
1

A Machine Learning Framework for Bridging the Gap 

Between the Steady-State Scheduling and Dynamic 

Security Operation for Future Power Grids

Jin Tan

National Renewable Energy Laboratory

7/26/2021 

Presented at IEEE PES GM 2021
NREL/PR-5C00-80488



National lab

ISOs

Research institute

University

MIDAS Solar Project

• 3 YEARS

• 7 PARTNERS

• DOE SOLAR ENERGY 

TECHNOLGOGIES 

OFFICE (SETO) funded

• 10.2018-9.2021

2

NREL

EPRI

UTK SMU

HECO ERCOT CAISO



Contents

Background and Challenges

MIDAS – Machine Learning Framework

Training Data Set: 240-Bus WECC Test System

Application I: Stability Margin Assessment 

Application II: Remedial Action Scheme

Application III: Smart Photovoltaic Reserve

Conclusion and Future Work



Background

https://ilsr.org/solar-supporters-open-season-utilities-duck/

Operation modes of Qinghai power system in China

Source: Hou, Q., et al. 2019. “Impact of High Renewable Penetration on the Power 

System Operation Mode: A Data-Driven Approach.” IEEE Transactions on Power 

Systems 17, no. 35 (1): 731–41.

Heavy belly

California Duck Curve

Future power grid operational modes are diverse and uncertain. 
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Challenges
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Electricity market 

• Dispatch solution Offline contingency analysis

• Select the typical scenarios.

• Through dynamic simulation. Real-time dynamic security analysis

• Monitor

Day ahead Hours Seconds

C
u

rr
en

t
Fu

tu
re What if most dispatch 

solutions could not 

work properly without 

considering stability/

low-inertia issues?

What if there are no 

typical scenarios? 

What if it is too 

late to alarm?

There is a  need for improved situational awareness and 
decision making of stability-related issue for the future 
power grid with high renewable energy penetrations.



How Could Machine Learning Help?
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Electricity market Offline contingency analysis Real-time dynamic security 

assessment

Day ahead Hours Seconds

C
h

al
le

n
ge

s
To

o
ls Tool I: Time-domain simulation:

Increasing the accuracy →

→ Increasing the computational burden

→ Hard to finish in real time.

Tool II: Security-constrained DC 

power flow:

• Consider the dynamic 

stability constraint in the 

scheduling model?

• How to form a 

constraint? 

Enhance situational awareness  

Improve decision making and controls.



MIDAS – Machine Learning Framework
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How Could We Generate a Training Data Set?
Database for security assessment

• No-bias database

Transient 

PSSE Model

FrequencyOne-year 
senarios

Small signal

Three 
phase fault 
simulation

Generation 
loss

Damping 
caculation

DC Power 
flow→ 

AC Power 
flow

Scheduling  

Model
Machine-learning

Real world data Data processing Machine-learning

Real 

operational 

data 

Model-

generated 

scenarios



240-Bus WECC Test System
Develop one-to-one scheduling and dynamic model of 240-

bus Western Electricity Coordinating Council (WECC) test

system for researchers and utilities to understand the challenges

of grid operation with high photovoltaic (PV) penetrations.

Feature:

❑ An open-source test system

❑ Capture the main dynamic characteristics of WECC system, 

including system frequency response and main inter-

area oscillation modes.

❑ Provide temporal and spatial time-series data of 

renewables and loads across WECC for 1 year.

❑ Renewable penetration cases: 20%, 40%, 60%, 80% 

(coming soon).

Base case we adopted:

❑ Multi-Timescale Integrated Dynamics and Scheduling for 

Solar (MIDAS) tool generates 8,000+ power flow scenarios 

for 240-bus WECC. 

❑ Renewable penetration is up to 49.2%.

Example: 1-week dispatch

Test Case Repository for High Renewable Study: https://www.nrel.gov/grid/test-case-repository.html. Source: Yuan, Haoyu, et al. 2020. “Developing a Reduced 240-Bus WECC Dynamic Model for Frequency 

Response Study of High Renewable Integration.” 2020 IEEE/PES Transmission and Distribution 

Conference and Exposition (T&D): 1–5. 
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Frequency response with FNET 
validation in a real event

https://www.nrel.gov/grid/test-case-repository.html


MIDAS – Machine learning  Framework
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Applications
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Situational awareness

Frequency stability

Small-signal stability 

Transient stability

Control

Robust RAS design

Etc.

Decision making

Smart PV reserve

Adaptive inertia 
requirement

Etc.

SecondsMinutesMinute-days



Example I: Frequency Stability Margin Assessment
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• Initial rate of decline of frequency—

determined by inertia only 

• Value of frequency nadir (Point C)—

determined by inertia and primary 

frequency response (PFR)

• Value of settling frequency (Point B)—

determined by PFR only.

Swing equation of synchronous machine in 

per units:

2𝐻
𝑑𝜔

𝑑𝑡
= 𝑃𝑔𝑒𝑛 − 𝑃𝑙𝑜𝑎𝑑

H is inertia constant.

