetic algorithms,3,11 random structure

searching,12,13 structure prototyping,14,15 and data mining.16,17

In these techniques, total energy is often predicted with DFT,

although force-field methods have also been used.18,19 Thermo-

dynamic phase stability, i.e. stability against decomposition, is

another prerequisite in the search for new compositions. Forma-

tion enthalpy, calculated from DFT total energy, has proved

immensely useful in assessing phase stability.20–23 However,

DFT total energy calculations are still computationally expensive

to survey large chemical spaces with >106 compounds. Machine

learning (ML)models have emerged as a surrogate for fast predic-

tion of total energy, formation enthalpy, and phase stability.24–26

Here, we develop a graph neural network (GNN) built upon exist-

ing architectures to predict the total energy of ground-state (GS)

as well as hypothetical higher-energy structures generated for

structure prediction.16 In particular, we show that the effective-

ness of any generic GNN to simultaneously predict the total en-

ergy of GS and higher-energy structures depends on the choice

of training data. While most of the present literature onML for pre-

dicting thermodynamic stability of materials is ‘‘model-centric’’

(i.e., focuses on improvements in model architecture), we show

that the choice of training data is equally important.
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Crystal graph convolutional neural net-

works (CGCNNs) have been developed to

predict DFT total energy and formation

enthalpy.27–29 These deep learning models

outperform traditional ML models with

expert-designed feature representations.

In a crystal graph, the atoms are repre-

sented by nodes and bonding interactions

asedgesconnecting thenodes,whichnatu-

rally takes into account the periodicity of

crystal structures. Xie et al.27 trained a

CGCNN model on DFT-computed forma-

tion enthalpy of 46,744 crystal structures

(predominantly from the ICSD) available in

the Materials Project (MP) database.20
Chen et al. proposed a generalized MatErials Graph Network

(MEGNet) for molecules and materials that was trained on

60,000 crystal structures from MP.29 Park et al. developed an

improved-CGCNN (iCGCNN)28 with an alternative edge update

method and trained on DFT formation enthalpy of 450,000 crystal

structures in the Open Quantum Materials Database (OQMD).22

The CGCNN and its variants exhibit similar accuracy in predicting

formation enthalpy, with mean absolute error (MAE) of 0.03–0.04

eV/atom.27–30

For structure and stability predictions, it is imperative that the

model is able to (1) predict the total energy of both GS and

higher-energy structures with similar accuracy and (2) distin-

guish energetically favorable (low-energy) structures from those

with higher energy. The CGCNN models discussed above are

trained primarily on ICSD structures that are GS or near-GS

structures. As we show in section ‘‘results and discussion,’’

these models are likely to be biased toward GS structures and,

therefore, inaccurate in predicting total energies of higher-en-

ergy structures. While the iCGCNN model28 is trained on both

GS and higher-energy structures, an explicit demonstration of

the model performance for GS and higher-energy structures is

missing. Since the focus of that study was to improve the overall

prediction accuracy, it is not clear if the resulting model can, for a

given composition, correctly rank the different structures based

on their total energy.

In this work, we train our GNN model on a combined dataset

consisting of both GS and higher-energy structures in a

balanced fashion to accurately predict their total energy. We

use DFT total energy of �16,500 ICSD structures from the

National Renewable Energy Laboratory (NREL) Materials
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Figure 2. Energy underprediction of hypothetical structures

Total energy of hypothetical structures (see section ‘‘model trained on ICSD

structures’’ for details) predicted with the ICSD model. The total energy is

systematically underpredicted for the high-energy hypothetical structures

suggesting model bias toward lower-energy structures.

We further confirm this bias by using the ICSDmodel to predict the total energy

of �5,800 hypothetical structures. As described in section ‘‘data and prepa-

ration’’ (experimental procedures), the dataset of hypothetical structures

contains, in addition to the GS structures, a number of higher-energy hypo-

thetical structures for a given composition. The ICSD model severely under-

predicts the total energy of the higher-energy hypothetical structures but

accurately predicts the energy of the corresponding GS structures (Figure 2),

which highlights the model bias toward GS structures. For structure and sta-

bility predictions, a model that is accurate for both GS and higher-energy

structures is desired.
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Database31 and �11,000 hypothetical structures generated by

the ionic substitution method.32,33 While the overall prediction

accuracy of our model is at par with other graph-based models

(MAE = 0.04 eV/atom), with similar accuracy in predicting the

total energy of GS and higher-energy hypothetical structures.

We demonstrate the model’s capability to satisfactorily distin-

guish low- and higher-energy structures for a given composition.

Finally, we investigate the prediction outliers and find that, in

some cases, the source of the error can be traced back to the in-

accuracies in the DFT total energy.

