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A B S T R A C T

In order to achieve stringent greenhouse gas emission reductions, a transition of our entire energy system from
fossil to renewable resources needs to be designed. Such an energy transition brings two main challenges:
most renewables generate variable electric energy, yet most demand is currently not electric (carrier mismatch)
and does not always manifest at the same time as supply (temporal mismatch). Integrating multiple energy
infrastructures can address both challenges by using the synergy between different energy carriers; building
on existing infrastructure, while allowing a robust and flexible integration of the new.

This paper proposes an optimization framework for long-term, multi-period investment planning of urban
energy systems in an integrated manner. We formulate it as a mixed-integer linear program, combining
a capacitated facility location with a multi-dimensional, capacitated network design problem. It includes
generation and network expansion planning as well as interconnections between networks and storage
infrastructure for each energy system. It can incorporate pathway effects like techno-economic developments,
policy measures, and weather variations. The intended use is to support urban decision makers with long-term
investment planning, though it can be tailored to fit other geographical or temporal scales.

We demonstrate the model using two cases based on an average city in The Netherlands, which wants to
reduce its CO2-emissions with 95% by 2050. In the first case, we include explicit carbon-emission constraints
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to study the effects of the carrier mismatch. In the second case, we implement interannual weather variations
to analyze the temporal mismatch. The results give valuable insights into the energy transition design strategy
for urban decision makers. They also show the future potential, as well as the computational challenges of the
optimization framework.
1. Introduction

In 2015 at the United Nations climate change conference in Paris,
COP15, the governments of 195 countries agreed that stronger and
more ambitious climate action was urgently required [1]. Greenhouse
gas (GHG) emission reductions need to be accelerated such that global
temperature rise remains well below 2 degrees Celsius above pre-
industrial levels. The majority of anthropogenic GHG emissions orig-
inate in the energy system [2,3], hence decarbonizing them is very
important and requires large-scale implementation of renewable energy
sources (RES).

Yet such an energy transition from a mostly fossil to a mostly
renewable energy system is also incredibly challenging (see Fig. 1).
The current system is based on a myriad of existing infrastructure
centrally designed for a relatively predictable energy demand. This
needs to move towards a far more complex, uncertain, and variable fu-
ture, containing multiple, shifting energy carriers, while influenced by
techno-economic developments, climate policy, and weather variations;
all of which have impacts on different spatio-temporal levels.

Spatially, most research on climate action focuses on either a large
scale, e.g. national level [4], or a small scale, e.g. building level [5].
Yet at the urban scale, cities play a large role in the implementation
of strong climate actions given their increasing population density and
resource intensity [6]. Furthermore, many cities are already dealing
with the effects of climate change, and over 90% are at risk of flooding
from rising sea levels and powerful storms [7]. This leads to a strong
motivation to act; often ahead of national policies [8]. However, this
scale of energy systems is surprisingly understudied in the literature
and thus ripe for developing actionable policies that can have a clear
impact.

Temporally, most literature either looks at either long-term future
scenarios or at short-term operational challenges. The former creat-
ing the ‘dot on the horizon’ that needs to be reached by a certain
year in order to curb climate change, e.g. discussing which energy
mixes are required (% renewables) [9], how demand can be elec-
trified [10], or the future role of nuclear [11]. The latter includes
creating new operational tools or techniques to deal with potential
effects of large-scale RES implementation and demand electrification,
e.g. grid ancillary services [12], demand side management [13], or
virtual power plants [14]. Yet there is a research gap on how to
design the pathway from today towards these future scenarios. A
multi-period setup allows the explicit inclusion of pathway effects, like
techno-economic developments, policy options, and weather variations.

Finally, most literature focuses on a single energy sector, which is
often the power sector as most RES directly supply electricity; e.g. re-
searching smart grids. Yet less than 25% of the world’s final energy
demand is currently electric [15] and most demand scenarios project
this to remain at 50% or below in the 2050 time-frame [16,17]. It is
therefore imperative to look at solutions regarding the entire energy
system in order to reach the climate goals of 80%–100% CO2 reduction
by 2050 [18]. Recently, a few papers do consider the integration of
different energy systems, which offers better perspectives for achiev-
ing a sustainable energy supply and supporting the energy transition
than traditional mono-energy system approaches [19]. Such multi-
energy systems (MES) consider all relevant energy carriers (e.g. elec-
tricity, heat, fuels) to create increased degrees of freedom [20] and
the strengths and weaknesses of each carrier can be activated or
compensated. For example, electricity is quite flexible in its end-use
2

applications and easily produced sustainably, but it is difficult to store
in the long-term. Heat is more easily stored long-term, especially sea-
sonally, but can only be used for ‘low-grade’ energy applications [21].
Fuels are easiest to store, especially long-term [22], but as of yet dif-
ficult to produce renewably and economically in large quantities [23].
However, most MES research applies ex ante simplification, either by
analyzing or optimizing the systems separately and connecting them
iteratively at one or a handful of physical [24] or virtual [25] locations,
by considering only one additional energy carrier, often gas [26,27], or
by focusing only on operational challenges [28,29].

To effectively address the challenges of the energy transition, we
simultaneously consider a multi-energy perspective to optimally com-
bine the strengths of each energy carrier and reach stringent climate
goals; a long-term, multi-period perspective to effectively help deci-
sion makers design their energy transition pathway; and an urban
perspective to create actionable policies with a clear impact. Hence,
we propose a novel optimization framework for long-term, multi-period
investment planning of integrated urban energy systems. The aim of the
optimization framework is to help urban decision makers, e.g. munic-
ipalities and distribution system operators (DSOs), design a pathway
for their energy transition such that climate goals are reached, large-
scale implementation of RES is achieved in the most cost-efficient
manner, and a safe and reliable energy system is assured along the way.
The framework includes investment decisions on energy distribution
networks, energy conversion, energy supply, and energy storage assets,
and it can incorporate existing assets (i.e. a brownfield situation). More-
over, it allows for incorporating pathway effects like techno-economic
development factors, climate policies, as well as weather variations.
In mathematical terms, we have formulated the resulting optimization
problem as a multi-period, mixed-integer linear program (MILP), com-
bining a capacitated facility location problem with a multi-dimensional,
capacitated network design problem.

We demonstrate the optimization framework with two cases: one
to show how a city can handle long-term planning under a carrier
mismatch and the other one for a temporal mismatch. A carrier mismatch
occurs when an energy carrier is still in demand like gaseous fuels, yet
supply solutions are no longer possible. In the first case this is demon-
strated with increasingly ambitious climate goals limiting a gaseous
fossil supply. A temporal mismatch occurs when energy demand and
supply do not match in time; more common in a progressively variable,
supply-driven energy system. The second case delves into inter-annual
weather variations specifically, which are generally underestimated in
long-term planning cases [30]. Both cases are based on an average city
in the Netherlands, modeled using 21 nodes, with a planning horizon
from 2018–2050, and three modeled energy carriers: electricity, gas,
and heat. These are the main energy networks used in an urban energy
setting. The city is modeled to have ambitious climate goals in line with
those of the EU: to reduce their CO2 emissions by 95% in 2050 using
large-scale implementation of RES and energy efficiency measures. The
latter is relevant as it affects the overall demand in 2050.

Our work makes three primary contributions to the existing lit-
erature. First, we propose a long-term, multi-period investment opti-
mization framework specifically for integrated urban energy systems. It
allows urban decision makers to design their energy transition pathway
in a cost-efficient manner, ensuring alignment with their forecasted
scenarios, existing assets, and climate goals. Second, we defined this
optimization framework as a novel application of the facility location
network design problem. Third, through both case studies we show the
impacts of both climate policy and interannual weather effects on the
transition of urban energy systems. Specifically, we demonstrate how
the framework can help an urban decision maker plan for the chal-
lenges of an increasingly renewable energy supply, with a transitioning

energy demand.
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Fig. 1. Challenges of the energy transition - from today to a sustainable future.
2. Mathematical modeling framework

Our framework builds upon energy hub-theory [31,32] and expands
the approach as described in our previous research [33], which was
tailored specifically to a district with limited time periods and did not
include pathway effects.

