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Operation modes of Qinghai power system in China

Source: Hou, Q., et al. 2019. “Impact of High Renewable Penetration on the Power
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Background

Future power grid operational modes are diverse and uncertain.

High penetration scenario (2025)
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ystem Operation Mode: A Data-Driven Approach.” IEEE Transactions on Power
Systems 17, no. 35 (1): 731-41.
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Challenges
Electricity market
e *  Dispatch solution Offline contingency analysis
th + Select the typical scenarios.
8 «  Through dynamic simulation. Real-time dynamic security analysis
*  Monitor
Day ahead Hours Seconds
What if most dispatch What if there are no What if it is too
solutions could not typical scenarios? late to alarm?
work properly without . . . .
considering stability/ The.r(? is a nefad for |mp.rc.)ved S|tuat|f)nal awareness and
low-inertia issues? decision making of stability-related issue for the future
K power grid with high renewable energy penetrations.
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How Could Machine Learning Help? '/

Electricity market Offline contingency analysis Real-time dynamic security

) ) assessment
Enhance situational awareness
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Day ahead \ Hours

Improve decision making and controls.

Tool ll: Security-constrained DC Tool I: Time-domain simulation:

power flow: Increasing the accuracy -

+ Consider the dynamic - Increasing the computational burden
stability constraint in the -> Hard to finish in real time.

scheduling model?
* Howtoforma

ﬁ b constraint?
s i IEEE
wer & Energy Society



MIDAS - Machine Learning Framework

Off-line Analysis On-line Application

I: Select Test system  |l: Model-based scenario generator

Scheduling Model
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How Could We Generate a Training Data Set?

Database for security assessment
* No-bias database
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240-Bus WECC Test System

Develop one-to-one scheduling and dynamic model of 240-
bus Western Electricity Coordinating Council (WECC) test
system for researchers and utilities to understand the challenges
of grid operation with high photovoltaic (PV) penetrations.

Feature:

d Anopen-source test system

O Capture the main dynamic characteristics of WECC system,
including system frequency response and main inter-
area oscillation modes.

O Provide temporal and spatial time-series data of
renewables and loads across WECC for 1 year.

O Renewable penetration cases: 20%, 40%, 60%, 80%
(coming soon).

Base case we adopted:

0  Multi-Timescale Integrated Dynamics and Scheduling for
Solar (MIDAS) tool generates 8,000+ power flow scenarios
for 240-bus WECC.

U Renewable penetration is up to 49.2%.

T ase Repository for High Renewable Study: https://www.nrel.gov/grid/test-case-repository.html.

Power & Energy Society®

I: Select Test system
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II: Model-based scenario generator

Scheduling Model
8
H — —» 8

Dynamic Model
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Example: 1-week dispatch
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MIDAS - Machine learning Framework

Off-line Analysis On-line Application
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Applications

Decision makin
g Situational awareness

Frequency stability

Smart PV reserve

Adaptive inertia

requirement Small-signal stability
Etc. Transient stability
Minute-days Minutes Seconds
Control
Robust RAS design
Etc.
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Example I: Frequency Stability Margin Assessment

Swing equation of synchronous machine in T
per units:
dw £ N SIS
2H dt — Pgen — Pioaa ® s i
so52 Stability margin
dw - t -10 lJ 10 30 40 70 80
ROCOF = 22 = (Ppon—"Pioas = Pyouos2H  1*st800ofunder ey ogganegag,
* Initial rate of decline of frequency—
effect cause determined by inertia only
o _ + Value of frequency nadir (Point C)—
H Is Inertia constant. determined by inertia and primary
w is the rotor speed. frequency response (PFR)
f= w/2m is grid * Value of settling frequency (Point B)—

K frequency. determined by PFR only.
s D @IEEE
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Physics-Based Feature Preprocessing

Feature selection Feature normalization:
« | Active power dispatch R min(X)
« Dynamic parameters of max(X) — min(X)
generators
« | Inertia Goal:
« Load amount « Weighted the inertia impact
- Topological features » Weighted the large generator’s
 Weather features impact
« Others. * Minimize the impact of unseen

cases in training data set.