𝜔 is the rotor speed.

f= 𝜔/2π is grid 

frequency.

ROCOF =
𝑑𝜔

𝑑𝑡
= (𝑃𝑔𝑒𝑛−𝑃𝑙𝑜𝑎𝑑 − 𝑃𝑔𝑒𝑛𝑙𝑜𝑠𝑠)/2H

causeeffect

Credit: Vahan , NREL
1st stage of under frequency load shedding 

Stability margin



Physics-Based Feature Preprocessing
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Feature selection  

• Active power dispatch

• Dynamic parameters of 

generators

• Inertia

• Load amount

• Topological features

• Weather features

• Others.

Not the more, the better.

Feature normalization: 

𝒙′ =
ሻ𝒙 −𝐦𝐢𝐧(𝑿

ሻ𝐦𝐚𝐱 𝑿 −𝐦𝐢𝐧(𝑿

Goal:
• Weighted the inertia impact

• Weighted the large generator’s 

impact

• Minimize the impact of unseen 

cases in training data set.



Frequency Stability Assessment
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Deep neural network with 10% training data set

Based on 10% training data set, with 96% probability, the 

absolute prediction error is smaller than 0.022 Hz.

d

2d

One-day example Error distribution Testing results

Training 
dataset 

Percentage
RMSE (Hz) MAE (Hz) 𝑹𝟐

2% 0.039212 0.029296 0.875427

4% 0.022400 0.017249 0.959396

6% 0.023165 0.016757 0.956427

8% 0.016522 0.012091 0.977915

10% 0.011392 0.008437 0.989487

20% 0.009903 0.007651 0.992038

30% 0.008478 0.005949 0.994147

40% 0.007238 0.005267 0.995762

50% 0.007175 0.005159 0.995825



Summary of Stability Margin Assessment

Stability

Problem

Offline Online

Simulation for 

8,780 scenarios
Testing

Frequency 12 hours

~0.18 msTransient 36 hours

Small-signal 8 hours
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Stability 

Problem
Input Output

Estimation 

Accuracy* (R2)

Frequency

Generation 

dispatch results, 

inertia

Frequency 

nadir
99.72%

Transient

Generation 

dispatch results, 

transmission 

network

Min (CCT)

Bus number
99.29%

Small-signal

Generation 

dispatch results, 

transmission 

network

Min 

(damping 

ratio) and 

mode 

frequency

98.59%

The machine learning-based method can significantly reduce stability assessment time with 

minimal sacrifice on accuracy. 

*Deep neural network with 70% training data set



Applications
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Situational awareness

Frequency stability

Small-signal stability 

Transient stability

Control

Robust RAS design

Etc.

Decision making

Smart PV reserve

Adaptive inertia 
requirement

Etc.

SecondsMinutesMinute-days



Apply robust load shedding 

and generation trip based 

on operational conditions.

Example II: Robust Remedial Action Scheme

Proposed RAS
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Island #1

Island #2

WECC-1remedial

action scheme (RAS):

• Monitor 500-kV 

transmission system 

within California, Oregon, 

Washington, etc. 

• A controlled separation of 

the WECC system into 

two islands 

• Load shedding and 

generation trip are applied 

to each island to 

rebalance the system. 

Yingfeng Zhao, etc. “Deep Learning-based Adaptive Remedial Action Scheme with Security Margin for Renewable-Dominated 

Power Grids” in preparation



Applications
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Example III: Smart Photovoltaic Reserve
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Optimal headroom reserve

1-day profile

Offline simulation of different operation 

conditions (approx. 2,000 cases) of the 

60% inverter-based resources WECC case 

(10,000+ buses).

Source: Yuan, H, J. Tan, Y.C. Zhang et al. 2020. “Machine Learning-Based PV Reserve Determination Strategy for Frequency Control on the 

WECC System.” Presented at the 2020 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference, Feb. 17, 2020 (1–5).

Frequency nadir



Summary

• The developed machine learning framework can used to 

(1) predict the system stability margins and increase the situational 

awareness by using dispatch data; 

(2) assist in a robust remedial action scheme (RAS) design; 

(3) help with decision making in real-time scheduling. 

• It is demonstrated that machine learning-based tools can reduce the 

computational burden of dynamic simulations, making them suitable 

for online security assessment, stability control, and decision making 

for systems with high penetrations of renewable generation.
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Potential Applications

– Real-time security margin assessment

– Short-term stability prediction and system adjustment

– Stability-related resource procurement and stability validation in 

day-ahead markets

– Accurate stability margin quantification of multiple power flow 

scenarios for long-term planning.

• Future: 
– Data-driven + model-driven 

– Cost-risk balance 

– Online deep learning.
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Question?

The MIDAS machine learning framework bridges the gaps between studying 

power system dynamics and scheduling across different timescales. 

MIDAS website:

https://nrel-dev.nrel.gov/grid/midas.html

mailto:Jin.tan@nrel.gov
https://nrel-dev.nrel.gov/grid/midas.html
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