RESULTS AND DISCUSSION

Model trained on ICSD structures
Previously reported GNN models for predicting total energy and

formation enthalpy27,29 were trained primarily on ICSD crystal

structures with DFT total energy and formation enthalpy taken

from the MP.20 For benchmarking, we train a CGCNN model

(Figure 9) on the DFT total energy of ICSD structures from the

NREL Materials Database (NRELMatDB).31 The model is trained

on 15,500 crystal structures with 500 structures each withheld

for validation and testing. We find that the prediction accuracy,

gauged by the MAE, is 0.041 eV/atom (Figure 1A). The standard

deviation in the MAE is ± 0.005 eV/atom, which is obtained by

training four different models and calculating the corresponding
MAE on test sets each containing 500 crystal structures, with no

overlap of structures between the test sets (Figure S1). The opti-

mized hyperparameters for themodel are provided in Table S1 of

the supplemental information. Hereafter, we reference this

model as the ‘‘ICSD model’’. The learning curve is presented in

Figure 1C, which shows that at least 104 crystal structures are

required to achieve a test MAE of <0.05 eV/atom, consistent

with previous models.27

The formation enthalpy (DHf) of a crystal structure with a

chemical composition AxByCz can be calculated from the DFT

total energy as, DHf = Etotal � xm0
A � ym0

B � zm0
C, where Etotal is

DFT total energy of AxByCz with DHf and Etotal expressed per

formula unit and m0
i are the reference chemical potentials of

elements, typically under standard conditions. Since m0 are

reference values, DHf is linearly dependent on Etotal. By design,

the error in predicting DHf is the same as in predicting total en-

ergy. The ICSD model has an MAE of 0.041 eV/atom for predict-

ing DFT total energy. As such, DHf can be predicted with the

same accuracy, which is at par with other CGCNN models re-

ported in the literature.27–29 Furthermore, the typical experi-

mental error in measuring formation enthalpy is the ‘‘chemical

accuracy,’’ which is on the order of 1 kcal/mol (0.043 eV/atom).23

Assuming DFT calculated DHf are reliable, the prediction error of

the ICSD model is comparable with the chemical accuracy.

Figure 1B shows a histogramof the prediction errors relative to

the DFT values, with 82% crystal structures (410 out of 500) pre-

dicted within an error of ± 0.05 eV/atom. Of the remaining 90

structures lying outside the ±0.05 eV/atom error range, 51 struc-

tures are underpredicted, including PdN (space group #221) and

CoMnP (space group #62), which are underpredicted by�0.733

eV/atom and �0.397 eV/atom, respectively. We find that these

are higher-energy structures of those compositions reported in

the ICSD, with PdN (space group #221) 0.459 eV/atom and

CoMnP (space group #1) 0.400 eV/atom above the respective

GS structures PdN (space group #225) andCoMnP (space group

#62). Other underpredicted structures such as SiCN (space

group #216) and AuN (space group #225) are highly unstable

structures that lie above their respective convex hulls by 2.168

eV/atom and 1.897 eV/atom, respectively. The vast majority of

ICSD structures have been determined through X-ray diffraction

refinement of experimentally grown crystal structures with some

metastable and computationally predicted hypothetical struc-

tures. As such, ICSD is biased toward stable, GS structures;

the underprediction of the high-energy/unstable structures is a

testament to this inherent bias, which so far has not been

acknowledged in previous studies.27–29

Model trained on ICSD and hypothetical structures
To address the underestimation of the total energy of the hypo-

thetical structures with the ICSD model, we first train a GNN

model on the hypothetical structures separately (i.e., not

including the ICSD structures). The training, validation, and test

sets are chosen in a way to avoid overlap of compositions across

them. For instance, all the hypothetical structures associated

with the composition KGeP (ABX composition) appear only in

the test set (Figure 3A) but not in the training or validation set.

By avoiding overlap of compositions across the sets, we can

eventually test the true performance of themodel in energetically

ranking the different structures associated with a given
Patterns 2, 100361, November 12, 2021 3
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(A) Predicted versus DFT total energy of the

model trained only on hypothetical structures.

The data points are colored by their composition

type (see section ‘‘data and preparation’’ for de-

tails).

(B) Model trained on combined dataset of

ICSD and hypothetical structures accurately

predicts the total energy for both ICSD and

hypothetical structures, with an overall MAE of

0.04 eV/atom.

(C) Comparison of predicted MAE for ICSD

and hypothetical structures of the model trained

only on ICSD structures (Figure 1A), model trained

only on hypothetical structures shown in (A), and

model trained on the combined dataset (blue). The

standard deviation (shown as error bars) is calcu-

lated from four different models with non-over-

lapping test sets.
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composition. In addition, at least one composition type (ABX,

ABX4, .) is present in each of the sets.

First, the overall performance of this model with MAE = 0.055

eV/atom (Figure 3A) is significantly better than the performance

of the ICSD model on the same structures (Figure 2). We find

that the total energy of certain composition types, e.g., AX2

(6 out of 191 compositions), that are under-represented in the

hypothetical dataset are predicted with lower accuracy. In Fig-

ure 3A, the prediction outliers are predominantly of the AX2

composition. Nonetheless, the overall performance is compara-

ble with the ICSD model. However, when we use this model,

trained on hypothetical structures only, to predict the total

energy of 1,065 ICSD structures, we again find that the model

performs poorly with an MAE = 0.424 eV/atom (Figure S2). As

with the ICSD model (see section ‘‘model trained on ICSD

structures’’), this model again appears to be biased toward the

hypothetical structures used in the training. To overcome this

systematic bias, we find that it is practical to train a model on a

combined dataset consisting of a balance between ICSD and hy-

pothetical structures.

