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Abstract

The existing methods that determine heliostat aiming strategies for concentrating
solar power (CSP) central receiver plants typically use heuristics and/or are com-
putationally expensive, and they lack flexibility for different desired flux profiles and
receiver geometries. Because of the interaction between layout and aimpoint strat-
egy, considering the former without accounting for the latter may yield solutions with
superfluous heliostats that cannot be used efficiently without compromising receiver
flux constraints. To that end, we develop a software decision tool that uses innova-
tive optimization methods to both optimize aimpoint strategies and improve candidate
layouts for the solar collection field of a CSP central receiver plant. A CSP plant’s
effectiveness relies on the optical efficiency of the solar field, which may be limited by
losses due to (i) the cosine effect, (i) atmospheric attenuation, (iii) interference (i.e.,
shading and blocking) between heliostats, (iv) spillage as a result of heliostat position-
ing and geometry, and (iv) some heliostats’ inability to direct irradiance to the receiver
without damage due to excessive thermal flux. The goal of this work is to obtain opti-
mized aiming strategies and improved solar field layouts that reduce capital cost and
increase field optical efficiency and utilization, while meeting the power requirements
of a given CSP receiver design. We formulate the aimpoint optimization problem as a
mixed-integer linear programming model, which we then decompose into submodels
that we solve in parallel. The decomposition subdivides the solar field into sections,
and aimpoint strategies for each section are obtained independently of the others. To
improve existing layouts, we develop a utilization-weighted efficiency metric that we
use to relocate heliostats to sections of the solar field with similar efficiency and higher
utilization. Finally, to connect our software to high-fidelity flux models, we develop a
Python application programming interface for SolarPILOT, a mature software package
that characterizes solar field performance and generates the heliostat layouts and flux
maps that serve as input to our models.

1 Major Goals and Objectives

This project develops a software decision tool that uses innovative optimization methods
to determine the best layout for the solar collection field of a concentrating solar power
(CSP) central receiver plant. A CSP plant’s effectiveness relies on the optical efficiency of
the solar field, which may be limited by losses due to (i) the cosine effect, (ii) atmospheric
attenuation, (iii) interference (i.e., shading and blocking) between heliostats, (iv) spillage
as a result of heliostat positioning and geometry, and (iv) some heliostats’ inability to direct
irradiance to the receiver without damage due to excessive thermal flux. Design and
operations decisions addressed by this project include: (i) the location of each heliostat in
the solar field, and (ii) the intended aimpoint of each heliostat to the receiver for each hour,
across a representative collection of days. The goal of this work is to reduce the capital
cost associated with heliostat production to meet the power requirements of a given CSP
receiver design and power block, while increasing the productivity of the system.

Given weather data, heliostat specifications, a topological layout of the proposed design
field, and a receiver’s size, location, and geometry as input, we formulate a layout opti-
mization methodology that places heliostats in the solar field so as to meet the energy
requirements of the power block and storage system at minimum capital cost, while en-
suring that the thermal flux profile of the receiver falls within design specifications. The
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model limits the inclusion of superfluous heliostats that may not be usable during peak
DNI periods without compromising mechanical limits on the receiver due to thermal flux.
The software platform builds on existing work by the proposing team and others to make
the development tractable.

The success of this project will allow a plant designer to obtain a well-planned solar field
layout that accounts for the aimpoint strategy to the receiver, which will:

1. Reduce the capital requirements for the heliostat field by reducing the required land
and number of heliostats to send the target amount of irradiance to the receiver;

2. Increase the optical efficiency of the system by reducing the number of inactive
heliostats due to thermal flux constraints on the receiver.

The focus of our work is on the development and implementation of optimization models
and heuristics, so we rely on SolarPILOT [27] to provide the high-fidelity flux maps that
serve as inputs to the tool we develop to obtain aimpoint strategies, as well as starting lay-
outs for our layout improvement algorithm. To facilitate seamless passing of information
into our Python-developed tool, in this project we develop a Python application program-
ming interface (API) for SolarPILOT as well [14], which we describe in Section 2.5.3. We
then interface with this API to obtain layouts and flux maps for a given solar field.

