

Is 3D/2D passivation a secret to success for polycrystalline thin-film solar cells?

Deborah L. McGott E-MRS Spring Meeting 2 June, 2021

COLORADOSCHOOLOF MINES.

1 'High-performing' thin-film photovoltaics

- **2** Advantage of 2D surface layers
- **3** 2D layers in CIGS, CdTe, and perovskites
- 4 Improved lifetime and voltage in 3D/2D systems
- **5** Design rules for incorporating 2D materials

Thin-film photovoltaics

			per	ovskit	е	
cadmium telluride		solar cells Culn _{1-x} Ga _x Se ₂				
Polycrysta		lline				
		→ CdTe	CIG	S		PSCs
Annual production		>5 GW/yr	>1 GW/yr		~ 0 GW/yr	
Record cell efficiency		22.1%	23.4%		25.5%	
Growth order		superstrate	substr	ate	superst substra	rate or te
Composition		II-VI	I-III-VI ₂		Organic / I-IV-VII ₃	
Majority carrier concentration (cm ⁻	1ajority carrier oncentration (cm ⁻³)		p ~ 10 ¹⁶		n, p ~ 10 ¹⁴ - 10 ¹⁶	
Minority carrier lifetime (ns)		1-40	20 - 400		150 – 2,000	

McGott et al. DOI: 10.1016/j.joule.2021.03.015

Key Similarities

- Inexpensive
- Rapid deposition
- Polycrystalline

Advantage of 2D surface layers

McGott et al. DOI: 10.1016/j.joule.2021.03.015

- Defective surface → recombination
- Good charge transport in bulk

- Chemically passive surface
- Poor interlayer charge transport

- Good bulk transport
- Passivated surface
 → Natural synergy

$2D XInSe_2 (X = K, Rb, Cs) in CIGS$

- Na-based post deposition treatment (PDTs) replaced with heavy-alkali (K, Rb, Cs) PDTs
- Alkali accumulation at absorber surfaces
- Direct evidence (TEM) for 2D layer formation

Lin et al. DOI: 10.1016/j.nanoen.2019.104299

CdS RbInSe₂ 5 nm CIGS

Taguchi et al. DOI: 10.1063/1.5044244

2D CdCl₂ in CdTe

Cleave + surface analysis reveals chlorine in form of 2D CdCl₂

See McGott et al. DOI: 10.1016/j.joule.2021.03.015 for more details

CI

5

15

10

2D Pbl₂ (& others) in PSCs

Taek Cho et al. DOI: 10.1039/C7EE03513F

Effect on carrier lifetime

See McGott et al. DOI: 10.1016/j.joule.2021.03.015 for more details

- 2D layer removed or added to single interface to limit bulk effects
- Time-resolved photoluminescence (TRPL) shows improved carrier lifetime with 2D layers for all three technologies

Effect on device performance

See McGott et al. DOI: 10.1016/j.joule.2021.03.015 for more details

- Longer lifetime = less recombination = higher voltage
 - Seen in all three technologies with 2D layers
- 2D layer removed or added to single interface to limit bulk effects

See McGott et al. DOI: 10.1016/j.joule.2021.03.015 for more details

Successful passivating agents should:

1) Terminate dangling bonds at surface

- Transition from $3D \rightarrow 2D$ must also be passivated
- 1D and 0D materials (e.g., nanotubes, C60) also satisfy

2) Target dominant defect(s) (i.e., anion or cation)

• Ex: CIGS surface Cu-poor, should target Se (group III) dangling bonds

3) Not introduce mid-gap states

Preferable if 2D bandgap > 3D bandgap

4) Not require impractical synthesis/deposition methods

- Precursor dissociation energy should be low
- 2D layer formation should not require temperatures that will degrade bulk

Azadmanjiri et al. DOI: 10.1039/C6RA20050H

See McGott et al. DOI: 10.1016/j.joule.2021.03.015 for more details

Successful passivating agents should:

- 1) Terminate dangling bonds at surface
 - Transition from $3D \rightarrow 2D$ must also be passivated
 - 1D and 0D materials (e.g., nanotubes, C60) also satisfy
- 2) Target dominant defect(s) (i.e., anion or cation)
 - Ex: CIGS surface Cu-poor, should target Se (group III) dangling bonds
- 3) Not introduce mid-gap states
 - Preferable if 2D bandgap > 3D bandgap
- 4) Not require impractical synthesis/deposition methods
 - Precursor dissociation energy should be low
 - 2D layer formation should not require temperatures that will degrade bulk

Taguchi et al. DOI: 10.1063/1.5044244

See McGott et al. DOI: 10.1016/j.joule.2021.03.015 for more details

Successful passivating agents should:

- 1) Terminate dangling bonds at surface
 - Transition from $3D \rightarrow 2D$ must also be passivated
 - 1D and 0D materials (e.g., nanotubes, C60) also satisfy
- 2) Target dominant defect(s) (i.e., anion or cation)
 - Ex: CIGS surface Cu-poor, should target Se (group III) dangling bonds
- 3) Not introduce mid-gap states
 - Preferable if 2D bandgap > 3D bandgap
- 4) Not require impractical synthesis/deposition methods
 - Precursor dissociation energy should be low
 - 2D layer formation should not require temperatures that will degrade bulk

Schöppe et al. DOI: 10.1016/j.nanoen.2020.104622

See McGott et al. DOI: 10.1016/j.joule.2021.03.015 for more details

Successful passivating agents should:

- 1) Terminate dangling bonds at surface
 - Transition from 3D→2D must also be passivated
 - 1D and 0D materials (e.g., nanotubes, C60) also satisfy
- 2) Target dominant defect(s) (i.e., anion or cation)
 - Ex: CIGS surface Cu-poor, should target Se (group III) dangling bonds

3) Not introduce mid-gap states

- Preferable if 2D bandgap > 3D bandgap
- 4) Not require impractical synthesis/deposition methods
 - Precursor dissociation energy should be low
 - 2D layer formation should not require temperatures that will degrade bulk

Se

	E _{gap} (3D bulk)	E _{gap} (2D layer)
CIGS	1.0 – 1.7 eV	2.0 – 3.22 eV
CdTe	~1.5 eV	5.8 eV
PSCs	~ 1.6 eV	≥ 2.3 eV

See McGott et al. DOI: 10.1016/j.joule.2021.03.015 for more details

Successful passivating agents should:

- 1) Terminate dangling bonds at surface
 - Transition from $3D \rightarrow 2D$ must also be passivated
 - 1D and 0D materials (e.g., nanotubes, C60) also satisfy
- 2) Target dominant defect(s) (i.e., anion or cation)
 - Ex: CIGS surface Cu-poor, should target Se (group III) dangling bonds
- 3) Not introduce mid-gap states
 - Preferable if 2D bandgap > 3D bandgap
- 4) Not require impractical synthesis/deposition methods
 - Precursor dissociation energy should be low
 - 2D layer formation should not require temperatures that will degrade bulk

RbF source

Is 3D/2D passivation a secret to success for polycrystalline thin-film solar cells?

Thank you!

SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department Of Energy

