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ABSTRACT
Understanding human perception is critical to the design of ef-
fective visualizations. The relative benefits of using 2D versus 3D
techniques for data visualization is a complex decision space, with
varying levels of uncertainty and disagreement in both the liter-
ature and in practice. This study aims to add easily reproducible,
empirical evidence on the role of depth cues in perceiving structures
or patterns in 3D point clouds. We describe a method to synthesize
a 3D point cloud that contains a 3D structure, where 2D projec-
tions of the data strongly resemble a Gaussian distribution. We
performed a within-subjects structure identification study with
128 participants that compared scatterplot matrices (canonical 2D
projections) and 3D scatterplots under three types of motion: rota-
tion, xy-translation, and z-translation. We found that users could
consistently identify three separate hidden structures under ro-
tation, while those structures remained hidden in the scatterplot
matrices and under translation. This work contributes a set of 3D
point clouds that provide definitive examples of 3D patterns per-
ceptible in 3D scatterplots under rotation but imperceptible in 2D
scatterplots.

CCS CONCEPTS
• Human-centered computing → Empirical studies in HCI;
Empirical studies in visualization.

KEYWORDS
Visual perception, Scatterplots, Human factors, Data visualization,
Data analysis, Encoding, Image generation
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Perception 2021 (SAP ’21), September 16–17, 2021, Virtual Event, France. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3474451.3476237

1 INTRODUCTION
In practice, data analysts use both 2D and 3D visualization tech-
niques to examine point clouds of abstract data. While 2D visualiza-
tion is pervasive, 3D visualization is becoming more commonplace
with the increasing adoption of tools like ParaView [Ahrens et al.
2005] and immersive virtual environments. When examining 3D
point cloud data, the literature offers little clarity on the approach
to use: multiple 2D projections versus a 3D projection. We examine
the question, can structures exist that are only perceptible in 3D,
or are multiple 2D projections always sufficient?

Scatterplots are one of the most common visualization tech-
niques for data analysis [Friendly and Denis 2005; Tufte 1986]. A
2D scatterplot encodes two quantitative variables as points in a
two-dimensional graph, mapping one variable to the x-axis and
a second variable to the y-axis. Three-dimensional data is often
mapped onto three separate 2D scatterplots: an x-y scatterplot, an
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x-z scatterplot, and a y-z scatterplot. Alternatively, 3D data can 
be mapped directly into 3D space and visualized with depth cues. 
There is very little empirical evidence to suggest whether 2D or 
3D scatterplots — and in the case of 3D, which depth cues — better 
support data analysis. As such, there is generally no consensus in 
the visualization literature as to when or if 3D scatterplots should 
be used; however, it is generally accepted that the use of 3D visu-
alization for abstract data can be problematic and requires careful 
justification [Munzner 2014].

The human vision system evolved to view a three-dimensional 
world, using various depth cues to interpret 3D structure, including 
structure-from-motion, stereopsis, vergence, perspective, occlusion, 
shading, and texture gradient [Howard and Rogers 2012a,b]. Visu-
alization environments that support motion and stereo cues are 
becoming more accessible with the commoditization of virtual re-
ality. Additionally, the field of immersive analytics [Skarbez et al. 
2019] is growing. We have both empirical [Gruchalla 2004] and 
strong anecdotal evidence [Gruchalla and Brunhart-Lupo 2019] 
of improved data analysis in real-world settings in immersive en-
vironments. However, it is not clear if using 3D scatterplots is 
justified, particularly with some studies finding a benefit to 3D 
scatterplots [Arns et al. 1999; Kraus et al. 2019] and others stud-
ies showing 2D scatterplots and 2D scatterplot matrices should 
be preferred [Filho et al. 2017; Sedlmair et al. 2013]. We sought a 
simple, definitive, and reproducible example that would demon-
strate a difference in the perception of a feature in 2D versus 3D 
scatterplots.

Hypothesis: Structures or patterns can exist in 3D point clouds 
that are imperceptible in 2D projections but are readily perceptible 
in 3D scatterplots using some combination of depth cues.