Our approach to generating an aiming strategy differs from SolarPILOT’s in two ways.
First, our method seeks a collection of aimpoints that maximizes thermal power delivery
to the receiver surface to within a user-specified tolerance of optimality, whereas SolarPI-
LOT uses a heuristic that spreads flux evenly on the surface. Second, our method allows
us to restrict flux to within specific limits to prevent damage to the receiver, whereas So-
larPILOT’s aimpoint strategy imposes no such limits. As a result, we believe our aimpoint
strategies are more representative of in situ operations.

Our layout improvement algorithm starts with a given layout, such as the one provided by
SolarPILOT that seeks maximum optical efficiency given the receiver and land character-
istics. Then, we use the aimpoint optimization model to obtain strategies and heliostat
utilization by section. Finally, we relocate heliostats from less-utilized sections to sections
with the highest utilization; in other words, to locations in which the relative loss of optical
efficiency is lower than the relative increase in utilization.

Project Impact

To our knowledge, the state of the art in using integer programming techniques to obtain
aimpoint strategies is the recently published papers by Ashley et al. [2] and Kuhnke et
al. [20]. In both cases, the authors use the PS10 plant, which contains 624 heliostats in
the solar field, to obtain aimpoint strategies that minimize spillage losses without violating
flux constraints on the receiver, an objective analogous to the one in our aimpoint strat-
egy optimization model. This results in this project exhibit solutions for fields five times as
large, and we have solved even larger instances, such as the field at Crescent Dunes as
a case study we are currently pursuing with Tietronix. We have obtained a similar level of
performance gap to that of Kuhnke et al., though they utilize a much coarser receiver sur-
face (i.e., 20 measurement points versus the 400 we incorporate). Our intent is to obtain
optimized aimpoints for commercial-scale plants, and we believe that our decomposition
technique is well-suited for this application; this allows us to obtain solutions to much
larger solar fields on a similar time scale, advancing the state of the art using this solution
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technique. The layout improvement method we developed is heuristic in nature, and so
we do not present any bounds on further improvement. However, the metric we present
for solar field productivity is novel, as it accounts for both optical efficiency and utilization
in its criteria for heliostat location selection. Moreover, the productivity improvement we
show compared to an existing layout in SolarPILOT is similar to the improvements in opti-
cal efficiency presented by Noone et al. [23] when they compared their biomimetic layout
to the radial stagger layout. The aimpoint strategy and layout tools can be extended to
support alternative geometries for Gen3 receivers currently studied in other projects at
the National Renewable Energy Laboratory (NREL), and the aimpoint strategy in particu-
lar can be further enhanced to respond to the detection of hotspots on the receiver.

2 Project Results and Discussion

This section presents the full methodology we employed in this study, as well as results
obtained for a collection of case studies designed to either (i) measure the accuracy of
our tools, or (ii) demonstrate improvement over other methods in the literature. The re-
sults begin with a discussion of the inputs we use for our model and the approximations
we adopt to ensure that our model instances are both accurate and tractable. Next, we
detail the optimization model we implement to obtain thermal-power-maximizing aimpoint
strategies, and the optimization methods we implement and develop to obtain solutions
to model instances quickly using open-source solvers. We then propose a metric not
discussed in the literature to our knowledge, and utilize it as a means to improve layouts
for solar fields. Finally, we discuss the software library we developed featuring the opti-
mization model, as well as the development of a Python-based application programming
interface for SolarPILOT that improved both the quality of our case study inputs and the
accessibility of SolarPILOT for researchers and practitioners.

Literature Review

A recent review by Barbarena et al. [4] shows that the most commonly used approaches to
obtain solar field layouts and characterize their performance as part of a full CSP system
utilize heuristic methods. TieSOL [1, 17] is a software package that uses particle swarm
optimization to obtain layouts and aimpoint strategies [18]. Researchers at the University
of Houston developed RCELL [22], which considers staggered radial and north-south
oriented layouts. Additional efforts use evolutionary algorithms to obtain heliostat layouts
and characterize plant performance via simulation, such as DELSOLS [19], HELIOS [26],
and Campo [7, 8], while others develop heliostat layouts using their own algorithms and
then characterize performance using separate software (see, e.g., [3, 11, 21, 30]). These
algorithms assume either a radial or spiral orientation, which limits the span of potential
designs; this reduces the time required to find solutions, but leaves room for efficiency
improvements. Pattern-free optimization methods, like those shown in [6], have been
shown to yield improved optical efficiency when compared to fixed geometries. Although
all the methods above account for cosine, attenuation, interference, and spillage-related
losses, they generally assume that all heliostats are aimed at the center of the receiver
during the design process, which in practice would cause excessive thermal flux [2].