A GNN model is trained on a combined dataset of DFT total

energy of 14,845 ICSD and 9,980 hypothetical structures (in

171 compositions) and validated and tested on 800 ICSD and

�600 hypothetical structures in 10 different compositions. An

overall MAE of 0.04 eV/atom is achieved across ICSD and hypo-

thetical structures (Figure 3B), which is comparable with the pre-

diction accuracy of the ICSD model. The standard deviation in

the MAE (0.005 eV/atom) is determined by training four different

models and calculating the corresponding MAE on test sets

each containing 800 ICSD and �600 hypothetical structures
4 Patterns 2, 100361, November 12, 2021
(10 compositions each) with no overlap in

the structures (Figure S3). The learning

curve is presented in Figure S4, which

shows that at least 2 3 104 crystal struc-

tures (twice as many as are required for

the ICSD model) are required to achieve

test MAE of <0.05 eV/atom. Figure 3C

shows the individual MAEs for the ICSD

and hypothetical structures. For compari-
son, the predicted MAE of the ICSD model (see section ‘‘model

trained on ICSD structures’’) and the model trained on the hypo-

thetical structures alone are provided. It is evident fromFigure 3C

that the model trained on the combined dataset improves the

prediction accuracy for both ICSD and hypothetical structures

and overcomes the model bias when each dataset is used sepa-

rately to train a total energy model. We also train the MEGNet29

and CGCNN27 models on an identical combined dataset to

demonstrate the generality of our choice of training data to alter-

native models. A comparison of the predicted MAE on ICSD and

hypothetical structures is shown in Figure S5.

Energy ranking of structures
While it is crucial to have a high-accuracy model for predicting

total energy, it remains to be seen whether the model can

rank the different structures of a given composition in the

correct order of their energies. As mentioned in section ‘‘intro-

duction,’’ this energy ranking is desired for distinguishing

energetically favorable (low-energy) structures from the

higher-energy unfavorable structures. Figure 4 shows the

comparison between DFT and model-predicted relative total

energy (E� Emin) of all the hypothetical structures for each

of the 10 compositions present in the test set (Figure 3B). In

general, our model-predicted energy rankings are in fair

agreement with DFT, although there are noticeable differ-

ences depending on the composition type.

The rankings for the ABX type compositions (e.g., KGeP,

KZnSb, and NaBeAs) are the most accurate: i.e., the model

correctly identifies the GS structure and does not incorrectly

misassign a higher-energy structure as low energy (Figure 4).
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Figure 4. Energy ranking of hypothetical structures

Predicted relative energy (E� Emin) of hypothetical structures of 10 different

compositions from the test set in Figure 3B compared with DFT. The x axes

represent polymorphic structures, which are generated through ionic substi-

tution.32,33 For nine out of 10 compositions, the predictedGS eithermatches or

is within 0.025 eV/atom of the DFT GS structure.
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The good ranking of ABX composition type can be attributed to

the fact that ABX comprises the largest fraction of the training

dataset of hypothetical structures (139 out of 191 compositions).

The ranking for CsAs (AX type composition) is satisfactory, with

DFTGS structure predicted to be only 0.007 eV/atom higher than

the GS structure predicted by the model. Moreover, none of the

higher-energy structures are misassigned as low-energy struc-
tures. In the case of KGaAs4, a ABX4-type composition, the

model correctly identifies the GS structure and also does not

misassign any of the higher-energy structures as the GS.

On the other hand, for the AX2 type compositions (e.g., ZnAs2,

CdSb2, CdBi2), the energy ranking of the structures requires a

more detailed examination. The model correctly identifies the GS

structure of ZnAs2; however, a few high-energy structures are

also identified as low energy. This energy ranking can be consid-

ered satisfactory because, in practical structure prediction imple-

mentations, onewould consider a few lowest-energy structuresas

candidates for the GS structure. Similarly, the DFTGS structure of

CdSb2 ispredicted tobeonly0.009eV/atomabove themodel-pre-

dicted GS, which will qualify the true GS structure as one of the

lowest-energy structures. The model-predicted GS structure has

a DFT relative energy (E� Emin) of 0.007 eV/atom. Finally, the en-

ergy ranking for CdBi2 is inaccurate since the DFT GS structure

is predicted to be 0.171 eV/atom above the model-predicted GS

structure. It is evident from Figure 4 that the relative energies of

all the CdBi2 structures lie in a limited window of �0.25 eV/atom,

unlike the ABX-, AX-, and ABX4-type compositions. It is a more

challenging to rank the structure in the correct order of their en-

ergieswhen all or a large fraction of the structures have similar en-

ergies: i.e., the energy differences cannot be sufficiently resolved.