We develop a mixed-integer linear optimization model which deter-
mines when and where which investments are required. In this section,
we first provide the model notation, followed by a detailed model
formulation. This includes a description of the technical and economic
features, as well as on how (climate) policy can be incorporated into
the model. Finally, we briefly highlight the model complexity.

2.1. Model notation

2.1.1. Indices and other sub/superscripts
𝑑 Index of energy distribution assets
𝑒 Index of energy carrier types
𝑖 Index of nodes
𝑙 Index of locations
𝑚 Index of energy conversion assets
𝑚𝑎𝑥 Upper limit
𝑚𝑖𝑛 Lower limit
𝑠 Index of energy supply assets
𝑠𝑙 Standing losses
𝑡 Index of time periods
𝑢 Index of edges
𝑤 Index of energy storage assets

The model can distinguish a whole range of energy carriers 𝑒, which
can be transported using corresponding distribution network assets 𝑑,
stored with energy storage assets 𝑤 (well), and supplied by different
supply assets 𝑠. These carriers can also be converted from one to
another using conversion assets 𝑚 (mix).

2.1.2. Sets
𝐷𝐴 Set of distribution assets
𝐸 Set of energy carriers
𝐼 Set of investments
𝐿 Set of locations
𝑀𝐴 Set of conversion assets
𝑆𝐴 Set of supply assets
𝑇 Set of time periods
𝑈 Set of edges
𝑉 Set of nodes
𝑊𝐴 Set of storage assets

Note that the set of locations is different from the set of nodes. 𝑖 ∈ 𝑉
denotes the set of nodes, and 𝑙 ∈ 𝐿 denotes the set of locations, where
|𝑉 | = |𝐸||𝐿|. Each location contains a number of nodes equal to the
number of energy carriers modeled.
3

2.1.3. Parameters
𝐶𝑑
𝑢,𝑡 Capital cost of energy distribution asset 𝑑 on edge 𝑢 in time period

𝑡.
𝐶𝑚
𝑙,𝑡 Capital cost of energy conversion asset 𝑚 at location 𝑙 in time

period 𝑡.
𝐶𝑠
𝑙,𝑡 Capital cost of energy supply asset 𝑚 at location 𝑙 in time period

𝑡.
𝐶𝑤
𝑙,𝑡 Capital cost of energy storage asset 𝑚 at location 𝑙 in time period

𝑡.
𝐷𝑒,𝑙,𝑡 Demand per energy carrier 𝑒 at location 𝑙 and time period 𝑡.
𝛿 Social discount rate
𝛤 𝑑 Capacity of energy distribution asset 𝑑
𝛤𝑚 Capacity of energy conversion asset 𝑚
𝛤 𝑠 Capacity of energy supply asset 𝑠
𝛤𝑤 Capacity of energy storage asset 𝑤
𝜂𝑑𝑢 Transportation efficiency of energy distribution asset 𝑑 on edge 𝑢.
𝜂𝑚𝑒→𝑒′ Conversion efficiency of energy conversion asset 𝑚 of one energy

carrier 𝑒 to another 𝑒′.
𝜂𝑠,𝐶𝐹
𝑡 Capacity factor of energy supply asset 𝑠 at time period 𝑡.
𝜂𝑠,𝐶𝐹𝑎𝑣𝑔 Average capacity factor of energy supply asset 𝑠.
𝜂𝑤+ Efficiency of charging energy storage asset 𝑤.
𝜂𝑤− Efficiency of discharging energy storage asset 𝑤.
𝜂𝑤,𝑠𝑙 Standing losses of energy storage asset 𝑤.
𝑂𝑑,𝑓 𝑖𝑥
𝑢,𝑡 Fixed operational cost of energy distribution asset 𝑑 at edge 𝑢 in

time period 𝑡.
𝑂𝑑,𝑣𝑎𝑟
𝑢,𝑡 Variable operational cost of energy distribution asset 𝑑 at edge

𝑢 in time period 𝑡.
𝑂𝑚,𝑓𝑖𝑥
𝑙,𝑡 Fixed operational cost of energy conversion asset 𝑚 at location

𝑙 in time period 𝑡.
𝑂𝑚,𝑣𝑎𝑟
𝑙,𝑡 Variable operational cost of energy conversion asset 𝑚 at loca-

tion 𝑙 in time period 𝑡.
𝑂𝑠,𝑓 𝑖𝑥
𝑙,𝑡 Fixed operational cost of energy supply asset 𝑚 at location 𝑙 in

time period 𝑡.
𝑂𝑠,𝑣𝑎𝑟
𝑙,𝑡 Variable operational cost of energy supply asset 𝑚 at location 𝑙

in time period 𝑡.
𝑂𝑤,𝑓𝑖𝑥
𝑙,𝑡 Fixed operational cost of energy storage asset 𝑚 at location 𝑙 in

time period 𝑡.
𝑂𝑤,𝑣𝑎𝑟
𝑙,𝑡 Variable operational cost of energy storage asset 𝑚 at location 𝑙

in time period 𝑡.
𝜙𝑑 Technological development rate of energy distribution assets 𝑑.
𝜙𝑚 Technological development rate of energy conversion asset 𝑚.
𝜙𝑠 Technological development rate of energy supply asset 𝑠.
𝜙𝑤 Technological development rate of energy storage asset 𝑤.
𝛱𝑠

𝑡 Policy factor for supply asset 𝑠 at time period 𝑡.
𝜎𝑠𝑡 External factor for supply asset 𝑠 at time period 𝑡.

2.1.4. Decision variables
𝐵𝑑
𝑢,𝑡 Integer variable that represents the number of energy distribution
assets 𝑑 invested in (built) at edge 𝑢 and in time period 𝑡.
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𝐵𝑚
𝑙,𝑡 Integer variable that represents the number of energy conversion

assets 𝑚 invested in at location 𝑙 and in time period 𝑡.
𝑠
𝑙,𝑡 Integer variable that represents the number of energy supply

assets 𝑠 invested in at location 𝑙 and in time period 𝑡.
𝐵𝑤
𝑙,𝑡 Integer variable that represents the number of energy storage

assets 𝑤 invested in at location 𝑙 and in time period 𝑡.
𝐹𝑒,𝑢,𝑡 Energy flow of energy carrier 𝑒 over edge 𝑢 and in time period 𝑡.
𝑀𝑒,𝑙,𝑡 Energy conversion of energy carrier 𝑒 at location 𝑙 and in time

period 𝑡.
𝑆𝑒,𝑙,𝑡 Energy supply of energy carrier 𝑒 at location 𝑙 and in time period

𝑡.
𝑊 𝑠𝑡𝑎𝑟𝑡

𝑒,𝑙,𝑡 Energy stored of energy carrier 𝑒 at location 𝑙 at the start of time
period 𝑡.

𝑊 𝑒𝑛𝑑
𝑒,𝑙,𝑡 Energy stored of energy carrier 𝑒 at location 𝑙 at the end of time

period 𝑡.
𝑊 +

𝑒,𝑙,𝑡 Energy storage (charge/injection) of energy carrier 𝑒 at location 𝑙
and in time period 𝑡.

𝑊 −
𝑒,𝑙,𝑡 Energy withdrawal (discharge) of energy carrier 𝑒 at location 𝑙 and

in time period 𝑡.
̇𝑊 +
𝑒,𝑙,𝑡 Energy storage (charge/injection) rate of energy carrier 𝑒 at loca-

tion 𝑙 and in time period 𝑡.
̇𝑊 −
𝑒,𝑙,𝑡 Energy withdrawal (discharge) rate of energy carrier 𝑒 at location

𝑙 and in time period 𝑡.