Similar to layout optimization, some existing efforts to find an aimpoint strategy that max-
imizes the delivery of thermal energy to the receiver while adhering to limits on thermal
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flux of the receiver rely on evolutionary algorithms, as described in [13]. Belhomme et
al. present a metaheuristic based on ant colony optimization to obtain a heliostat aim-
ing strategy for a fixed solar field layout [5]. Cruz et al. propose a two-tiered method
that uses a genetic algorithm to select a subset of the heliostats to activate, and then
uses a gradient descent method to obtain specific aimpoints [9]; the authors propose a
separate, teaching-learning-based optimization algorithm that lends itself well to parallel
implementation [10]. To our knowledge, the only aimpoint optimization methodology that
characterizes the model as a mixed-integer linear program was developed by Ashley et
al. [2] and, more recently, Kuhnke et al. [20]. To achieve this formulation, the authors
pre-specify a discrete grid of candidate aimpoints, then allocate heliostats to the grid with
a goal of minimizing the flux gradient across the surface of the receiver. All of the works
above assume that the layout is fixed; co-optimization of aimpoint strategy and solar field
layout is an open question that we begin to address in this project.

2.1 Thermal Flux Map Characterization

Our goal is to obtain a layout and aimpoint strategy that maximizes the thermal power
delivered to the receiver, given terrain characteristics, the receiver design, and a pre-
specified number of heliostats to position in the solar field as input. Because high-fidelity
flux maps can be computationally expensive to generate, even when provided a (fixed)
collection of heliostat and aimpoint locations as input, we have developed two approxima-
tions that will maintain a high degree of accuracy while allowing instances of our model to
be generated within a few minutes.

2.1.1 Approximation 1: Discretize the Receiver Surface

Our first approximation discretizes the receiver surface into a collection of measurement
points and aimpoints, the former of which are used to estimate total thermal power de-
livery to the receiver and ensure that flux limits are met, and the latter of which may
be targeted by a heliostat. This addresses the non-convex nature of flux incident to a
measurement point as a function of the aimpoint location, and allows for us to solve an
instance of the aimpoint strategy model to proven optimality by establishing a valid up-
per bound on thermal power delivery. We note that for some receiver designs, not all
aimpoints will be accessible to every heliostat; e.g., a heliostat may only access a col-
umn of aimpoints on a cylindrical receiver. Figure 1 displays an example receiver surface
discretization.

2.1.2 Approximation 2: Translate Flux Maps Without Recalculation

The second approximation translates a thermal flux image in the place of recalculation for
any non-central aimpoint. Specifically, given a heliostat location and sun location as input,
we calculate the flux incident to each measurement point on the receiver, which we call a
flux map, when a central aimpoint is selected. Then, for every other aimpoint, we use that
image and shift the flux map by the distance between the central and new aimpoints to
obtain an estimated flux map. Let H be the number of heliostat locations, and let A be the
number of aimpoints. Using our approximate method, we only generate H flux maps as
input to the optimization model, instead of generating H- A flux maps when we recalculate
flux for every aimpoint.
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Figure 1: An example discretization of a square, flat-plate receiver surface into a
collection of 400 measurement points and 49 aimpoints, represented by black dots and

red x’s, respectively
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2.1.3 Case Studies

We assess the quality of our estimation method by comparing the calculated flux incident
to each measurement point by generating H flux maps and translating images in our
method described above to that incident to the same measurement points by generating
H - A flux maps as the higher-fidelity (but more computationally expensive) standard. Let
M be the number of measurement points on the receiver that we will evaluate for the case
study. Then, we calculate mean absolute percent error (MAPE), our measure of interest,
in the following way:

1. Form=1,..., M, let o, be the thermal flux incident to measurement point m when
using the approximate method that generates H flux maps, or one for each heliostat,
aimed at the center of the receiver surface.

2. Form=1,..., M, let e, be the thermal flux incident to measurement point m when
using the higher-fidelity method that generates H - A flux maps, or one for each
heliostat-aimpoint pairing.

3. Then,form=1,..., M, the ratio 6,, = |0m — em|/€em is the absolute percent error for
measurement point m, and e = >_M_. 5,,/M is the MAPE for the case study.