For AX4-type compositions, the energy rankings are similar to

ZnAs2 and CdSb2, wherein the GS structures of ZnAs4 and

MgAs4 are among the lowest-energy structures predicted by

the model, with their DFT relative energies 0.023 eV/atom and

0.036 eV/atom, respectively. At the same time, a few high-en-

ergy structures are also identified as low energy.

While the model satisfactorily ranks the energies of hypothet-

ical structures, we also inspect the rankings of known structures

to establish the robustness of the model. We chose the known

polymorphs of MgO and ZnO from the ICSD database as repre-

sentative examples. Figure S6 shows the comparison between

DFT and model (trained on combined dataset) predicted energy

rankings. Out of the nine reported polymorphs of MgO, the

model correctly labels the GS rock salt structure and also does

not misassign the higher-energy structures as low energy. Simi-

larly, out of the five reported polymorphs of ZnO, the model

correctly labels the GS wurtzite structure and accurately ranks

the higher-energy structures. In summary, the model satisfacto-

rily ranks the energy of the structures for most of composition

types. For nine out of 10 hypothetical compositions (Figure 4),

the predicted GS structure either exactly matches or is within

0.025 eV/atom of the DFT GS structure.

We show the generality of our choice of training data to GNN

models with similar architecture by training MEGNet29 and

CGCNN27 models on identical training, validation, and test

sets. The models trained on only ICSD structures consistently

fail to rank the structures of a given composition in the correct

order of their energies (Figure S7). The total energy of higher-en-

ergy structures is severely underestimated, which is expected

due to the model bias toward low-energy structures (Figure S7),

as discussed in section ‘‘model trained on ICSD and hypothetical

structures.’’ The models trained on a balanced combined data-

set of GS and hypothetical structures overcome this limitation.

Overall, the energy rankings predicted with our GNN model are

similar to those predicted by MEGNet and CGCNN (Figure 4),

when trained on the identical combined dataset.
Patterns 2, 100361, November 12, 2021 5
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models trained on ICSD structures alone.
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We use the Kendall rank correlation coefficient (KRCC) as a

metric to compare the accuracy of the predicted energy rankings

between different models and datasets. Higher accuracy in en-

ergy rankings corresponds to correlation coefficients close

to +1. The KRCCs, averaged over the 10 test compositions (Fig-

ure 4), are compared in Figure 5. When trained on the identical

combined dataset, our GNN model, MEGNet, and CGCNN

models have similar average KRCCs. This is a significant

improvement in KRCC compared with when the same models

are trained on only ICSD structures (ICSD dataset versus com-

bined dataset in Figure 5). Therefore, the choice of training

data plays amore crucial role while the actual model architecture

has a minor effect on the performance of the models in energy

ranking of structures.

ML models based on kernel ridge regression34 and random

forest35 methods have previously been trained on GS and

high-energy structures to predict formation energy. Faber et al.

developed a kernel ridge regression model to predict the forma-

tion energy of elpasolite ABC2D6 crystals, achieving an MAE of

0.1 eV/atom,34 which is 2X-3X larger error compared with GNN

models (0.03–0.04 eV/atom).27,29 In the absence of an explicit

demonstration, it is not clear whether this KRR model can accu-

rately rank the polymorphic structures of a compound in the cor-

rect order of their energies. In contrast, the random forest model

developed by Kim et al.35 predicts the formation energy of

quaternary XX 0YZ Heusler compounds with an MAE of 0.039

eV/atom. More importantly, they demonstrate a KRCC of 0.68,

which is similar to the average KRCC with our GNN, MEGNet,

and CGCNNmodels (Figure 5). The kernel ridge and random for-

est models were both trained for specific material families

(ABC2D6, XX
0YZ), which might limit their general applicability to

other compositions. Perhaps, training these models on the com-

bined dataset used in our work might result in similar perfor-

mance across different compositions, but may require tedious

feature engineering by hand, unlike in GNN models.

Analysis of prediction errors
We perform a thorough analysis of the large prediction errors in

Figure 3B. Such an analysis is useful in attributing the error to
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either prediction outlier or inconsistency in the training data.

The model trained on the combined dataset, presented in Fig-

ure 3B, predicts the total energy of �79% (1,105 out of 1,405)

structures with <0.05 eV/atom error. However, seven crystal

structures (labeled in the figure) are either over- or underpre-

dicted by 0.500 eV/atom, which are, interestingly, all ICSD struc-

tures. We analyze each of these structures on a case-by-case

basis to understand the source of the error.

Fe13Ge3 (space group #221, ICSD: 150584) is severely under-

predicted by 1.039 eV/atom relative to the DFT total energy. In

this case, our analysis reveals that the DFT total energy is inac-

curate. In magnetic compounds containing transition metals,

the total energy is sensitive to the configuration of the magnetic

moments.36 Fe13Ge3 has a ferromagnetic GS; however, the DFT

total energy in NRELMatDB is for the non-magnetic configura-

tion. Upon recalculating the DFT total energy with ferromagnetic

configuration, the prediction error is reduced to +0.08 eV/atom.

