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Open questions on the photophysics
of ultrafast singlet fission
Justin C. Johnson 1✉

Ultrafast singlet fission has the potential to facilitate highly efficient photo-
voltaics through the multiplication of excitons in organic molecular architectures.
Here, we consider the interplay of molecular structure and intermolecular cou-
pling toward enabling ultrafast singlet fission and discuss open questions in
the field.

Singlet fission is a photophysical process by which a photoexcited singlet state generates two
triplet excited states in proximal chromophores1. Early observations of this process date back
more than half a century2 but until recently singlet fission seemed fated to anachronism.
Renewed interest in the past decade is largely due to the recognition that singlet fission can
potentially enhance solar energy conversion efficiency3.

Recent progress has been particularly strong toward the elucidation of the key intermediate in
the scheme, the triplet pair (TT). Ultrafast and multidimensional laser spectroscopy, sophisti-
cated organic synthesis, and powerful electronic structure calculations have combined to produce
a detailed picture of triplet pair formation. Time-resolved electron paramagnetic reso-
nance (EPR) spectroscopy has further carried the investigation of the triplet pair, from theo-
retical construct to experimental validation in the past half-decade. However, completion of the
singlet-fission process requires that triplet pairs become independent species (i.e., two quasi-
particles are born from one parent). Determining the rules governing this last step are leading to
an unexpected richness of the photophysical tableau of coupled organic chromophores4.

Figure 1 shows the singlet-fission process in schematic form for the case of a periodic crystal
(i.e., tetracene5). Molecules absorb light and produce a singlet excited state shared by several
neighbors, in which some charge-transfer (CT) character may reside. Subsequently, two localized
excitations both in the triplet state (TT) are born, which enables the S1→ TT conversion in some
cases as fast as 100 fs. Lastly, the two triplets transfer among the molecules in the ensemble
incoherently to become independent excitons (T+ T). The details of each step, as they depend
on molecular structure and intermolecular coupling, have begun to slowly emerge.

Singlet fission can proceed efficiently even on a picosecond or nanosecond timescale6.
However, it is often the case that in a device other fast competing processes, such as energy and
charge-transfer at molecule/semiconductor interfaces, occur from singlet states. This degrades
the yield of triplets to lower than 200%, limiting singlet fission usefulness in practical situations7.
All the same, the limits of ultrafast singlet-fission raise intriguing fundamental questions, because
they may encroach on strong coupling and coherent regimes in molecular aggregates. Currently,
the primary questions remaining to understand ultrafast singlet fission are related to how to
reconcile classic mechanisms in the molecular photophysics of more familiar excited state
processes (e.g., charge and energy transfer), with the uniqueness of singlet fission, namely the
multiexcitonic nature of the singlet-fission products. Further, ostensibly extrinsic factors, such as
the accompanying nuclear motions, have emerged as potentially crucial elements. Below we
categorize the vanguard research in terms of the pressing questions that continue to drive
researchers to investigate the singlet-fission process.
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What are the key factors that drive ultrafast singlet fission?
Under most circumstances, electronic state coupling between
chromophores is a critical parameter that dictates the S1→ TT
rate, via the Fermi’s Golden Rule1. In rare cases, this coupling is
especially strong and the rate becomes coupling independent—
the adiabatic regime8. An active area of singlet-fission research,
both computational and experimental, is modulating inter-
chromophore coupling through covalent dimer design and crystal
engineering to test the bounds of nonadiabatic vs. adiabatic
regimes and to engender both fast TT formation time and effi-
cient TT dissociation. Although it is desirable to be in the strong
coupling regime to quickly produce TT, completion of singlet
fission to form T+ T could still be hindered because a lowering of
the S1 energy is often accompanied by strong coupling, resulting
in a thermodynamic barrier9. Further, deleterious pathways from
TT back to the singlet excited or ground state can be facilitated10.

The involvement of charge-transfer (CT) character in the
photoexcited singlet is another major factor that has been
implicated in ultrafast singlet fission, as it can lead to a facile
route to triplet pairs through a so-called “mediated” mechanism1.
The energy of the CT state can be controlled through molecular
structure11, crystal engineering, and the solvent environment12.
In a near-resonant situation, S1, CT, and TT states may all be
accessible on sub-ps timescales, or mixed into the character of the
initially photoexcited state. Ultrafast spectroscopy methods can
often selectively probe the various species and resolve how they
participate in the ultrafast singlet-fission mechanism.