Separately, we calculate the difference in thermal power delivered via the approximation
to that of the higher-fidelity method.

Location-Variant Cases

We develop a collection of four case studies, and our criteria for an accurate approxi-
mation is a MAPE of less than 10% when compared to the baseline of a high-resolution
map of the receiver without image shifting. Each case study utilizes 2,500 measurement
points (i.e., 50 rows of 50 points each) and 25 candidate aimpoints. Our cases studies
take place in two different locations (Daggett, California, and Ouarzazate, Morocco), each
of which is paired with a 50-MW receiver and a 250-MW receiver. Similar to the previous
test, we implement Gaussian flux images.

The solar field used in each case study was generated by SolarPILOT [27] after the re-
ceiver characteristics and location were updated from default settings. Figure 2 displays
the solar field generated for one of the case studies, specifically that of the 50-MW, flat-
plate receiver in Daggett, CA. Each heliostat was randomly assigned to one of the 25
candidate aimpoints, which were distributed equally across the flat-plate receivers.

Table 1 displays the results of the studies, and shows that all four case studies presented
exhibit a MAPE well within 10% and a total field error of less than 1%. After repeating
the random assignment of heliostats to aimpoints 30 different times we found that the
confidence interval on MAPE was significantly lower than 10%, as was the maximum
MAPE across all cases and randomly generated instances. Figure 3 displays a map of
the relative error by measurement point for each case. We observe that error is low in
general and mostly confined to the edges in the corners for the 250-MW cases, whereas
error is highest near the bottom edge for the 50-MW cases. We believe the likely source
of error reduction for the larger plants is the presence of mirrors casting larger flux images
on the receiver from a longer distance, which are subject to a smaller angular difference
(and hence, a reduced alteration of the image) when moving to an off-center aimpoint.
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Figure 2: Solar field layout used in the case study using a 50-MW, flat-plate receiver in
Daggett, CA. The dot at the bottom-center of the image represents the receiver, and the
rectangles represent heliostats. The legend on the right maps the color of each heliostat

to its optical efficiency.

Case

A WO DN

Location
Daggett
Daggett
Ouarzazate
Ouarzazate

Rating (MW)
50
250
50
250

# Heliostats MAPE (%) Field Error (%)
656 2.66 0.60
3,322 0.35 0.06
650 3.14 0.74
3,250 0.11 0.03

Table 1: Mean Absolute Percent Error (MAPE) Summary for Case Studies

www.nrel.gov/publications



0012

0010

0008

0.008

0.004

°
4

Relative error (fraction)

Relative error (fraction)

0.002

| 003
002

001

Daggett, 50MW Daggett, 250MW

0025
0020
0015

0010

002
0.005
| O

Ouarzazate, 50MW Quarzazate, 250MW

o
2

Relative error (fraction)

Relative error (fraction)

Figure 3: Heat maps displaying the relative difference in flux incident to each
measurement point for each of the rectangular flat-plate case studies described above.
Labels below each heat map denote the case study, and the legend on the right maps
color to absolute fraction of error at each measurement point. The x-axis position and
y-axis positions on each map are analogous to the horizontal and vertical locations on the
receiver, respectively.

Annual Assessment

We extended our assessment of the image translation approximation for a full year instead
of using a single time period. Specifically, we have extended cases 1 and 2 for a large
collection of hours to demonstrate that the accuracy of our approximation is robust with
respect to changes in the time of day and year.

For our year-long analysis, we only consider hours in which the DNI is greater than or
equal to 500 (W/m?). The weather data used in these case studies have around 2,700
such hours, with wide day-to-day and seasonal variation. To keep the computation time
of this analysis manageable, we select every 15th hour that meets the minimum DNI
threshold for one year. Figure 4 displays the hours selected over the course of the year,
demonstrating that our analysis includes a wide representation of both DNI and solar
angles.

The results obtained from the case studies are presented using empirical cumulative dis-
tribution function (ECDF) in Figure 5. The graphs show that the maximum value for MAPE
is found to be 2.5% and 0.3% for 50 MW and 250 MW, respectively, both of which fall be-
low the goal threshold of 10%. The trend of a larger field having lower MAPE than the
smaller field is consistent with the findings from the last quarter, and confirms that our
approximation is scalable.