This example highlights that DFT materials databases may

contain occasional inconsistencies that can be flagged through

ML regression.

The total energy of BaSiC (space group #107, ICSD:

168413) and CdC (space group #225, ICSD: 183177) are

underpredicted by 0.651 eV/atom and 0.582 eV/atom, respec-

tively. We find that both are hypothetical structures that were

proposed in computational studies but not experimentally

realized (ICSD contains a small fraction of hypothetical struc-

tures). These specific structures of BaSiC and CdC lie 0.795

eV/atom and 1.706 eV/atom above their respective convex

hulls, which indicates that these high-energy structures are

likely unstable. While the model is trained to predict the total

energy of both GS and higher-energy structures, the training

dataset of hypothetical structures spans 24 elements (see

section ‘‘experimental procedures’’), including Ba, Cd, and

Si, but not C. The underprediction in the case of BaSiC and

CdC is indicative of the remnant bias in the model toward

lower-energy structures for compounds containing elements

that are not in the hypothetical structure dataset.

The total energy for Ca7Ge (space group #225, ICSD: 43321) is

underpredicted by 0.545 eV/atom. Upon analyzing the crystal

structure of this intermetallic compound, we find that the Ca–

Ge bond lengths associated with the Ca(4b) Wyckoff site is

3.4 Å (Figure S8), which is significantly longer than typical Ca–

Ge bond length (3 Å) in other Ca-Ge compounds (e.g., CaGe,

Ca2Ge, and Ca5Ge3). We perform a k-nearest neighbor (kNN)

analysis on the penultimate site embeddings (see section

‘‘experimental procedures’’) to identify other structures in the

training set with embeddings that resemble Ca7Ge. The purpose

of the kNN is to find a number of training samples closest in dis-

tance to a point in the test set. Principal component analysis

(PCA) is first used to reduce the embedding space to 10 dimen-

sions, and the 10 nearest neighbors for each site in Ca7Ge are

found from embeddings for sites in the training dataset. There

are two unique Wyckoff sites of Ca (4b, 24d) in Ca7Ge; their 10

nearest neighbors are shown in Figure S8, which suggests that

the 4b site more resembles Sr and Ba (larger ionic radius than

Ca), consistent with the long Ca–Ge bond lengths. This could

also explain why Ca7Ge is furthest from the convex hull (0.093

eV/atom) compared with other Ca-Ge structures.
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Another outlier, Nb3Si2 (space group #127, ICSD: 645431), is

overpredicted by 1.163 eV/atom. In training the model, we

directly use ICSD structures rather than DFT-relaxed structures.

While, in most cases, the DFT-relaxed structures are not far from

the ICSD structures, there are exceptions where this is not the

case, such as for Nb3Si2. Using the DFT-relaxed structure

instead of the ICSD structure reduces the error to 0.054 eV/atom.

Not all prediction errors are easily explainable as arising from

the underlying DFT database. The source of error for ScFe6Sn6
(space group #191), which is overpredicted by 0.470 eV/atom,

could not be identified and we believe that it is a case of predic-

tion outlier. We thus have identified several causes of prediction

errors, ranging from inconsistency in DFT data to simply model

inaccuracy.

Chemical trends
Interpretability of predictive neural network models remains

intrinsically challenging. While direct physical interpretation of

the CGCNNmodel in this workmay not be possible, we compare

trends in the model predictions with general chemical principles.

Specifically, we identify trends in the learned elemental site en-

ergies (see section ‘‘experimental procedures’’) through dimen-

sionality reduction techniques such as PCA and t-distributed

stochastic neighbor embedding (t-SNE). In conjunction, we

also analyze the probability density of the elemental site

energies.

We chose electropositive elements from group 1 (Na, K) and

group 2 (Sr, Ba) as representative examples to identify trends

in the learned elemental site energies. Figure 6 shows the prob-

ability density as a function of the elemental site energy for these

elements. Figure 7 presents the corresponding two-dimensional

t-SNE projections performed on the elemental embeddings. The

site energy distributions in Figure 6 are calculated for all the sites
in training set crystal structures for a given

element. Only ICSD structures are consid-

ered in this analysis to avoid any unphysi-

cal effects arising from the hypothetical

high-energy structures. For example, there

are 1,095 unique Na-containing structures,

with 7,056 unique Na Wyckoff sites. We

find that when the element of interest is

bonded to more electronegative anions—

halogens (F, Cl, Br, I), O, or chalcogens

(Se, Se, Te)—the resulting elemental site

energies are more negative than when

bonded only to less electronegative an-

ions: tetrels (C, Si, Ge, Sn, Pb) or pnicto-

gens (N, P, As, Sb, Bi). For example, out
of 7,056 sites for Na, 3,458 sites bonded only to either halogens,

O, or chalcogens span an energy range of [�4.36, �1.97] eV,

whereas the 1,134 sites bonded only to tetrels or pnictogens

span a lower energy range of [�3.17, �1.06] eV.

