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Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied,
or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors expressed herein do not necessatrily state or
reflect those of the United States Government or any agency thereof.

This report has been prepared under grant DE-EE-0008766 and is provided to the U.S. Department of Energy
Geothermal Technologies Office. This report may contain information that is confidential in nature and should not be

disclosed outside of the U.S. Department of Energy.
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Wairakel Steamfield




How Engineers See it
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How Python Sees It » 20+ component models

» wells, turbines, weir boxes,
join junctions, flash plants,
wellhead separators, etc...

» 3 system frameworks
* historical, forecast, and
uncertainty

175 Iinterconnected
components in the
Wairakei model:

» 29 flash plants

* 68 junctions / manifolds
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Simplified System Network
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Model Development and Architecture

GOOML component models fall into two system frameworks:

Forecast Model
(Regression + Prediction)

Historical Data Model
(Data Assimilation)

Well Model Well Forecasts

Flash Plant Model Flash Plant Regression

Turbine-Generator Turbine-Generator Regression

Binary Plant Binary Plant Regression
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Flash Plant Modeling

 Based on a TensorFlow feed-
forward neural network

* Physics-informed features using

“traditional” semi-empiric relations:

* Pressure drop

* Residence time

« Cyclone design number
« Theoretical flash fraction
* etc...

ccoml®

007 1

0.06 1

005 4

004 1

003 1

002 4

001

Saliency Map

Separation Efficiency
0.5

Training Loss

—— mean_squared_error
val_mean_squared_ermor




Flash Plant Modeling
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» Saliency maps show how the model architecture affects overfitting
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Intermediate-Pressure Steam
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System-Level Reinforcement Learning

GOOML Environment
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Reinforcement Learning Experiment

« Agent Controls: .
* |P Pressure (+/- 2 bar) f

 LP Pressure (+/- 1 bar)
 Control Well Pressure (+/- 2 bar)
g g /

« Reward:
a0 .I (ﬂ.

« Based on power
* Relative to the "baseline” scenario v\
I'NII '

* Results:
* Added 20 MWe* to the system!
*could be pushing the environment to un-acceptable operating conditions.
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High Level Conclusions

The GOOML framework is a powerful tool for geothermal analysis

» Forecasts:
« The GOOML system can forecast future operational scenarios

* Operations:
« Reinforcement learning agents can act as operation suggestion engines
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Looking Forward

 Additional research:

« Steamfield design optimization
» Reinforcement learning validation

 Additional steam field models:

 NTGA Kawerau (model built, being validated)
 ORMAT McGinness Hills (model built, being validated)

» Open-source software
« Coming soon!
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Good

SCoM

to you all!
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