Note that in some cases, certain decision variables should be param-
eterized. For example, if scenarios are simulated where one or more
types of energy supply are forced to decrease. Then 𝑆𝑒1 ,𝑙,𝑡, a variable
energy supply, can instead be defined as parameter 𝐸1𝑙,𝑡, varying per
location and time period.

2.2. Model formulation

The proposed long-term investment, multi-period planning model
for integrated urban energy systems is formulated as:

min
∑

𝑡∈𝑇

∑

𝑒∈𝐸
{
∑

𝑢∈𝑈

∑

𝑑∈𝐷𝐴
(𝐵𝑑

𝑢,𝑡(𝐶
𝑑
𝑢,𝑡 + 𝑂𝑑,𝑓 𝑖𝑥

𝑢,𝑡 ) + 𝑂𝑑,𝑣𝑎𝑟
𝑢,𝑡 𝐹𝑒,𝑢,𝑡) +

∑

𝑙∈𝐿
(
∑

𝑠∈𝑆𝐴
(𝐵𝑠

𝑙,𝑡(𝐶
𝑠
𝑙,𝑡 + 𝑂𝑠,𝑓 𝑖𝑥

𝑙,𝑡 ) + 𝑂𝑠,𝑣𝑎𝑟
𝑙,𝑡 𝑆𝑒,𝑙,𝑡) +

∑

𝑚∈𝑀𝐴
(𝐵𝑚

𝑙,𝑡(𝐶
𝑚
𝑙,𝑡 + 𝑂𝑚,𝑓𝑖𝑥

𝑙,𝑡 ) + 𝑂𝑚,𝑣𝑎𝑟
𝑙,𝑡 𝑀𝑒,𝑙,𝑡) +

∑

𝑤∈𝑊𝐴
(𝐵𝑤

𝑙,𝑡(𝐶
𝑤
𝑙,𝑡 + 𝑂𝑤,𝑓𝑖𝑥

𝑙,𝑡 ) + 𝑂𝑤,𝑣𝑎𝑟
𝑙,𝑡 𝑊𝑒,𝑙,𝑡))}

𝐵 ∈ 0, 1,… , 𝑁 (1)

𝑠.𝑡. 𝐷𝑒,𝑙,𝑡 ≤ 𝑆𝑒,𝑙,𝑡 + 𝛥𝐹𝑒,𝑙,𝑡 + 𝛥𝑀𝑒,𝑙,𝑡 + 𝛥𝑊𝑒,𝑙,𝑡

∀ 𝑒 ∈ 𝐸, 𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 (2)

𝛥𝐹𝑒,𝑙,𝑡 =
∑

𝑑∈𝐷𝐴
(
∑

𝑢∈𝑈 𝑖𝑛
𝑙

𝐹𝑒,𝑢,𝑡𝜂
𝑑
𝑢 −

∑

𝑢∈𝑈𝑜𝑢𝑡
𝑙

𝐹𝑒,𝑢,𝑡), ∀ 𝑒, 𝑢, 𝑡 (3)

𝛥𝑀𝑒,𝑙,𝑡 = 𝛥𝑀𝑒1 ,𝑙,𝑡 + 𝛥𝑀𝑒2 ,𝑙,𝑡 + 𝛥𝑀𝑒3 ,𝑙,𝑡, ∀ 𝑒, 𝑙, 𝑡 (4)

𝛥𝑀𝑒,𝑙,𝑡 =
∑

𝑚∈𝑀𝐴

∑

𝑒∈𝐸
(𝑀𝑚

𝑒,𝑙,𝑡(−1 +
∑

𝑒′∈𝐸
𝜂𝑚𝑒′→𝑒,𝑒′≠𝑒)) ∀𝑒, 𝑙, 𝑡 (5)

𝑊 𝑠𝑡𝑎𝑟𝑡
𝑒,𝑙,𝑡 = 𝑊 𝑒𝑛𝑑

𝑒,𝑙,𝑡−1 ∗ (1 − 𝜂𝑤,𝑠𝑙), ∀ 𝑒, 𝑙, 𝑡 > 0 (6)

𝑊 𝑒𝑛𝑑
𝑒,𝑙,𝑡 = 𝑊 𝑠𝑡𝑎𝑟𝑡

𝑒,𝑙,𝑡 + 𝛥𝑊𝑒,𝑙,𝑡, ∀ 𝑒, 𝑙, 𝑡 (7)

𝛥𝑊𝑒,𝑙,𝑡 = −𝑊 +
𝑒,𝑙,𝑡𝜂

𝑤+ +𝑊 −
𝑒,𝑙,𝑡𝜂

𝑤− ∀ 𝑒, 𝑙, 𝑡 (8)

𝐶𝐷𝐴
𝑑,𝑢,𝑡 = 𝐶𝐷𝐴

𝑑,𝑢,0(1 − 𝜙𝑑 )𝑡−𝑡0∕(1 + 𝛿)𝑡−𝑡0 , ∀ 𝑑, 𝑢, 𝑡 (9)

𝐶𝑀𝐴
𝑚,𝑙,𝑡 = 𝐶𝑀𝐴

𝑚,𝑙,0(1 − 𝜙𝑚)𝑡−𝑡0∕(1 + 𝛿)𝑡−𝑡0 , ∀𝑚, 𝑙, 𝑡 (10)

𝐶𝑆𝐴
𝑠,𝑙,𝑡 = 𝐶𝑆𝐴

𝑠,𝑙,0(1 − 𝜙𝑠)𝑡−𝑡0∕(1 + 𝛿)𝑡−𝑡0 , ∀ 𝑠, 𝑙, 𝑡 (11)
𝑊𝐴 𝑊𝐴 𝑡−𝑡0 𝑡−𝑡0
4

𝐶𝑤,𝑙,𝑡 = 𝐶𝑤,𝑙,0(1 − 𝜙𝑤) ∕(1 + 𝛿) , ∀𝑤, 𝑙, 𝑡 (12)
0 ≤ 𝐹𝑒,𝑢,𝑡 ≤
∑

𝑑∈𝐷𝐴𝑒

𝐹 𝑑,𝑚𝑎𝑥
𝑒,𝑢,𝑡 , ∀ 𝑒, 𝑢, 𝑡 (13)

𝐹 𝑑,𝑚𝑎𝑥
𝑒,𝑢,𝑡 =

𝑡
∑

𝑣=0
𝐵𝑑
𝑙,𝑣𝛤

𝑑 , ∀ 𝑒, 𝑑, 𝑢, 𝑡 (14)

0 ≤ 𝑀𝑒,𝑙,𝑡 ≤
∑

𝑚∈𝑀𝐴𝑒

𝑀𝑚,𝑚𝑎𝑥
𝑒,𝑙,𝑡 , ∀ 𝑒, 𝑙, 𝑡 (15)

𝑀𝑚,𝑚𝑎𝑥
𝑒,𝑙,𝑡 =

𝑡
∑

𝑣=0
𝐵𝑚
𝑙,𝑣 𝛤𝑚, ∀ 𝑒, 𝑙, 𝑚, 𝑡 (16)

0 ≤ 𝑆𝑒,𝑙,𝑡 ≤
∑

𝑠∈𝑆𝐴𝑒

𝑆𝑠,𝑚𝑎𝑥
𝑒,𝑙,𝑡 , ∀ 𝑒, 𝑙, 𝑡 (17)

𝑆𝑠,𝑚𝑎𝑥
𝑒,𝑙,𝑡 = 𝜎𝑠𝑡

𝑡
∑

𝑣=0
𝐵𝑠
𝑙,𝑣 𝛤 𝑠, ∀ 𝑒, 𝑙, 𝑠, 𝑡 (18)