Notably the energy distributions for oxides span a wider en-

ergy range, overlapping with other anion types, which can be

attributed to the large variety of oxide compositions and struc-

tures and the different cation coordinations. Generally, Na, K,

Sr, and Ba prefer octahedral coordination (6-fold coordination)

when bonded to O (e.g., rock salt Na2O, BaO) but there can be

a departure from this typical behavior depending on the pres-

ence of other cations. For instance, Na sites in Na17Al5O16

(space group #8) and Na14Al4O13 (space group #14) are 3-fold,

4-fold, and 5-fold coordinated with some of the elemental site

energies lying in the ‘‘tail’’ of the oxides’ (near the peak of pnic-

tides) energy distribution (Figure S9). As such, some of the Na

sites in these compounds behave as if they are bonded to pnic-

togens rather than O. The presence of Al, which generally prefers

tetrahedral coordination, causes this departure from the typical

behavior.

The t-SNE projections in Figure 7 offer an additional dimen-

sion (compared with the 1-D site energy distribution in Figure 6)

to visualize the learned elemental distributions. The t-SNE pro-

jections reveal distinct clusters depending on the anion type,

consistent with the observation of peaks in the probability

density energy distributions (Figure 6). The separation into

different clusters suggests that the chemical identity of the

cation-anions bonds, at least for the four representative ele-

ments considered here, governs the learned elemental

embedding. Consistent with the elemental site energy distribu-

tion, some Na sites in Na17Al5O16 (space group #8) and

Na14Al4O13 (space group #14) lie in the cluster of pnictide em-

beddings (Figure S9).
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Figure 7. Clustering of elemental site energy

t-SNE visualizations of the PCA-reduced elemental

embeddings of Na, K, Sr, and Ba, shown as repre-

sentative examples. The training-set-extracted

embeddings are analyzed to draw chemical trends

learned by the model. The embeddings lie in four

major clusters, depending on the local environment

(oxides, chalcogenides, halides, pnictides, tetrels)

of the element of interest.
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Assessment of thermodynamic stability
Thermodynamic phase stability against decomposition into

competing phases is a prerequisite for searching new materials

and can be assessed through a convex hull construction.23 Ma-

terials that lie on the convex hull are considered stable: i.e., the

energy above the hull (DEhull) is zero. Materials lying above the

hull (DEhull>0) are either unstable or metastable. The convex

hull is defined as a convex envelope connecting the GS struc-

tures in a given chemical space and can be computed from

DFT total energy by calculating formation enthalpy. For instance,

in the binary Li-P chemical space, the convex hull connects

elemental Li and P, and stable phases Li3P, LiP, LiP7, LiP5,

and Li3P7.

To demonstrate the accuracy of our GNN model in predicting

thermodynamic phase stability, we perform convex hull analysis

on a set of 1,794 ICSD compounds by using themodel-predicted

total energy of all the competing phases. Here, we consider all

the competing phases documented in the ICSD. The ICSD com-

pounds are chosen in the following way: all unique compounds

present in NRELMatDB31 formed by the 24 elements spanning

group 1 (Li, Na), group 2 (Mg, Ca), group 3 (Sc), group 4 (Ti),

group 5 (V), group 6 (Cr), group 7 (Mn), group 8 (Fe), group 9

(Co), group 10 (Ni), group 11 (Cu), group 12 (Zn), group 13

(B, Al), group 14 (C, Si), group 15 (N, P), group 16 (O, S), and

group 17 (F, Cl). A total of 1,794 unique compounds (513 binary,

987 ternary, 288 quaternary, and 6 quinary) with 2–86 competing

phases are identified.
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DEhull predicted with our GNN model is

compared with the DFT values (for DEhull<

1 eV/atom) for the 1,794 compounds in

Figure 8. The comparison over the full en-

ergy range is provided in Figure S10. The

stability predictions by the GNN model

for 1,657 compounds (out of 1,794) are

consistent with the DFT stability. The

model correctly predicts 1,014 out of

1,078 stable compounds (DEhull = 0 eV in

DFT). Among the 64 (out of 1,078) com-

pounds that are incorrectly predicted to

be unstable, 25 of them lie <0:005 eV/

atom from the convex hull, which is well

within the typical DFT error. Overall, our

GNN-predicted phase stability is in fair

agreement with DFT.

A precision-recall curve (PRC) provides

a quantitative measure of the model’s ac-

curacy to classify a material as stable or

unstable. Precision is defined as the ratio
between the number of correctly classified stable materials

(true-positive) and all materials classified as stable (true-

positive + false-positive). Recall is the ratio between the number

of correctly classified stable materials (true-positive) and all ma-

terials that are actually stable (true-positive + false-negative). We

use the decomposition energies instead of DEhull to determine

the precision and recall scores for varying thresholds of decom-

position energy. Here, decomposition energy is theminimum en-

ergy that the formation energy of an unstable material has to be

lowered (more negative) before it becomes stable. Similarly, for a

stable compound, we define the decomposition energy as the

maximum energy that the formation energy can be increased

(less negative) before it becomes unstable.24 In this way, the

decomposition energies of stable compounds are <0 eV/atom

and for unstable compounds >0 eV/atom. The area under the

PRC (AU-PRC) is 1 for perfect classification and 0 for

random guess.