Not the more, the better.

e . OIEEE



Frequency Nadir(Hz)

59.50
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Frequency Stability Assessment

Deep neural network with 10% training data set

One-day example Error distribution Testing results
35
5,30
%25 0.039212 0.029296 0.875427
EZD 0.022400 0.017249 0.959396
oy 0.023165 0.016757 0.956427
ab 0.016522  0.012091 0.977915
© ooum  ooossy oss:sr
o
3 26 0.009903 0.007651 0.992038
3945 o= smultionta) 0 0.008478  0.005949 0.994147
—&— Prediction(Hz) : : ’
—_T———rr s oY b % 4 o 45 X! 2
(|) ,'l, 1\0 1\5 2|0 PN IR N TS I G N 0.007238 0.005267 0.995762
Hours(h) PI’E‘dICtIOI"I Error{Hz} 0.007175 0.005159 0.995825

Based on 10% training data set, with 96% probability, the
( absolute prediction error is smaller than 0.022 Hz.
G
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Summary of Stability Margin Assessment

Generation
dispatch results,
inertia

Frequency

Generation
dispatch results,
transmission
network

Transient

Generation
dispatch results,
transmission
network

Small-signal

Frequency
nadir

Min (CCT)
Bus number

Min
(damping
ratio) and

mode
frequency

99.72%

99.29%

98.59%

Simulation for

Testi
8,780 scenarios esting
Frequency 12 hours
Transient 36 hours ~0.18 ms
Small-signal 8 hours

The machine learning-based method can significantly reduce stability assessment time with
minimal sacrifice on accuracy.

/(Q IEEEE S
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*Deep neural network with 70% training data set : I E E E
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Applications

Decision making ) )
Situational awareness
Smart PV reserve
o . Frequency stability
Adaptive inertia

requirement Small-signal stability
Etc. Transient stability
Minute-days Minutes Seconds
Control
Robust RAS design
Etc.

e . OIEEE



{

Example II: Robust Remedial Action Scheme

WECC-1remedial 1\ | Proposed RAS

aCti O n S C h em e (RAS) : {\\i‘\\ \\\‘. | IS | an d #1 - Month 1 Day 1 Hour 22 Frequency

*  Monitor 500-kV \‘
transmission system

within California, Oregon,
Washington, etc.

* Acontrolled separation of
the WECC system into
two islands

Apply robust load shedding
and generation trip based
on operational conditions.

Load shedding and
generation trip are applied

to each island to Island #2
ﬁ&gbalance the system.
(, Yingfeng Zhao, etc. “Deep Learning-based Adaptive Remedial Action Scheme with Security Margin for Renewable-Dominated I E E E

Power Grids” in preparation
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Example lIl: Smart Photovoltaic Reserve

Optimal headroom reserve

Offline simulation of different operation
conditions (approx. 2,000 cases) of the
60% inverter-based resources WECC case

(10,000+ buses).

@Es

Power & Energy Society®

Inertia (MVA*s)

1-day profile

| AN

Orignal System Inertia
New System Inertia
IRG Generation

o L . L
00:00 06:00 12:00

18:00

00:00

Headroom (MW)

Frequency (Hz)

[\}H:nnslg
/

10007 W
%
800 ~
' “
600 - e “
° @
400 - © ®
@ [ ]
o [
2001 cjﬁjo ©® ML based 00
04 ® Flat requirement
5:00 7:00 9:00 11:00 13:00 15:00 17:00 19:00
Time
Frequency nadir
59.58 - ® Estimated nadir
@ Simulated nadir
59.57 1
L]
59.56 ® .. @
®Feooe qlee _® 0
59.55 it
59.54 1
59.53 1

Source: Yuan, H, J. Tan, Y.C. Zhang et al. 2020. “Machine Learning-Based PV Reserve Determination Strategy for Frequency Control on the
WECC System.” Presented at the 2020 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference, Feb. 17, 2020 (1-5).
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Summary

« The developed machine learning framework can used to

(1) predict the system stability margins and increase the situational
awareness by using dispatch data;

(2) assist in a robust remedial action scheme (RAS) design;
(3) help with decision making in real-time scheduling.

* Itis demonstrated that machine learning-based tools can reduce the
computational burden of dynamic simulations, making them suitable
for online security assessment, stability control, and decision making
for systems with high penetrations of renewable generation.

e . OIEEE
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Potential Applications

— Real-time security margin assessment
— Short-term stability prediction and system adjustment

— Stability-related resource procurement and stability validation in
day-ahead markets

— Accurate stability margin quantification of multiple power flow
scenarios for long-term planning.

* Future:
— Data-driven + model-driven

— Cost-risk balance
— Online deep learning.
ﬁ P g
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The MIDAS machine learning framework bridges the gaps between studying
power system dynamics and scheduling across different timescales.

Question?

Jin Tan
Senior Engineer
National Renewable Energy Laboratory

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable -

Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08G028308. Funding “n'tan@nrel'qov

provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy

Technologies Office (#34224). The views expressed in the article do not necessarily represent the views of MIDAS website:

the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article ’ . .

for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, https://nrel-dev.nrel.gov/grid/midas.html
worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S.

Government purposes.
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