There is a long history of synthesizing data sets to demonstrate 
the importance of data visualization. In 1973 F.J. Anscombe de-
veloped Anscombe’s Quartet [Anscombe 1973] to demonstrate the 
value of visualizing data compared to only using summary statistics. 
The Quartet is a set of four datasets with identical summary sta-
tistics (i.e., mean, standard deviation, and correlation), suggesting 
the datasets are markedly similar. However, visualizing the dataset 
with 2D scatterplots reveals they are markedly different. Matejka 
and Fitzmaurice have expanded on this notion, describing an opti-
mization method to develop the Datasaurus Dozen [Matejka and 
Fitzmaurice 2017]: twelve visually distinct data sets with equivalent 
(to two decimal places) summary statistics to a data set with a 2D 
scatterplot that reveals the outline of a dinosaur.

Inspired by Anscombe’s Quartet and the Datasaurus Dozen, we 
describe a method to develop 3D point clouds with structures that 
are visible in a 3D scatterplot, but are occluded in any 2D projec-
tion. We have developed three data sets by point sampling popular 
3D models (the Stanford Bunny [Turk and Levoy 1994], the Utah 
Teapot [Blinn and Newell 1976], and the Viewpoint Animation En-
gineering Cow [Schroeder et al. 2006] packaged with Open Scene 
Graph). We then occlude those models with amorphous clusters of 
points (see Fig. 1). We developed a method to scale the density of 
these clusters to resemble some arbitrary probability distribution. 
For our three models, we chose the Gaussian distribution. Since 
searching for a rabbit is one of the objectives of these data, we

Figure 1: Caerbannog Point Clouds provide point-sampled
3D models occluded in amorphous clouds of points. In a
user study, users were significantly better at identifying the
three models when visualized as 3D scatterplots under ro-
tation than in any other condition. Stanford bunny: 81%
of users identified the bunny in the 3D point cloud under
rotation compared to 6% users identifying the bunny in
2D projections of the point cloud, 𝜒2 (1, 128)=143.5, 𝑝<2.2e-16.
Utah Teapot: 72% of users identified the teapot in the 3D
point cloud under rotation compared to 8% users iden-
tifying the teapot in 2D projections of the point cloud,
𝜒2 (1, 128)=106.93, 𝑝 < 2.2e-16. OSG Cow: 46% of users identi-
fied the cow in the 3D point cloud under rotation compared
to 2%users identifying the cow in 2Dprojections of the point
cloud, 𝜒2 (1, 128=64.383, 𝑝=1.024e-15.

have coined these the Caerbannog Point Clouds downloadable from
https://data.nrel.gov/submissions/153.

We performed an Amazon Mechanical Turk user study with 128
participants, asking participants to identify occluded structures in
point clouds. Users were presented with one of four models (the
Stanford Bunny, the Utah Teapot, the OSG Cow, and a noise control
with no hidden structure) in one of four conditions 3D scatterplot
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Figure 2: Four conditions studied shownwith an unoccluded Stanford bunny: rotation, xy-translation, z-translation, and static
2D projections.

under motion (rotation, xy-translation, and z-translation) and 2D
scatterplots of the canonical projections in a scatterplot matrix (see
Figure 2). We arranged the models and conditions in a Graeco-Latin
square, intermixed with attention tests to filter out careless and
inattentive users. We found that users were significantly better at
identifying the three models when visualized with a 3D scatterplot
under rotation than in any other condition. Users generally could
not identify the models from the 2D scatterplots or when visualized
as a 3D scatterplot under translation.

2 RELATEDWORK
If there is a benefit of visualizing 3D data with a 3D scatterplot, it
would be a function of one or more depth cues that differentiates
the 3D data from its 2D projection. There are many possible depth
cues. Monocular depth cues include structure-from-motion, relative
size, oculomotor accommodation, curvilinear perspective, texture
gradient, defocus blur, lighting, and shading [Howard and Rogers
2012b]. Biocular depth cues include stereopsis, convergence, and
shadow stereopsis [Howard and Rogers 2012a]. In this work, we
only consider structure-from-motion to impart depth to our 3D
scatterplots.

2.1 Structure-from-motion
Perceiving depth from motion is one of the strongest depth cues,
and scientists and philosophers have been considering the impor-
tance of this depth cue for millennia [Todd 2004]. One form of
structure-from-motion is the motion parallax, where an observer
can judge the depth of stationary objects by the movement of the
observer [Gibson et al. 1959]. Objects closer to the observer move
faster across the visual field than objects farther away. Motion par-
allax is one of the primary depth cues provided by virtual reality
displays [Cruz-Neira et al. 1993].