𝜎𝑠𝑡 = 𝛱𝑠
𝑡 𝜂𝑠,𝐶𝐹

𝑡 ∕𝜂𝑠,𝐶𝐹𝑎𝑣𝑔 , ∀ 𝑠, 𝑡 (19)
∑

𝑤∈𝑊𝐴𝑒

𝑊 𝑤,𝑚𝑖𝑛
𝑒,𝑙,𝑡 ≤ 𝑊 +

𝑒,𝑙,𝑡 ≤
∑

𝑤∈𝑊𝐴𝑒

𝑊 𝑤,𝑚𝑎𝑥
𝑒,𝑙,𝑡 , ∀ 𝑒, 𝑙, 𝑡 (20)

∑

𝑤∈𝑊𝐴𝑒

𝑊 𝑤,𝑚𝑖𝑛
𝑒,𝑙,𝑡 ≤ 𝑊 −

𝑒,𝑙,𝑡 ≤
∑

𝑤∈𝑊𝐴𝑒

𝑊 𝑤,𝑚𝑎𝑥
𝑒,𝑙,𝑡 , ∀ 𝑒, 𝑙, 𝑡 (21)

∑

𝑤∈𝑊𝐴𝑒

𝑊 𝑤,𝑚𝑖𝑛
𝑒,𝑙,𝑡 ≤ 𝑊 𝑒𝑛𝑑

𝑒,𝑙,𝑡 ≤
∑

𝑤∈𝑊𝐴𝑒

𝑊 𝑤,𝑚𝑎𝑥
𝑒,𝑙,𝑡 , ∀ 𝑒, 𝑙, 𝑡 (22)

𝑤,𝑚𝑖𝑛
𝑒,𝑙,𝑡 =

𝑡
∑

𝑣=0
𝐵𝑤
𝑙,𝑣 𝛤𝑤,𝑚𝑖𝑛, ∀ 𝑒, 𝑙, 𝑡, 𝑤 (23)

𝑤,𝑚𝑎𝑥
𝑒,𝑙,𝑡 =

𝑡
∑

𝑣=0
𝐵𝑤
𝑙,𝑣 𝛤𝑤,𝑚𝑎𝑥, ∀ 𝑒, 𝑙, 𝑡, 𝑤 (24)

𝑑
𝑢,𝑡 ≤ 𝑁,𝐵𝑑

𝑢,𝑡 ∈ Z+, ∀ 𝑑, 𝑢, 𝑡 (25)
𝑚
𝑙,𝑡 ≤ 𝑁,𝐵𝑚

𝑙,𝑡 ∈ Z+, ∀𝑚, 𝑙, 𝑡 (26)
𝑠
𝑙,𝑡 ≤ 𝑁,𝐵𝑠

𝑙,𝑡 ∈ Z+, ∀ 𝑠, 𝑙, 𝑡 (27)
𝑤
𝑙,𝑡 ≤ 𝑁,𝐵𝑤

𝑙,𝑡 ∈ Z+, ∀𝑤, 𝑙, 𝑡 (28)

𝑒,𝑢,𝑡 ∈ R+, ∀ 𝑒, 𝑢, 𝑡 (29)

𝑒,𝑙,𝑡, 𝑆𝑒,𝑙,𝑡,𝑊
𝑠𝑡𝑎𝑟𝑡
𝑒,𝑙,𝑡 ,𝑊 𝑒𝑛𝑑

𝑒,𝑙,𝑡 ,𝑊
+
𝑒,𝑙,𝑡,𝑊

−
𝑒,𝑙,𝑡 ∈ R+,∀ 𝑒, 𝑙, 𝑡 (30)

Objective function Eq. (1) minimizes the total investment costs and
xpected fixed and variable operational costs of the energy system
esign over the entire planned time period. The energy system design
overs investments for each time period 𝑡, for each energy carrier 𝑒, at
ach edge 𝑢 or location 𝑙, for each asset 𝑑, 𝑚, 𝑠, and 𝑤.

Constraint (2) is the main energy balancing constraint, which en-
ures that demand of each energy carrier 𝑒 is met at each location 𝑙
nd in each time period 𝑡.

Constraint (3) depicts the main flow constraint. For each location 𝑙,
nd time period 𝑡, energy from each energy carrier 𝑒 can flow away on
dge 𝑢𝑙,𝑘, and it can flow into the location in the reverse direction. In
he latter case, energy losses are calculated using a linearized loss factor
𝑑
𝑢𝑘,𝑙

. Note that the delta flow variable for the energy balance constraint
s calculated for each location to relate to the other balancing variables,
hile the remaining flow variables relate to the edges, which is where

he flow actually occurs.
Eq. (4) is the main conversion constraint, which is depicted here

or three energy carriers 𝑒1, 𝑒2, and 𝑒3. Eq. (5) shows the generalized
onversion constraint for unlimited energy carriers 𝑒 and conversion as-
ets 𝑚. For each energy carrier 𝑒, conversion assets can either use them
or conversion (−1) or generate them from conversion with a certain
onversion efficiency 𝜂𝑚𝑒′→𝑒,𝑒′≠𝑒 from any other carrier 𝑒′. Applying this
ormula to three energy carriers leads to the following conversion (or
oupling) matrix:

=

⎛

⎜

⎜

⎜

𝑒1 𝑒2 𝑒3
𝑒1 1 𝜂𝑚𝑒1→𝑒2

𝜂𝑚𝑒1→𝑒3
𝑒2 𝜂𝑚𝑒2→𝑒1

1 𝜂𝑚𝑒2→𝑒3
𝑚 𝑚

⎞

⎟

⎟

⎟

⎝

𝑒3 𝜂𝑒3→𝑒1
𝜂𝑒3→𝑒1

1
⎠
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These matrices can also be generated for each individual carrier, then
related to the number of conversion methods.

Eq. (6), the main storage constraint, explicitly links time periods.
The energy storage level at the start of a time period is based on
the storage level at the end of the previous time period, adjusted for
standing losses 𝜂𝑤,𝑠𝑙 for each storage type 𝑤. Eqs. (7) and (8) depict
how storage levels can be adjusted within a time period: for each energy
carrier 𝑒, at each location 𝑙, and each time period 𝑡, considering storage
(charging or injection) and withdrawal (discharging) losses, 𝜂𝑤+ and 𝜂𝑤−

espectively. Together these are referred to as round-trip efficiency.
Constraints (9)–(12) contain the techno-economic development of

ach technology asset considered in the case. Future investments are
iscounted by the social discount rate 𝛿, as the design is constructed
rom the perspective of a (municipal) government, a district system
perator or both. Even though we are modeling investment decision
aking, the goal is not to maximize the return for an investor, but to

valuate the total energy system costs under different (policy-driven)
ircumstances; which is a social perspective [34]. In addition, as tar-
eted technological development is deemed crucial to accelerate the
nergy transition [35], technological learning curves are incorporated.
technology development factor 𝜙 is used, differing per asset.
Constraints (13) and (14) pertain to the maximum flow of energy

etween locations, or on edges. Let 𝐷𝐴𝑒 be the subset of distribution
ypes of energy type 𝑒. Then for each energy distribution (or network)
sset 𝑑 invested in 𝐵𝑑

𝑢,𝑡, the maximum flow possible 𝐹 𝑑,𝑚𝑎𝑥
𝑒,𝑢,𝑡 for the

elating energy carrier 𝑒 increases with 𝛤 𝑑 . Note that there is no
istinction between the construction of an edge in one direction (𝑢 ∈
𝑖𝑛
𝑙 ) or the other (𝑢 ∈ 𝑈 𝑜𝑢𝑡

𝑙 ), as energy can flow in both directions. These
nd the following constraints also link time periods, as all these energy
apacities are cumulative. If a certain capacity was already present at
location 𝑙 or on an edge 𝑢, this is still there in the next time period.