The AU-PRC of our GNN combined model tested on the 1,794

ICSD compounds is 0.98 (Figure S11). We find that the CGCNN

model, when re-trained on our combined dataset, performs simi-

larly in predicting thermodynamic stability (Figure S11B).We also

perform phase stability analysis on the hypothetical structures to

compare the performance of the ICSD and combined models.

For this purpose, we consider the 10 hypothetical compositions

(690 structures) from the test set of the combined model (Fig-

ure 4). Figure S12 shows a comparison of the predicted energy

above the hull (DEhull) with the ICSD only and combined models
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relative to the DFT calculated DEhull. As expected, the ICSD

model, which is biased toward GS structures, underpredicts

DEhull and, therefore, has a higher rate of false-positives (53%)

in predicting thermodynamic stability. In contrast, the combined

model has a much lower false-positive rate (1.5%). Conse-

quently, the AU-PRC for the ICSD model (0.60) is much lower

than for the combined model (0.99).

We also compare the stability predictions by our GNN model

with those from simple composition-based models.24 We train

the Magpie model37 on the lowest-energy structures for each

composition in our dataset using 145 composition-based

features. We test this model to predict the stability of a subset

of 1,794 ICSD compounds (above); an AU-PRC of 0.78 (Fig-

ure S13) is obtained, which is significantly lower compared

with our GNN model. The composition-based Magpie model

is, as expected, biased toward GS structures and results in

significantly more false-positives (36%) than the GNN model

(8% false-positives).

Conclusions
In summary, we have developed a GNN model capable of reli-

ably predicting DFT total energy of both GS and higher-energy

structures. A model trained on a combined dataset consisting

of a balance between both GS and higher-energy structures

achieves a lower error than models trained on either GS or hypo-

thetical structures alone. The accuracy of the resulting model is

sufficient to rank the small differences in energy typically

encountered between structures with the same composition.

Themodel can, therefore, serve the purpose of rapidly screening

the energetics of different configurations for a given composi-

tion, a critical step in elucidating the structure and stability of

new chemistries.

Some of the large errors in energy predictions are explained by

identifying their source of error as inconsistencies in the underly-
ing training data. In small-scale DFT studies, each calculation

can be carefully examined by the researcher to ensure conver-

gence. In high-throughput DFT databases, however, manual

analysis must be replaced with automatic convergence criteria

that can occasionally miss peculiar cases. Therefore, the training

and analysis of ML models is one way that the consistency of

high-throughput DFT databases can be rapidly verified. ML pre-

dictions fail where the data are poorly explained by neighboring

trends, either because insufficient similar examples exist, there

are inconsistencies in the data, or there is extreme sensitivity

of the regressed variable with respect to structure. In addition

to highlighting data inconsistencies and where additional data

should be collected, prediction outliers can highlight interesting

and unique chemical functionality that might otherwise go unno-

ticed in large databases.

There are a few limitations to the model, which remain to be

addressed. The hypothetical structures used for training the

model span only 24 elements, and their total energy is confined

to a small range, in contrast to the wide range in the total energy

of ICSD structures. To overcome this limitation, generation of

additional DFT data for hypothetical structures will be done in

a future work. Additionally, the current model was trained on hy-

pothetical structures after DFT relaxations, which limits its use-

fulness in the forward screening of new hypothetical structures,

where relaxed coordinates are not available. Generating accu-

rate predictionswith unrelaxed structures remains an unresolved

problem in the field of structure prediction.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

The lead contact is Prashun Gorai (pgorai@mines.edu).

Materials availability

There are no physical samples generated in this work.

Data and code availability

A frozen version of the code is available on Zenodo (https://doi.org/10.5281/

zenodo.5484194) and in a GitHub repository (https://github.com/

prashungorai/combined-gnn).

GNN architecture

A CGCNN was constructed as depicted in Figure 9. Crystal structures are first

converted to a graph using pymatgen,38 using atomic sites as the graph nodes

and distances between sites as the graph edges. Each node in the graph has

exactly 12 edges, corresponding to the 12 nearest neighbor sites in the crystal

while accounting for periodic boundaries. Node features include only the iden-

tity of the element at the atomic site, and edge features only included the raw

distances (in angstroms) between the two sites. This is in contrast to other

CGCNN models27–29 that use several additional node and edge features:

e.g., group and period number, electronegativity. An embedding layer is

used to convert the discrete element type of each atomic site into a 256-

parameter vector, functioning similarly to a one-hot encoding of the atom

type followed by a dense layer of dimension 256. Edge features are initialized

from the raw distances through a radial basis function expansion,

riðdÞ= exp½ �hðd�ciÞ� for i˛½1;.;10�, where d is the edge distance and h; ci
are learned parameters initialized to 7 and ½0; 0:7;1:4;2:1;.;6:3�, respectively.
In the CGCNN, the node and edge features are updated by passing them

through a series of message layers, in which the nodes exchange information

with their neighboring edges.