In this work, we consider a stationary observer and moving
objects. Wallach and O’Connell [1953] performed one of the earliest
published experiments on the visual perception of structure-from-
motion of this form. Observers were able to identify rotating objects
from the shadows cast from those objects. They described this as
the kinetic depth effect. The original kinetic depth experiments were
limited to solid and wire-frame objects. Later work demonstrated
that users could perceive 3D structure from unconnected rotating

points [Braunstein 1962; Green Jr. 1961; Ullman 1979]. In addition
to rotation, early work also showed that users could perceive depth
from translation [Braunstein 1966, 1976].

Since the original kinetic depth experiments, the empirical find-
ings suggest users are reliably able to judge the topological, ordinal,
and affine properties of objects under rigid motion. Furthermore,
empirical results have shown that users can infer some depth in-
formation from an arbitrary configuration of points with as few as
two motion-sequence frames [Todd 1995].

Despite the many decades of cognitive science research, there
is limited empirical evidence on the relative benefits of depth cues
in understanding 3D data visualizations [Ware 2012]. The vision
and cognitive science literature tells us we can perceive structure
from a cloud of 3D points under motion, but it doesn’t tell us if we
should, particularly if we have good 2D alternatives.

2.2 2D vs 3D
After decades of empirical studies comparing 2D and 3D visualiza-
tions, the results are mixed. St. John et al. [2001] reviewed 16 studies
that compared 2D and 3D visualizations and suggested that 3D dis-
plays can improve spatial understanding but may inhibit judging
relative positions and distances. And they confirmed these findings
with an experiment using simple block shapes. A more recent re-
view of 162 publications describing 184 experiments by McIntire
et al. [2014] focused on 2D visualization versus 3D visualization
with stereoscopic displays. Here too, the results were mixed. In 60%
of the studies, 3D showed a definitive benefit, while the remaining
studies found a benefit to 2D, mixed results, or inconclusive results.
The benefit of 3D varied by tasks. In the judgments of positions or
distances, 57% of studies found a clear benefit for 3D. In navigation
tasks, 42%. In tasks related to finding, identifying, and classifying
objects, 65%. And 52% of studies with spatial understanding tasks
found a benefit for stereoscopic 3D visualization.

The empirical evidence suggests that a 3D visualization is not
always better, and the applicability of using 3D is highly dependent
on the nature of the data, the tasks, and the combination of depth
cues employed. Therefore, we consider what is specifically known
about viewing 3D point cloud data.
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(a) Initial object to obscure (b) Concentric spheres added (c) Sampling on spheres (d) Point clouds on samples

Figure 3: Detail of point cloud generation procedure. In (a), we begin with the object to be obscured. Moving to (b), a sampling
is made of the points on the surface of the object. Three concentric spheres are positioned around the object (we use circles
in this diagram to aid explanation). In (c), a sampling is made on the surfaces of each sphere. These are seed points. These
points are used as shown in (d), where a point cloud is centered and oriented at each of these points. As described in Section 3,
the models’ point density is modulated so that any arbitrary 2D projection of the complete point cloud will resemble a 2D
Gaussian distribution, and the 3D density of the cloud resembles a 3D Gaussian distribution.

2.3 Scatterplots
3D scatterplots are widely used [Brunhart-Lupo et al. 2020; Bugbee
et al. 2019; Donoho et al. 1988; Kosara et al. 2004; Piringer et al.
2004; Sanftmann and Weiskopf 2012; Zeckzer et al. 2016], but there
is comparatively little research that empirically investigates the
benefit of 3D visualization for 3D point clouds. And once again, the
2D versus 3D scatterplot research provides mixed results.

Two notable studies have shown 2D scatterplots outperform
3D scatterplots. Sedlmair et al. [2013] performed a data study to
evaluate the analysis of data produced from dimensionality reduc-
tion with 2D scatterplots, 2D scatterplot matrices, and interactive
3D scatterplots. Two trained coders evaluated 816 scatterplots and
concluded that 2D scatterplots are often sufficient, while 3D scat-
terplots rarely helped and occasionally hurt. Wagner Filho et al.
[2017] compared 2D scatterplots with screen-based and VR-based
3D approaches. Their tasks included finding nearest neighbors and
classes, identifying classes and outliers, and comparing classes. In
this study, users were faster using the 2D scatterplot and reported
2D to be more intuitive for the given tasks.