Constraints (15) and (16) define the maximum possible energy that
an be converted. Let 𝑀𝐴𝑒 be the subset of conversion types of energy
ype 𝑒. Then for each energy conversion asset invested in 𝐵𝑚

𝑙,𝑡 up to and
ncluding the current time period 𝑡, the maximum conversion capacity

𝑚,𝑚𝑎𝑥
𝑒,𝑙,𝑡 is increased by 𝛤𝑚.
Constraints (17)–(18) together define the maximum possible energy

hat can be supplied. Let 𝑆𝐴𝑒 be the subset of supply types of energy
ype 𝑒. As before, the maximum supply capacity 𝑆𝑠,𝑚𝑎𝑥

𝑒,𝑙,𝑡 can be increased
y investing in energy supply assets 𝐵𝑠

𝑙,𝑡 with capacity 𝛤 𝑠. Other than
efore, the maximum supply capacity is affected by an external factor
𝑠
𝑡 , which is defined in Constraint (19). This includes both a policy
actor 𝛱𝑠

𝑡 and weather variations impacting the capacity factor 𝜂𝑠,𝐶𝐹
𝑡

f certain supply assets, which are normalized using their average
apacity factor 𝜂𝑠,𝐶𝐹𝑎𝑣𝑔 .

Eqs. (20)–(24) depict both the minimum and maximum storage level
onstraints. These apply to both the storage and withdrawal variables,
s well as the storage level at the end of a time period; automatically
onstraining the level at the start of a time period. Let 𝑊𝐴𝑒 be the
ubset of storage types of energy type 𝑒. The minimum and maximum
torage levels 𝑊 𝑤,𝑚𝑖𝑛∕𝑚𝑎𝑥

𝑒,𝑙,𝑡 can be increased by investing in storage assets
𝑤
𝑙,𝑡 with a minimum and a maximum storage capacity 𝛤𝑤,𝑚𝑖𝑛∕𝑚𝑎𝑥.

Eqs. (25) through (28) define the domain of the investment vari-
bles. They are limited by 𝑁 number of investments per time pe-
iod. Also, the variables are restricted to being integer valued and
on-negative.

Lastly, Eqs. (29) and (30) define the domain of the remaining
ariables; all non-negative, real numbers.

.3. Model complexity

The proposed framework for multi-energy design investment plan-
ing translates to a mixed-integer linear optimization problem (MILP),
ombining a capacitated facility location problem with a multi-
imensional, capacitated network design problem. Most of the relevant
5

iterature focuses on just one of these problems, or when combined, c
t is under the assumption that both the facilities and the network
onnections are uncapacitated. To the best of the authors’ knowledge, a
ew papers consider one of them to be capacitated, but never both [36],
nd never in a multi-period problem [37]. In short, our combination
s a novel one and implies significant, additional mathematical com-
lexity. Generally, off-the-shelf commercial optimization solvers like
urobi or CPLEX can solve MILPs tractably. However, given the above-
entioned and specifically the three-dimensional network character of

he problem, even with just two energy carriers and one time period,
he optimization is already strongly NP-hard [38]. Hence, the proposed
odeling framework is first demonstrated with two long-term, but

patially small-scale cases to showcase all its functionalities without
osing tractability. This is described in the next section, as well as the
odeling setup to manage computations.

. Model demonstration

To demonstrate the investment model, we designed two sets of
ases: one to demonstrate the carrier mismatch and another to demon-
trate the temporal mismatch. The cases are applied to a 21-node system
epresenting a medium sized city in the Netherlands. First, the back-
round of the energy transition challenges is given, followed by a
rief description of the modeled city. Then the setup of both cases
re described, each with a total of 8 scenarios. Next, we describe the
esulting mathematical setup of the model. Finally, the optimization
etup is given, including software and hardware specifications, and
ptimization criteria.

.1. Demonstration cases

During the energy transition, the energy supply needs to shift from
ossil to mainly renewable. That also implies a shift to a mainly electric
nergy supply. Yet currently only 25% of the world’s energy demand is
lectric and in the Netherlands it is even lower: just 17% in 2018 [39].
s only 2% of infrastructure is renewed annually [40], this demand
ight not shift as fast as supply, causing a carrier mismatch. The first
emonstration case focuses on this challenge.

Moreover, regardless of potential financial drawbacks of an entirely
lectric energy system, such a dependency on mainly variable and
ncertain renewables would be a significant technological challenge.
ot only do most RES fluctuate on a daily and a seasonal basis, some
ven display significant inter-annual fluctuations [41]. In fact, in high
ind areas the annual yield can vary up to 30% [42]. In order to
nsure adequate supply to cover demand exclusively from fluctuating
ES, a large overcapacity would be required, in combination with
torage on several time-scales: daily, seasonal and even annual. The
atter, especially, is challenging in a purely electric system [43]. This
ighlights the second challenge of the energy transition: the mismatch
f energy demand and supply in time, or the temporal mismatch. Given
he long-term planning perspective of the current investment model,
he second case will focus on these interannual weather variations.

As different energy carriers have different characteristics and appli-
ations, the solution space becomes larger, which increases the chance
f finding better solutions. Moreover, the strengths and weaknesses
f each carrier can be activated or compensated. For example, elec-
ricity is quite flexible in its end-use applications and easily produced
ustainably, but it is difficult to store in the long-term. Heat is more
asily stored long-term, especially seasonally, but can only be used
or ‘low-grade’ energy applications [21]. Fuels are easiest to store,
specially long-term [22], but as of yet difficult to produce renewably
nd economically in large quantities [23]. In other words, short-term
arriers can be converted into long(er) term carriers and carriers can be
djusted based on the required energy service. Especially for a system
n transition, planning an urban energy system in an integrated manner

an smoothen the path from mostly fossil to mostly renewable.
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Fig. 2. 21-node case - example investment potential.
3.1.1. Modeled city
The optimization framework is demonstrated on a city represented

by 21-nodes containing three energy carriers: electricity, gas, and heat.
The timeline considered is from 2018–2050. The topology of the city is
depicted in Fig. 2, where the energy systems are projected next to each
other. This figure also shows candidate investments within and across
the three networks using dotted lines. To aid reader comprehension, we
only display all potential network connections in the heat network and
each potential asset is depicted only twice. All assets are also displayed
with their respective indices. Note that this is merely a static depiction,
while the model can invest in assets at each time period. More specifics
on the investment possibilities are given in Section 3.2.

3.1.2. Carrier mismatch case
In the modeled city, a climate ambition is projected in line with

the stricter EU goal: a 95% reduction of CO2 emissions by 2050. In
the case, this translates to a reduction of fossil gas supply, which is
also in line with Dutch ambitions to phase out fossil gas usage [44].
Yet the corresponding forecast for the demand development of this
city show significant non-electric demand remaining in 2050; hence
a carrier mismatch occurs. In Case 1, the investment model is tested
on this 95%-scenario and several scenario variations. First, a business-
as-usual (BAU) scenario (#0) is defined where the gas supply, and
thus the CO2 emissions, do not change at all. The reduction is then
gradually increased, all the way to the final scenario (#8), where a
100% emission reduction is required by 2030. Fig. 3 shows the different
scenarios. Note that Scenario 6 also ends with a 100% reduction, yet the
decline is now shaped parabolically instead of linearly as in all the other
scenarios. This allows for a slow start to ease the policy’s adoption;
followed by an acceleration in later years.

3.1.3. Temporal mismatch case
In Case 2, the investment model is tested on 8 different weather

scenarios, where all scenarios follow the same 95% reduction of CO2
emissions. The increased implementation of variable RES causes a more
supply-driven system and makes the energy system more sensitive to
temporal mismatches. The resulting designs are compared to the base
scenario (#0), which displays no variation in weather. The weather
scenarios are based on historical weather data from the Netherlands,
from 1980–2018, derived from [45,46]. This data shows average capac-
ity factors for photovoltaic (PV) and wind energy, the latter both on-
and offshore. In Scenarios 1–4, we vary the amplitude of these average
capacity factors for both PV and wind. For the variation in wind supply,
we take the average capacity factor of on- and offshore. Scenarios 5–
8 vary by the absolute capacity factors in different combinations. First,
we vary both PV and wind by + and −50%. Then we focus only on wind
variations, first looking just at the onshore, and then just at the offshore
values. Combined, these scenarios represent weather variation in differ-
ent areas, from (extremely) cloudy/calm to (extremely) sunny/windy
6

Table 1
Demonstration cases - set definitions.