The process of transforming between TT and the pair of
independent triplets is often the rate determining step, and can be
controlled through modifying the free-energy landscape between
reactant and product. The larger the overall energy offset, or
exothermicity, the faster the process tends to be, up to a limiting
value13. Discovering and designing molecules with an appropriate
exothermicity is a topic that has received considerable attention14.
However, determining the rate dependence on exothermicity is
more complex than measuring the enthalpy change of the overall
transformation because the scheme can be arrested at the inter-
mediate bound TT pair unless appropriate avenues for its
separation are provided. Here, the factors involved are both
enthalpic and entropic, and it is largely the pathways available
toward triplet products isolated spatially that determine the speed
of free triplet formation. Most polyacene derivatives with five or
more benzene rings have ample enthalpic contributions (>0.1 eV)
to undergo fast TT formation with even weak coupling, but the
second step of singlet fission is only realized in chromophore
architectures where triplets can separate efficiently15. Schemes for
introducing many product microstates (i.e., delocalization in a

crystal, or conformational states in a covalent system16) are now
routinely applied to render TT formation ultrafast17 despite
limited exothermicity and to assure efficient T+ T production,
sometimes on timescales of only a few ps.

How do the spin states of the triplet pair influence free triplet
formation?
The most commonly accepted model of the triplet pair has a
manifold of nine spin sublevels into which population may flow after
the first step of singlet fission1. Initially, the singlet-spin state 1(TT)
forms due to the principle of conservation of spin angular momen-
tum during the S1→TT transformation. However, the population
can evolve toward other spin states, including the intermediate spin
3(TT) and the highest spin quintet 5(TT). Which states ameliorate or
strengthen the binding of the triplets to each other is largely dictated
by the proximity and relative disposition of the pair of chromophores
involved18. Time-resolved EPR spectroscopy has allowed researchers
to investigate which of the various spin states the triplet pair can
access and how the population evolves toward independent triplets.
For example, 3(TT) may instigate an internal conversion process to a
single triplet19, effectively annihilating one of the triplets of the pair
and undermining the process. No such scheme exists for 5(TT), and
thus in some cases it leads to unique long-lived EPR signatures and
eventually independent triplets. Note, however that the time-
resolution of EPR is limited to the nanosecond regime; therefore,
these measurements are not a direct probe of ultrafast singlet
fission20,21. Theoretical understanding of this process can currently
offer only some qualitative guidance, because it requires various
approximations, including limiting cases of strong or weak exchange
coupling and high molecular symmetry. Progress in this area will
require concurrent development of detailed models alongside incisive
optical and magnetic resonance probes capable of tracking popula-
tion dynamics on appropriate timescales in well-defined inter-
molecular juxtapositions22.

What molecular motions accompany or instigate singlet
fission?
The nuclear motions that accompany the transformation from S1 to
TT and then to T+T are other limiting factors on the singlet-
fission rate. In some cases, modes are predicted to break certain
symmetries that make TT formation allowed23. In other scenarios,
distance or conjugation modulated by intermolecular motions is
suggested to improve the electronic coupling, creating a “gate”
geometry at which singlet fission is ultrafast24,25. Intramolecular or
intermolecular motions can also instigate fast singlet fission if there
exists an intersection between S1 and TT potential energy surfaces
(Fig. 2), through which population can funnel on timescales of ps or
even fs26. The involvement of such vibronic modes in the electronic
transformation are implicated in a variety of systems27, possibly
circumventing the aforementioned need for strong electronic cou-
pling in the equilibrium geometries of the dimer or crystal. If
conditions are right the accompanying modes can be transmitted
through the intersection and detected in the product electronic
states through impulsive excitation and observation of vibrational
coherences in pump-probe experiments28,29. The field has pre-
dominantly been exploring and discovering the influence of mole-
cular motions, and rationally creating systems poised to take
advantage of these effects will be a considerable but potentially
impactful challenge for future investigations.

Outlook
Although realizing the practical advantages of employing singlet
fission in a solar photoconversion system possesses significant
challenges, the foundational principles remain under intense
investigation by a variety of scientists because of the rich diversity of

Fig. 1 Schematic of the singlet-fission process. a Energy level arrangement
of ground and excited singlet states (S0 and S1), triplet pair (TT), the
independent triplets (T+ T) and charge-transfer (CT) states. Teal shade
indicates the possibility of state mixing. b Example of spatial arrangement
and interconversion of species involved in ultrafast singlet fission, including
initial delocalization of S1.
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effects encompassed. Precisely defined intermolecular geometries
and experimental conditions will help to improve opportunities to
assess comparative singlet-fission models that are currently under
intense debate. In particular, more comprehensive models may
need to be developed to understand singlet fission in the context of
concurrent or competing processes that occur naturally in the bulk
or at materials interfaces. Additional opportunities for triplet pair
utility, such as in quantum information, will likely emerge as our
understanding of dynamics becomes more complete.
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Fig. 2 The role of geometrical rearrangements in singlet fission. a After
photoexcitation (green) from S0, molecular motions (dashed) on the S1
potential energy surface propel the geometry toward the curve crossing
with TT. b Both intramolecular (straight arrows) or intermolecular (curved
arrows) motions can facilitate ultrafast conversion to the triplet pair.
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