Conversely, there are studies with empirical evidence of 3D
scatterplots outperforming 2D scatterplots. Kraus et al. [2019] per-
formed a user study with 18 participants in a cluster identification
task, comparing a scatterplot matrix with 3D scatterplots in three
different visualization environments. The 3D scatterplots outper-
formed the 2D scatterplot matrix in task time and correctness. Arns
et al. [1999] compared statistical data analysis between XGobi on a
desktop to 3D scatterplot in an immersive environment. They eval-
uated the identification and brushing of data clusters. Users were
able to identify clusters in the immersive environment twice as well
as on the desktop. Raja et al. [2004] compared various 3D scatterplot
tasks (e.g., trend determination, cluster identification, outlier identi-
fication) between immersive and non-immersive environments. The
additional depth cues afforded by the immersive visualization seem
to improve the task; however, the authors reached no definitive
statistical conclusions due to a small subject population.

We contribute additional evidence in this area of investigation
through an empirical user study, evaluating different structure-
from-motion depth cues of 3D scatter plots against 2D projections
with a clear result. We also contribute the point clouds used for the
study as a publicly available dataset.

3 DATA SYNTHESIS
We have developed a data synthesis method1 to generate 3D point
clouds from polygonal models, such that the shape of the model will
be occluded in any 2D projection. We transform the polygon model
into a point model by randomly sampling the polygon vertices.
We then choose random points around the model location as seed
locations for amorphous point clouds whose density we modulate
such that 2D projections of the full set of points strongly resemble
a Gaussian distribution.

We chose to obscure our model of interest by surrounding it with
a second model of an amorphous cloud. We wanted to surround the
points of interest with a point cloud of similar density and texture,
which ruled out random 3D noise. Therefore, we used another
3D polygonal mesh, an amorphous cloud, as an occluding model
sampling its vertices in the same method we sampled the model
of interest. To seed our occluding model locations, we placed the
point-sampled model-of-interest (e.g., Stanford Bunny points) in
the center of three concentric spheres. Next, we sampled points
randomly across the surfaces of those spheres, using those points
as the seed locations of the occluding model. With the model-of-
interest and the occluding models arranged, we assign the point
densities of those objects (see Figure 3).

We modulate the models’ point densities so that any arbitrary 2D
projection of the dataset will resemble a 2D Gaussian distribution,
and the 3D density of the dataset resembles a 3D Gaussian distri-
bution. First, we choose a basis density, which we use to scale the
subsequent densities. In our case, we use the density of the model-
of-interest as the basis density. Then, we choose some probability

1 Source code is available at https://www.github.com/kgruchal/bring-me-a-shrubbery
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Table 1: Table of study questions. The studywas prefacedwith four pretest questions, followed by questions, counter-balancing
models and conditions with periodic attention tests.

Question Grouping Model Condition Occlusion Image
1 pretest Dragon rotation None https://i.imgur.com/8A5Nzb7.gif
2 pretest Bunny rotation Minimal https://i.imgur.com/HFseNN2.gif
3 pretest Teapot 2D projections Minimal https://i.imgur.com/w2wKQWj.png
4 pretest Cow xy-translation Minimal https://i.imgur.com/kCmg9jR.gif
5 row 1 Noise rotation Medium https://i.imgur.com/vnuK7ck.gif
6 row 1 Teapot xy-translation Medium https://i.imgur.com/pi0eqR9.gif
7 row 1 Cow z-translation Heavy https://i.imgur.com/lR3NTgY.gif
8 row 1 Bunny 2D projections Light https://i.imgur.com/BqXYTZ3.png
9 attention Cow rotation Minimal https://i.imgur.com/2jQJ4dy.gif
10 row 2 Teapot z-translation Medium https://i.imgur.com/xgH87sw.gif
11 row 2 Noise 2D projections Medium https://i.imgur.com/Cb5CUFH.png
12 row 2 Bunny rotation Light https://i.imgur.com/zLjOq6y.gif
13 row 2 Cow xy-translation Heavy https://i.imgur.com/ndkm89G.gif
14 attention Teapot rotation Medium https://i.imgur.com/nEiGHjH.gif
15 row 3 Cow 2D projections Heavy https://i.imgur.com/OYfFRB2.png
16 row 3 Bunny z-translation Light https://i.imgur.com/pcJone0.gif
17 row 3 Noise xy-translation Medium https://i.imgur.com/24CdVOH.gif
18 row 3 Teapot rotation Medium https://i.imgur.com/8z2c22K.gif
19 attention Bunny z-translation Minimal https://i.imgur.com/J6lv06O.gif
20 row 4 Bunny xy-translation Light https://i.imgur.com/NgRp7IS.gif
21 row 4 Cow rotation Heavy https://i.imgur.com/rxErFcw.gif
22 row 4 Teapot 2D projections Medium https://i.imgur.com/SO9qmcm.png
23 row 4 Noise z-translation Medium https://i.imgur.com/ukkdMcb.gif
24 attention Teapot 2D projections Minimal https://i.imgur.com/w2wKQWj.png