Set Math elements Actual elements

𝐷𝐴 {𝑑1 , 𝑑2 , 𝑑3} {electricity, gas, and heat (pipe)line}
𝐸 {𝑒1 , 𝑒2 , 𝑒3} {electricity, gas, and heat (pipe)line}
𝐿 {𝑙1 , 𝑙2 ,… , 𝑙7} {City Part 1, . . . , City Part 7}
𝑀𝐴 {𝑚1 , 𝑚2 , 𝑚3} {CHP, HP, P2G}
𝑆𝐴 {𝑠1 , 𝑠2 , 𝑠3} {gas supply, PV supply, wind supply}
𝑇 {𝑡1 , 𝑡2 ,… , 𝑡17} {2018, . . . , 2050}
𝑈 {𝑢1 , 𝑢2 ,… , 𝑢210} |𝑈 | = |𝑉 |(|𝑉 | − 1)∕2
𝑉 {𝑣1 , 𝑣2 ,… , 𝑣21} |𝑉 | = |𝐸||𝐿|
𝑊𝐴 {𝑤1 , 𝑤2 , 𝑤3} {electricity, gas, and heat storage}

areas. Fig. 4 shows the different scenarios via the fluctuating capacity
factors for the PV and wind supply.

3.2. Mathematical setup

To provide more detail about the demonstration cases, we describe
the resulting mathematical setup. First, the sets are defined in Table 1.

The only set that has not yet been defined is 𝐼 , or the set of invest-
ments. This is defined as a union of several other sets and elements:
𝐼 = 𝐷𝐴 ∪ 𝑀𝐴 ∪ {𝑠2, 𝑠3} ∪ 𝑊𝐴. In other words, electricity can be
supplied by investing in two types of renewable sources: photovoltaics
(PV) and wind. Gas can be supplied using existing natural gas sources.
No heat supply is present. For each energy carrier modeled, one cor-
responding type of network (distribution) asset can be invested in. The
same is true for energy storage. Finally, three conversion modes are
available: combined heat and power assets (CHPs), heat pumps (HPs),
and power-to-gas assets (P2Gs).

In this demonstration, a greenfield situation is modeled: except
for the node locations and the demand development per carrier, no
assets are constructed yet. That means 𝐹 𝑑,𝑚𝑎𝑥

𝑒,𝑢,0 = 𝑀𝑚,𝑚𝑎𝑥
𝑒,𝑙,0 = 𝑆𝑠,𝑚𝑎𝑥

𝑒,𝑙,0 =
𝑊 𝑠𝑡𝑎𝑟𝑡

𝑒,𝑙,0 = 𝑊 𝑤,𝑚𝑎𝑥
𝑒,𝑙,0 = 0. Furthermore, we assume nearly all assets can

be constructed at each location or on each relevant edge. Only gas
and wind supply are constrained to nodes 2, 3, 4, and 7. The scenario
variations are implemented using the external factor 𝜎𝑠𝑡 (see Constraints
(18)–(19)). For the carrier-mismatch case, the variation is applied via
the policy factor 𝛱𝑠

𝑡 . For the temporal-mismatch case, the variation is
applied using the average and the varying capacity factors, 𝜂𝑠,𝐶𝐹𝑎𝑣𝑔 and
𝜂𝑠,𝐶𝐹
𝑡 respectively.

Additional details on the demonstrated city case can be found
here [47] and provided upon request.

3.3. Modeling setup

In each demonstration case scenario, the total number of candidate
investments is 1972. Of these, there are 1071 potential network assets



Applied Energy 292 (2021) 116880I. van Beuzekom et al.
Fig. 3. Case 1 - CO2-emission reduction scenarios 0–8 with relative carbon emissions from 2018 to 2050.
Fig. 4. Case 2 - Fluctuating weather scenarios 0–8 with relative capacity factors for PVa and Wind supply from 2018 to 2050. a N.B. Scenarios 7 and 8 do not fluctuate the PV
capacity factor and correspond to Scenario 1.
𝐵𝑑
𝑢,𝑡, 357 potential conversion assets 𝐵𝑚

𝑙,𝑡, 187 potential supply assets

𝐵𝑠 , and 357 potential storage assets 𝐵𝑊𝑤. Each asset is modeled with
7

𝑙,𝑡 𝑙,𝑡
one capacity to limit computational complexity. Using a step function
for 𝐵, larger assets are constructed. In the case study, 𝑁 = 5, so up
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Table 2
Case 1 - Main quantitative results per scenario in number of investments, total installed capacity in PJ, total costs in MEur and cost
difference with BAU Scenario 0.
# Scenario # of investments Total capacity [PJ] Total costs [M€] Cost 𝛥 [%]

0 BAU 162 23.99 133.03 –
1 25% reduction 162 23.99 133.03 –
2 50% reduction 162 23.99 133.03 –
3 75% reduction 163 24.02 133.26 0.2
4 95% reduction 208 28.56 140.56 5.7
5 100% reduction 236 31.19 149.88 12.7
6 100% reduction parabole 177 25.38 138.36 4.0
7 100% reduction by 2040 253 35.95 183.57 38.0
8 100% reduction by 2030 240 41.85 287.79 116.3
Fig. 5. Case 1 - Total investment costs in MEur (green line) and number of investments per asset (stacked bars) for Scenario 1–8 in comparison to BAU Scenario 0.
e
m

t
e
g
t
s

o 5 times the standard capacity can be built per location and time
eriod. That means the number of potential solutions is (𝑁 + 1)1972 =

3.268𝑒+1534, underlining the remaining tractability challenge.
The model is programmed in Pyomo, which is an open-source

collection of Python software packages (version 3.7) specific for opti-
mization modeling. It is solved with the Gurobi Parallel Mixed Integer
Programming (MIP) solver version 8.1.1. All runs were executed using
system with Windows 10, a 2.3 GHz processor and 16 GB of RAM.
The optimality gap was set as low as possible, balancing run time and
memory usage, to an absolute value of 1%.

4. Results

4.1. Carrier mismatch

Fig. 5 shows the total investment costs and the cumulative number
of investments per asset for each carrier mismatch scenario compared to
he business-as-usual (BAU) scenario. Table 2 shows all totals quantita-
ively, including the installed capacity and a cost comparison between
he BAU scenario and the other scenarios. A clear upward trend is
isible: the more strict the required CO2 reductions, the higher the total
nvestment costs. In the extreme scenario of a 100% reduction in 2030,
he costs more than double.

.1.1. Results per scenario
The results of the BAU scenario equate to the current brownfield

nergy infrastructure, or whatever investments have been required to
anage the energy balance of the modeled city in 2018. The bulk

f the investments are in network infrastructure, of which mostly
lectricity and gas networks and a few heat network connections.
8

econd are the number of conversion units, though in total investment
costs these amount to about the same as the networks. In capacity,
mostly Combined Heat and Power assets (CHPs) are required (about
5 PJ), followed by a significant number of Heat Pumps (HPs), which in
capacity amount to about 1 PJ. Given that this case relies on a majority
of gas supply, with a diminishing gas demand and remaining electricity
and heat demand over the entire time period, constructing an asset
that converts said gas to both electricity and heat is favorable. A few
renewable energy supply sources (RES) are built, both photovoltaics
(PV) and wind, to satisfy the remaining demand.