The structure of the message-passing layers is adapted from Jørgensen

et al.39 First, for each edge, the source and target site features are concat-

enated with the edge’s features, passed through a series of dense layers,

and added to the input edge features in a residual fashion. Next, node
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Schematic of the neural network architecture. Node (atomic sites) and edge

features (interatomic distances) output from each message block are fed as

inputs into the subsequent block. The model predicts energy per site for all the

sites in a given structure, which are averaged to get the total energy.
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features are updated using the features of the neighboring sites and those

of the connecting edges. For each of the 12 edges pointing into a given site,

the feature vectors of the source sites are multiplied by features of the cor-

responding edge before all 12 vectors are summed together. The resulting

feature vector is then passed through a series of dense layers before being

added to the original site feature vector in a residual fashion. Outputs from

each message block are then fed as inputs into a subsequent message

block for a total of six message layers. Final total energy predictions are

produced by feeding the final site features into a 1-D output layer, produc-

ing a single energy prediction for each site. These predictions are added to

a learnable mean energy for each element before being averaged over all

sites in the crystal to produce a mean energy prediction.40 Site-level contri-

butions to the total predicted energy can therefore be extracted from this

penultimate layer.
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CGCNNs are trained for 500 epochs over the training data with a batch size

of 64 crystals using the Adam optimizer with weight decay. The learning rate

was decayed starting from an initial value of 1e�3, according to

1e�3=ð1 + epoch =50Þ, and the weight decay was similarly decayed according

to 1e�5=ð1 + epoch =50Þ. The loss function minimized was the MAE between

predicted and DFT total energy.

Data and preparation

Three distinct datasets of DFT-computed total energy are used in training

the CGCNN models. First, we use DFT total energy of �14,000 ordered and

stoichiometric crystal structures from the ICSD8 that are available in the

NREL Materials Database (NRELMatDB).31 The DFT calculations are per-

formed with VASP41; details of the calculations are available from Stevanovi�c

et al.23

During data cleanup, we identified that the DFT calculations for 1,677 struc-

tures containing fluorine were insufficiently converged. We recalculated the

DFT total energy of 874 (out of the 1,677) structures with a recommended

larger plane-wave energy cutoff of 540 eV. The remaining 803 structures

contain transition elements that require an exhaustive search of the different

magnetic configurations to determine the GS structure. Given the high compu-

tational cost associated with the search for the magnetic GS configurations,

these 803 structures were not recalculated and also not included in the training

data. With future applications of our CGCNN model in mind, we expanded the

dataset to including DFT total energy of �3,900 ICSD structures containing

mixed anions (e.g., ZrOS), which are not currently in NRELMatDB. The DFT

methodology (GGA-PBE)42 and calculation parameters for the mixed-anion

compounds are consistent with those used in NRELMatDB. Combined, we

use DFT total energy of �16,500 ICSD structures to train, validate, and test

the CGCNN models. The ICSD collection identifiers along with their total en-

ergy are made available through a public GitHub repository.43 This dataset

of ICSD structures spans 60 elements and 12,760 unique compositions, with

2,113 compositions existing in more than one structure.

We also leverage a dataset of �11,000 hypothetical structures that were

created by ionic substitutions in known prototype structures from the

ICSD.33,32 Upon ionic substitution, the decorated structures are relaxed and

their total energy is calculated with DFT. The relaxed structures (as VASPPOS-

CAR files) and the total energy are available through the GitHub repository.43

The dataset is created for the purpose of discovering new Zintl phases.32,33

As such, it spans 24 elements in 191 unique compositions of the type ABX

(139, 6,087), AX4 (18, 318), AX (15, 3,775), ABX4 (13, 410), and AX2 (6, 444),

where the first number in parentheses is the number of compositions and

the second number is the number of structures. Here, element A includes Li,

Na, K, Rb, Cs, Ba, Mg, Sr, Zn, Cd; element B are Si, Ge, Sn, Pb, Zn, Cd,

and Be; and X are group 15 elements (pnictogens) such as P, As, Sb, and

Bi. KSnSb, MgAs4, CdSb, KGaSb4, and ZnAs2 are representative composi-

tions from this hypothetical structure dataset.

Analysis of atomic site energy

The learned elemental site energies (Figure 6), which are the site-level contri-

butions to the total energy, are analyzed to identify chemical trends. For spe-

cific elements, we calculate the probability density of the atomic site energies

from all the ICSD structures in the dataset. We do not include the hypothetical

high-energy structures in the analysis of the site energies to avoid biasing the

chemical trends toward unstable structures. The distribution of pairwise dis-

tances between the learned elemental embeddings (Figure 7) will encode

the relation between materials. We utilize common dimensionality reduction

techniques such as PCA44 and t-SNE,45 as implemented in scikit-learn,46 to

analyze the multi-dimensional elemental embeddings.
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