distribution function (in our case, a 3D Gaussian). For each of the
sampled points, we calculate the value of the function at that point
and scale the seed density by this value. This scaling defines the
density of the object placed at that point. As a result, the 3D density
plot of the dataset resembles a 3D Gaussian, and any arbitrary 2D
projections resemble a 2D Gaussian.

4 STUDY
To empirically evaluate the perceptibility of the models in our
point clouds, we conducted a user study2 on Amazon Mechanical
Turk. The study used a within-subjects design, with 24 questions
that presented the users with static images or an animation of a
point cloud and asked, “What shape, if any, do you see hidden in the
points?” with multiple choice answer options of Dragon, Bunny,
Cow, Teapot, or Nothing. The 24 questions included pretest, study,
and attention questions (see Table 1).

4.1 Pretest Questions
We used the first four questions as training and pretest with obvious
answers to identify and filter out any users that might not under-
stand the instructions. The first training-pretest question presented
a rotating point-sampled version of the Stanford Dragon [Curless
and Levoy 1996] unoccluded, asking, “In the following set of ques-
tions we will ask you to identify shapes that are made of points. What
shape do you see?”. Followed by a rotating cloud of points partially
2The study was reviewed and approved by our Institutional Review Board, IRB00000067

occluding the bunny model with the following text, “The shape, if
it exists, will be hidden in a cloud of points. What shape, if any, do
you see hidden in the points?”. Pretest question 3: three on-axis 2D
projections of the teapot model, “Here we show the front, top, and
side views of a cloud of points. What shape, if any, do you see hidden
in the points?”

4.2 Study Questions
In the primary questions, users were presented with one of four
models (the Stanford Bunny, the Utah Teapot, the OSG Cow, or a
noise control with no identifiable structure) in one of four condi-
tions: 3D scatterplot under motion (xy-translation, z-translation,
rotation) or 2D scatterplots of the canonical projections in a scatter-
plot matrix (see Figure 2). The density of the point clouds occluding
the three models varied with the three models. The bunny was the
least occluded, followed by the teapot, and finally, the cow in the
highest density. We counter-balanced the models and conditions in
a Graeco-Latin square. We presented the animated conditions as
GIFs, which we captured using MayaVi [Ramachandran and Varo-
quaux 2011] using the default perspective projection. We presented
the static 2D projections in a group of three principal projections:
front, top, side.

4.3 Attention Questions
We also intermixed attention tests with the study questions as an
attempted mechanism to filter out careless and inattentive users.
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The attention questions mimicked the study questions but at a 
much lower level of occlusion. A level that we believed participants 
would be able to detect the model structure easily.

5 RESULTS
We recruited participants through TurkPrime [Litman et al. 2017]. 
All participants had completed over 100 Human Intelligence Tasks 
(HITs) with a HIT approval of at least 90%. We recruited a total 
of 143 participants; 128 users completed all 24 questions in an 
average time of 25 minutes. We discarded the partial results of 
the 15 participants that did not complete all 24 questions from the 
analysis.