The next two scenarios, with 25 and 50% reduction, do not de-
viate from the BAU results. This can be explained from the demand
development in the case study. Due to expected energy efficiency im-
plementations and increased electrification, especially the gas demand
decreases over time. That gives room to the maximum gas supply to
decrease before additional investments are required. Even a 75% CO2-
missions reduction only requires one additional conversion unit to
anage the energy balance in later time periods.

As the carbon limit moves towards stricter values (Scenarios 4–8),
he investment mix changes in a number of ways. There is no longer
nough gas supply to generate enough heat through CHPs, so it is
enerated using electricity through HPs instead. In addition, in the final
ime periods there is still a gas demand, yet no longer sufficient gas
upply. This is where the carrier mismatch manifests. To manage the

energy balance, investments in additional PV supply combined with
Power-to-Gas conversion assets (P2Gs) are made. In addition, long-
term gas storage starts to play a role. We show this in more detail in
Fig. 6 for Scenario 4, the main scenario for the modeled city where
a 95% CO2-reduction is required by 2050. To arrive at a 100% linear
reduction, a handful of additional conversion units are required and a
lot of additional RES supply assets are constructed.
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Fig. 6. Case 1 - Energy demand input (stacked bars) and resulting energy flow (lines) in PJ from 2018 to 2050 for Scenario 4.
Fig. 7. Case 1 - Energy demand input (stacked bars) and resulting energy flow (lines) in PJ from 2018 to 2050 for Scenario 6.
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An interesting result to highlight is shown in Scenario 6, or the
arabolic pathway to 100% CO2-reduction (see Fig. 7). This scenario is
heaper than even the 95% reduction scenario. The ability to postpone
ertain expensive investments is highly beneficial. This is driven by
he techno-economic developments the model accounts for. First of all,
uture investments are discounted using the social discount factor 𝛿.
ence, the further into the future, the higher the discounted investment
alues. This effect is especially beneficial to make relatively expensive
echnologies more cost-competitive; like long-term gas storage. Second,
ifferent assets are assigned different technological development rates
𝜙), which compounds upon the interest rate. This effect is notably
eneficial for P2G conversion investments, as this technology is very
xpensive initially, yet is expected to make significant development
teps. As gas supply decreases, long-term gas storage or the application
9

a

f P2G conversion are the two ways to meet the remaining gas demand.
n the parabolic scenario, the maximum gas supply is at the same level
s the 50% reduction scenario in 2040, before dropping to zero in 2050.
hat means most investments can be concentrated in the last decade,
hen they are at their lowest cost. Interestingly, this scenario favors gas

torage over P2G investments, because there is still enough fossil gas to
tore and extract to cover the final few time periods. Note that because
f this, a 100% reduction of gas supply in 2050 does not equate a 100%
eduction of CO2 emissions. It is simply postponed use of fossil gas. In
ll the other 100% reduction scenarios using gas storage, the reduction
f gas supply does equate to a carbon neutral result. In those, the gas
hat is stored is actually generated in renewable fashion: via RES supply

nd P2G conversion.
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Fig. 8. Case 2 - Total investment costs in MEur (green line) and number of investments per asset (stacked bars) for Scenario 1–8 in comparison to BAU Scenario 0.
Table 3
Case 2 - Main quantitative results per scenario in number of investments, total installed capacity in PJ, total costs in MEur and cost
difference with BAU Scenario 0.
# Scenario # of investments Total capacity [PJ] Total costs [M€] Cost 𝛥 [%]

0 Steady weather 208 28.56 140.56 –
1 Historical weather 226 30.81 139.55 −0.7
2 0.5 × historical amplitude 213 29.09 139.62 −0.7
3 1.5 × historical amplitude 239 31.32 139.76 −0.6
4 3 × historical amplitude 271 32.99 141.20 0.5
5 𝜂𝑠,𝐶𝐹

𝑡 = 0.5 × 𝜂𝑠,𝐶𝐹𝑎𝑣𝑔
𝑡 342 44.60 209.11 48.8

6 𝜂𝑠,𝐶𝐹
𝑡 = 1.5 × 𝜂𝑠,𝐶𝐹𝑎𝑣𝑔

𝑡 198 27.19 127.05 −9.6
7 𝜂𝑤𝑖𝑛𝑑,𝐶𝐹

𝑡 = 1.5 × 𝜂𝑤𝑖𝑛𝑑𝑂𝐹𝐹 ,𝐶𝐹𝑎𝑣𝑔
𝑡 220 30.53 132.75 −5.6

8 𝜂𝑤𝑖𝑛𝑑,𝐶𝐹
𝑡 = 1.5 × 𝜂𝑤𝑖𝑛𝑑𝑂𝑁,𝐶𝐹𝑎𝑣𝑔

𝑡 176 28.17 125.47 −10.7
The final two scenarios 7 and 8 show the consequences of (sig-
nificant) policy acceleration. The total investment costs increase im-
mensely, as much of the gas demand needs to be met through al-
ternative routes: either via additional gas storage, or by additional
RES supply and P2G conversion, or both. All of these assets are still
very expensive so early in the planning period. Even in these extreme
scenarios, heat storage is never required as there are many cheaper
conversion options to generate heat within a time period. Electricity
storage is also not considered, as annual standing losses for electricity
storage assets are extremely high. This makes it much less cost-efficient
to use than other balancing options in this long-term perspective.

Overall, although the BAU scenario is the least costly, it is interest-
ing to note that significant carbon emission reductions can be achieved
with little cost increase. A 75% reduction is just 0.2% more expensive.
The city’s target of 95% CO2-emissions reduction induces only 5.7% ad-
ditional costs. And if the municipality decides to implement a parabolic
reduction target, they can achieve a 100% reduction in 2050 for just
a 4.0% increase in investments. However, this is not entirely carbon
neutral as mentioned before. If they adopt a linear approach to a 100%
reduction, it would cost 12.7% extra by 2050, but this would guarantee
a carbon neutral solution. And if the climate goals are required to
become even more stringent, investment costs increase exponentially:
with 38% and even 116.3% if the 100% target needs to be achieved by
2040 or 2030 respectively.

The main question that these results raise is whether these demand
projections will actually come to pass. If the demand for gas does not
decrease as significantly as it does in these scenarios, the carrier mis-
match is even higher and the investment costs are bound to increase. As
10
is evidenced in the final two scenarios and in the significant difference
between the parabolic scenario and the linear scenarios. Since demand
development is one of the main uncertainties in nearly all energy
models, it warrants further analysis. Additionally, the development of
both economic and technological characteristics, especially on such a
long-term, are also very uncertain. And both can significantly impact
the results. If certain technologies develop or are discounted differently,
the trade-offs between different investments can shift.

4.2. Temporal mismatch

Fig. 8 shows difference in the cumulative number of investments
and the total investment costs per asset for each temporal mismatch
scenario compared to Scenario 0, the base scenario for Case 2. It models
a 95% CO2-reduction in which the weather does not fluctuate (as
Scenario 4 in Case 1). Table 3 shows these results as well, including
the total installed capacity as well as the cost compared to the base
scenario.

In Scenario 1, historical weather variation is included and this leads
to a few more investments, mostly in RES supply. Counter-intuitively,
the total investment costs are lowered, as this scenario requires less
investments in earlier (more expensive) time periods, and adds all its
additional investments in later time periods. It profits greatly from the
techno-economic effects and it benefits more from higher electricity
supply in good weather years than that it loses in bad weather years.

