
A few parameters needed
to be determined. (right)
The diffusion coefficient 
was scaled to match 
voltage curves from 
Colclasure et al. [3]. (left)
The crack initiation, 𝑘𝑘𝑖𝑖, was determined by comparing capacity loss from Baseline simulations to 
experimental result from Tanim et al. [39].
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Above are results from all simulations. The left column computed capacity loss by comparing 
the C/20 discharge capacity after formation and after 25 cycles. The right column is the same 
calculation but using a C/2 rate.  Parts a) and c) compare the geometries with varying secondary 
particle size and b) and d) compare the geometries with varying grains. 

For the secondary particle size study,  the smaller particle performs better in terms of capacity 
retention regardless charge rate.  The larger particles have worse capacity retention due to the 
relatively longer diffusion lengths, which result in larger concentration gradients resulting in 
increased stress/damage.

For grain size study, the trend is less obvious. When comparing C/20 discharge times in b), 
there seems to be no preference between small and large grains. However, for C/2 in d) there is 
a slight preference for large grains.  This is because at slow charge rates, the mismatch of grain 
orientation does not significantly hinder diffusion, but at faster charge rates, Li must take more 
tortuous paths through the mismatch grains to reach the center.  This results in longer effective 
diffusion lengths for geometries with smaller grains.

A Li-ion battery has two electrodes, the anode and the cathode, with electrolyte percolating 
between them.  When cycling, the battery can lose capacity.  Diagnosing reasons for this 
capacity loss and developing design/control strategies to address this capacity loss is of great 
interest.  

One possible source of capacity loss is cathode degradation.  The cathode is composed of 
numerous secondary particles bound together by electrolytically conductive carbon-binder.  
These secondary particles are made of smaller primary particles commonly referred to as grains.

The goal of this study is to develop a continuum-damage model that investigates conditions 
that can lead to NMC532 (cathode) secondary particles degradation.  The conditions studied 
here are the charge rate, secondary particle size, and primary particle size.  The continuum 
model is written in such a way to improve computational speed and efficiency. 

Damage/capacity loss seems to be strongly tied to the effective diffusion length of the 
secondary particle geometry. Because of this, smaller NMC532 secondary particles with large 
grains experience less capacity loss due to chemo-mechanical effects.

All simulations are ran using a Python package built on the FEniCS project [2]. The meshes 
were around 800k degrees of freedom for the electro-mechanical system and a single 
charge/discharge cycle ran in ~1 hr 40 min on 72 processors.

Four sets of charge conditions are demanded per Geometry. Before cycling, a formation 
procedure is simulated consisting of three, C/10 cycles followed by an additional three, C/2 
cycles.  After formation, each particle is cycled an additional 25 times at 1C, 4C, 6C, and 9C 
charging for 60, 15, 10, and 10 minutes, respectively.  The constant-current constant-voltage 
charge has a cut-off voltage of 4.2 V.  Particles are then discharged at a C/2 rate until 3.4 V.  
Reference performance tests (RPT) of C/20 charge/discharge are simulated after formation and 
after 25 cycles for each condition.  The RPT discharge capacities are compared to determine 
cathode capacity fade.  Below are results for the Baseline Geometry after 25 cycles.

This study investigated 5 different 
geometries that varied in both secondary 
particle size and grain size.  These 
geometries were constructed using a 
statistically inform algorithm from from Furat
et al. [1].
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Note: The charge rate (used to calculate       ), is the current 
required to completely charge a particle in one hour, usually 
denoted: 1C. A C-rate of 6C is the current required to charge 
in a sixth of an hour and C/2 charges in 2 hours.
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