We began with an analysis of the quality of the responses from 
the remaining 128 participants, based on the attention questions. Of 
the attention questions, question 14 (see Table 1) was an outlier with 
less than 69% of the participants correctly identifying the teapot. 
On analysis, we realized question 14 was incorrectly coded, which 
we had intended to be an attention test with a minimal amount of 
occlusion; however, it was miscoded with an occlusion equivalent 
to the study questions. Therefore, we disregarded question 14 as 
an attention test. Of the remaining seven attention and pretests, 
91 participants (71%) answered all seven of these tests correctly, 
while 118 participants (92%) answered at least six of the questions 
correctly (see Figure 4). The number of correct responses for the 
individual attention and pretest is inconsistent (see Figure 5), rang-
ing from 99% correct to 78% correct. Measuring the attentiveness 
of workers on Mechanical Turk is a challenging problem with no 
accepted standard to what classifies a worker as attentive or inat-
tentive [Hauser et al. 2018]. Furthermore, the inconsistency across 
our attention tests may suggest that the difficulty of  these tests 
were unsuccessfully chosen and may be measuring something other 
than attentiveness. Therefore, in the following analysis, we con-
sider both the results for the 91 attentive participants and the results 
for the full complement of 128 participants. While the attentive 
participants were generally more successful, we see the differences 
were slight and always within the confidence interval (see Figures 6 
and 8).

Table 2: Table of study results, comparing the rotation condi-
tion to the other conditions with a 2-sample test for equality 
of proportions.

Model Condition No. correct Significance
𝜒2 (1, 128)

Bunny Rotation 104 (81.25%)
Bunny xy-translation 26 (20.31%) 92.663, 𝑝<2.2e-16
Bunny z-translation 6 (4.69%) 149.98, 𝑝<2.2e-16
Bunny 2D Projections 8 (6.25%) 143.25, 𝑝<2.2e-16
Teapot Rotation 92 (71.88%)
Teapot xy-translation 2 (1.56%) 133.16, 𝑝<2.2e-16
Teapot z-translation 1 (1.56%) 133.16, 𝑝<2.2e-16
Teapot 2D Projections 10 (7.81%) 106.93, 𝑝<2.2e-16
Cow Rotation 59 (46.09%)
Cow xy-translation 7 (5.47%) 53.099, 𝑝=3.17e-13
Cow z-translation 2 (1.56%) 67.492, 𝑝<2.2e-16
Cow 2D Projections 3 (2.34%) 64.383, 𝑝=1.024e-15

Figure 4: Histogram of the number of attention and pretest
questions the participants answered correctly. Ninety-one
participants (71%) answered all seven correctly. 118 (92%) an-
swered six or more correctly.

Figure 5: Bar graph of the percent of correct answers for the
attention and pretest questions.

Across the three models, users were significantly better at iden-
tifying the hidden object when visualized as a 3D scatterplot un-
der rotation than in any other condition (see Figure 6). We com-
pare rotation against the other conditions with a 2-sample test
for equality of proportions (see Table 2). The Standford bunny
was the least occluded of the three models, and had the high-
est number of correct detections. Considering the population of
128 participants, 104 participants identified the bunny under rota-
tion compared to 26 correct identifications under xy-translation,
𝜒2 (1, 128)=92.663, 𝑝 < 2.2e-16, only 6 participants correctly iden-
tified the bunny under z-translation, 𝜒2 (1, 128)=149.98, 𝑝<2.2e-16,
and 8 participants were correct when using the 2D projections,
𝜒2 (1, 128)=143.25, 𝑝<2.2e-16.

The teapot had more occlusion and was detected by 92 partici-
pants, which is significant when compared 2 correct participants in
both xy-translation and z-translation, and 10 correct detections us-
ing 2D projections. Finally, the cow was the most heavily occluded
and was correctly detected by 59 participants under rotation. With
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Figure 6: The graph shows the percentage of correct responses for the sixteen study questions. The error bars show the 95%
binomial proportion confidence intervals. Hashed bars show the percentage of correct responses for all 128 participants, and
solid bars show correct responses for the “attentive” participants.

Figure 7: Percentage of false positive answers. Participants
incorrectly reported noise when there was hiddenmodel for
48% of the questions.

only 7 correct under xy-translation, 2 correct under z-translation,
and 3 correct using 2D projections. See Table 2 for details.