In Scenarios 2–4, where we vary the amplitude of historical weather
variations (Scenario 1), there is a slight upward trend compared to
Scenario 0 in the number of investments. Yet only Scenario 4, with
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Fig. 9. Case 2 Results - Energy demand input (stacked bars) and resulting energy flow (lines) in PJ from 2018 to 2050 for Scenario 4.
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n amplitude of three times the historical amplitude, actually shows
higher total investment cost. At this point, even though the output

s higher in good years, the lower output in bad years requires more
nvestments to maintain the energy balance. Especially the additional
etwork investments make this scenario more expensive. Even though
t also builds many more RES supply assets, those are concentrated in
he final time periods and do not incur much additional costs; similar
o Scenario 1. Fig. 9 shows specific results for Scenario 4, where the
xtreme amplitude variation of the PV and wind capacity factors is
learly visible in the variation of the electricity supplied.

In the second set of scenarios (5–8), the results are more extreme. If
he overall output of the RES supply is lower (Scenario 5), the required
nvestments in renewable supply are much higher, and vice versa
Scenarios 6–8). Scenario 5 is almost 50% more expensive than the
teady weather Scenario 0. Most additional investments are required
n the RES supply, followed by the number of conversion assets, which
s unlike the other scenarios. Both the number of CHPs and HPs at the
eginning of the planning period are increased, as well as the number
f HPs in the second half of the planning period. Simultaneously, the
istribution of the conversion units is more uniform across all seven
ocations. The network investments also change significantly: on the
ne hand, the number of gas networks built is increased by more than
0% and on the other hand, the heat network is halved. It is more
eneficial to transport gas to more nodes, and apply CHP conversion
ore locally. And in later time periods it is more beneficial convert

lectricity supply directly to heat, rather than to transport this heat to
ther nodes. In this scenario, we find that when the local RES supply
s lower, a more distributed model with local conversion units is more
ost-effective.

The last three scenarios highlight three different results:

1. the consequence of incorporating fluctuating weather
2. the inclusion of more sunny weather
3. the difference between on- and offshore wind patterns

First, all three scenarios are significantly cheaper than the steady
eather scenario (see both Fig. 8 and Table 3). This feels obvious,
s the RES generate more supply. Yet as the supply fluctuates with
he weather, that can incur additional costs. We do see that all three
cenarios require more network investments to distribute the energy
lows when the RES supply is high, yet the decreased number of RES
nvestments weighs heavier on the total costs.
11
In Scenario 6, the capacity factor of both wind and PV supply are
increased, whereas the last two scenarios only increase the capacity
factor of the wind supply. Since PV supply has no spatial restrictions,
it can be supplied more directly where demand arises. Hence, less
network assets are required in this scenario. PV also displays less
overall variation than wind, reducing the need for storage assets.

Finally, the difference between the last two scenarios is also quite
interesting. If the wind supply is strictly offshore, especially in windy
conditions (i.e. with an increased capacity factor), the actual supply is
much higher, requiring less RES assets than if the wind supply is strictly
onshore (see also Fig. 10). Though it should be noted that the current
cases do not factor in transportation losses outside the city limits, which
would increase with an offshore wind supply. Yet the difference is such
that we can confirm the attractiveness of an offshore wind supply in
general; as it generally has a much higher capacity factor than onshore
wind.

5. Discussion and conclusions

This paper presents an optimization framework for long-term, multi-
period investment planning of integrated urban energy systems. It
aims to help urban decision makers design a pathway for their energy
transition such that climate goals are reached, and large-scale imple-
mentation of renewable energy sources (RES) is achieved in the most
cost-efficient manner, all while assuring a safe and reliable energy sys-
tem. Our model allows for a fully coupled network planning, including
investments in conversion, supply, and storage assets for each energy
carrier considered. It incorporates both relevant physical constraints
as well as techno-economic developments for each of these assets.
Finally, we pay specific attention to the incorporation of other pathway
effects, like (time-dependent) climate goals, and interannual weather
variations. We demonstrate our model and specifically the carrier- and
the temporal mismatch using two case studies based on an average city
in the Netherlands.

In the first case, climate goals are incorporated as CO2-emission
eduction targets, specifically targeting the fossil, natural gas supply.
e find that absent any reduction targets, the energy system design

emains as it is today, as the 2050 projection shows a reducing overall
nergy demand mostly due to energy efficiency implementation. From a
5% CO2-emissions reduction onward, more investments are required.
ere one can clearly see the carrier mismatch being solved: supply is
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Fig. 10. Case 2 - Energy demand input (stacked bars) and resulting energy flow (lines) in PJ from 2018 to 2050 for Scenario 8.
constructed in the form of electricity-producing RES and in order to
also meet increasing heat and remaining gas demand, conversion assets
are used to convert this electricity to both other energy carriers. As
the reduction targets become more stringent, even relatively expensive
long-term storage using the gas carrier becomes relevant. Strikingly,
the scenario (#6) with a parabolic 100% carbon emission reduction
policy by 2050 deviates from this trend. All of its investment results
are lower than those of Scenario 5 (100% linear reduction by 2050)
and even of Scenario 4 (95% linear reduction). In other words, the city
could reach a more stringent climate target more cheaply, if it were
to implement its policies more slowly in the first decades and with a
stronger acceleration towards 2050. This is an important finding and
demonstrates the real-world value for decision makers.

In the second case, interannual weather effects are incorporated us-
ing historical data. These influence the capacity factors for PV and wind
supply, altering the available RES supply per time period. Especially in
the second half of the planning scope, as RES become more prevalent,
more temporal mismatches occur during so-called bad weather years.
To ensure a continued reliable energy supply, the model invests in
long-term storage and conversion assets, as well as more RES supply,
which is similar to the first case. Yet differently, it leans more towards
PV investments as opposed to investments in wind, as the interannual
variation in the latter is much more significant. Despite the fact that the
cost per energy unit generated is slightly lower for wind. Again, this is
an important finding for decision makers. Also notable is the difference
in effects of varying the amplitude and the absolute of the capacity
factors. Less steady weather clearly requires more investments, but a
much lower, or much higher capacity factor creates more significant
effects on the required investments. This shows the potential both
of optimal siting of RES projects, as well as of further technological
innovations beyond mere cost reductions.

Our analysis focuses on the use of multiple integrated energy sys-
tems as a robust and flexible way of managing the challenges of the
energy transition, like the carrier mismatch and the temporal mismatch
between current and future energy demand and an increasingly renew-
able energy supply. Potential solutions for both are demonstrated in the
cases with different supply variations in a deterministic manner to limit
computational complexity. However, the long-term planning of energy
systems is characterized by a deep level of uncertainty and (modeling)
complexity [48]. Besides weather and policy variations, projections of
demand and techno-economic developments vary widely, and all of
12
these can have significant effects on the results [49]. Handling such
uncertainty while managing complexity is integral when constructing
useful energy system models for decision makers [50]. This is an
area the authors are currently researching using a novel exploratory
modeling approach [51].

Another interesting future research direction is to incorporate
brownfield data. Urban areas generally have an existing energy infras-
tructure, which has significant impact on cost-effectiveness of certain
solution directions. Moreover, incorporating such information as a
starting solution to this optimization framework could help reduce the
number of potential solutions and thus reduce complexity. However, to
fully capture the impact of existing infrastructure, it helps to include
asset age and expected lifetimes. Both can be incorporated into the
framework by adjusting the investment costs to reflect maintenance and
replacement options, to make the modeling more realistic. Yet such an
addition adds complexity.

A third research direction is to include the operational challenges of
these integrated energy systems in transition. From daily and seasonal
weather effects on the supply side, to the use of demand-side flexibility;
effects that generally occur at shorter timescales [52]. Given the model
complexity, incorporating such operational challenges can be more
effective in an iterative manner; similar to how generation expansion
planning and dispatch models are coupled in power systems.

Finally, future work also aims to expand towards even larger cases,
ultimately aligning with the actual energy assets of a city. In an average
city, that could mean anything from zero up to tens of heat stations,
hundreds of gas stations, and even three to four times as many elec-
tricity stations at MV-equivalent level. As the complexity of the model
increases exponentially due to the three-dimensional network aspect,
these future studies should also focus on managing the computational
and mathematical challenges.
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