While 3D rotation was unambiguously better than the other
three conditions, there is no clear difference between the other
three conditions, with exception to the xy-translation for the bunny.
Translation in the xy-plane did significantly better for the bunny
than z-translation, 𝜒2 (1, 128)=12.893, 𝑝=0.00033, and 2D projec-
tions, 𝜒2 (1, 128)=9.8018, 𝑝=0.001743. For the teapot and cow mod-
els, there are no clear differences between the translation and 2D
projection conditions.

We might construe the number of correct detections for noise
control as participants identifying a lack of a model correctly; how-
ever, nothing was generally the default choice, as can be seen by the
number of noise false positives in Figure 7 and in the distribution
of answers in Figure 8.

6 DISCUSSION
This work contributes definitive evidence that there can be pat-
terns that are identifiable in 3D scatterplots under rotation but not
identifiable in 2D scatterplots; however, more work is needed to
understand how that result generalizes. We derived the patterns of
interest from popular 3D models, which provided shapes recogniz-
able for our participant population—Mechanical Turk workers we

assumed would not be data analysis experts. These shapes may not
be representative of features or clusters in real-world point clouds;
obviously, it would be unlikely to find a bunny-shaped cluster in
a dimension-reduction data set. However, the use of these objects
is not wholly unreasonable, as complex shapes can be observed
in real-world point-cloud data. For example, Bugbee et al. [2019]
describe a zoomorphic shape having “horns” in a 3D point cloud
generated from t-SNE—a dimension-reduction technique.

In our experiment, we occluded each structure by varying de-
grees of point density, which corresponds to the number of correct
detections under rotation 81%, 72%, and 46%, respectively. These
point clouds provide three separate examples that support our
hypothesis. However, without varying the density condition, we
cannot discern if the differences between conditions are a function
of the model (i.e., bunny shapes are easier to see than cow shapes)
or a function of the point density. We suspect there are elements of
both at play. Furthermore, based on the bunny results, the models
might become perceptible under translation at lower occlusions. By
systematically lowering the density, would we eventually see an in-
flection point when translation becomes a viable depth cue? At that
point, would the models also be perceptible in the 2D projections?
Understanding the differences between shapes and deepening the
investigation of 2D projection versus 3D translation as a function
of occlusion is future work.

Our axis of rotation was roughly parallel to the image, which is
consistent with rotation in VR-based motion parallax (i.e., moving
around an object). However, we know from prior work that the
user’s perceptions can be significantly affected by the axis of orien-
tation [Todd 2004]. Additionally, we located all of our structures of
interest central to the cloud of points near that rotational axis. What
influence does moving that axis of rotation away from the structure
of interest have? These questions will be explored in future work.

This work was in part motivated by our desire to understand
when there might be value in visualizing 3D scatterplots immer-
sively. We used our immersive environment during the develop-
ment of our datasets. We were readily able to perceive the hidden
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Figure 8: The graphs show the percentage of responses for each model. The error bars show the 95% multinomial proportions
confidence intervals calculated by the Sison and Glaz [Sison and Glaz 1995] method. Hashed bars show all 128 participants’
responses, and solid bars show the percentage of responses for the “attentive” participants.

structures when viewing these data immersively with or without
stereopsis. In retrospect of the study results, this immersive per-
ception is somewhat surprising. There is very little rotation in our
head positions – tracker logs confirm that the head movement is
dominated by translation. However, there was some small amount
of rotation in the orientation, and we know from prior work that
very small head movements can aid depth perception [Aytekin and
Rucci 2012; de la Malla et al. 2016]. The perception could be the
cognitive aid of being embodied, or maybe a minimal amount of
rotation is sufficient to aid perception. A user study of immersive
visualization of 3D scatterplots, controlling the amount and types
of movement is future work.

7 CONCLUSION
We have synthesized point cloud data that definitively demonstrate
that 3D visualization can reveal some structures in 3D point clouds
under rotation that are not perceptible in 2D projections, supporting
our hypothesis. We have shown three separate examples where
2D projections were insufficient to identify structures in 3D point
clouds. Synthesizing our results and the mixed results from the
literature, we conclude that it is critical to always examine your
data in multiple ways. Others have advocated taking multiple views
(both 2D and 3D) [Tory et al. 2006]. Particularly for larger complex
data, no one perspective is likely sufficient, whether that perspective

a purely quantitative statistical view or a view afforded by some
visualization technique.
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