Figure 6 displays the MAPE by the hour of the day and month of the year. The results
show that the error is highest in the morning and evening, and is lowest at noon, when the
DNI is highest under a clear-sky model. The diurnal nature of approximation error is due
to the increased image distortion when the heliostats are oriented to capture sunlight at
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Figure 4: A time series of DNI by hour for all hours of the year in which DNI is at least 500
W/m?. Orange dots represent the hours selected for the yearly analysis, demonstrating
that our analysis includes a wide representation of both DNI and solar angles.

sunrise and sunset. Shifting the aimpoint of the image in the early and late hours leads to
further distortion of the flux image, which is not captured by our image-shifting approach.
As a result, the approximation error is greater in the early and late hours when compared
to noon when using the approach we adopt. This diurnal trend is consistent for each
month of the year. Additionally, similar to the results presented in Figure 3, the highest
error occurred in the corners of the receiver, where aimpoints are sufficiently far from the
measurement point that image distortion would have a greater impact than at the center
of the receiver surface.

2.2 Aimpoint Optimization Model

Our aimpoint strategy optimization model assumes that heliostat locations are fixed, and
we consider a single time period in which the aimpoint strategy is optimized. The opti-
mized aimpoint strategies then serve as input to the layout optimization method that we
discuss later in Section 2.4. Flux maps serve as inputs to the model, using the discretiza-
tion and image-shifting approximations that we developed in Section 2.1. The develop-
ments in Sections 2.2—2.3.1 are described further in [31].

In what follows, we describe the aimpoint strategy optimization model in general form.
We assume that we can choose any flux calculation method to pre-compute the flux de-
livered to each measurement point given a heliostat’s selected aimpoint, which serves as
a parameter in our model. Our notational convention is adapted from the best practices
established in [24] and uses lowercase letters to denote decision variables, capital letters
to represent parameters, subscripts to denote indices, and caligraphic letters to denote
sets.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.
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Figure 5: Yearly ECDF plots of selected hours with DNI greater than or equal to 500 W/m?.
The x-axis denotes the MAPE level as a fraction, and the y-axis denotes the proportion of
cases that exhibit a MAPE at or below the level on the x-axis.

2.2.1 Model Formulation

Sets and Indices

heH: heliostats

me M: receiver measurement points

me M,: measurement points that neighbor measurement point
m

aec A receiver aimpoints

Parameters Units

Chma: thermal flux incident to measurement point mwhen he- [W/m?]
liostat h aims at point a on the receiver

Sm: surface area allocated to measurement point m [m?]

S upper limit on thermal flux incident to measurement [W/m?]
point m

D, upper limit on difference in flux incident to measure- [W/m?]
ment points m and m’

Decision Variables Units

Yha: 1 if heliostat h focuses on aimpoint a, and 0 otherwise [unitless]

i thermal flux delivered to measurement point m [W/m?]

10
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Figure 6: Summaries of average MAPE results for each hour of the day, for the 50-MW
Daggett case study described above. Each line represents the summary MAPE for a
different month.

Formulation
Z* = max Z S Xm (1a)
memM
subjectto  Xm=> > Chma:Yna YMEM (1b)
heH ac A
Xm < Bn, VYmeM (1c)
Xm — Xpy < Dy ¥(m,m) € M x M (1d)
Xm >0, Vme M (1e)
Yna € {0,1}, VheH, ac A. (1)
Discussion

Through the objective in (1a), we seek a collection of aimpoints for the heliostats such
that the maximum power is delivered to the receiver, which we define in our approximate
model as the sum of each measurement point’s incident flux, times its allocated surface
area. Constraint (1b) ensures that only the selected aimpoint for each heliostat is consid-
ered when calculating the total flux incident to each measurement point. Constraint (1c)
limits the flux incident to each measurement point to its pre-specified bounds. Similarly,
constraint (1d) restricts the thermal gradient on the receiver to specific limits. Although
the flux profile on the receiver can impact its thermal efficiency [15], we do not consider
efficiency gains; rather, we assume that these bounds may be used to restrict operations
to those permissible within the receiver’s design specifications. Constraints (1e) and (1f)
provide non-negativity and binary restrictions, respectively, which ensures that variables
maintain physically and logically realistic values.

11
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Figure 7: The optimal solution to an instance of model (1) in which the three
one-dimensional flux images are Gaussian with unique variances. Here, the objective is to
maximize the area under the curves captured within the interval [0,1] by selecting
aimpoints, which lie at the center of each curve.

2.2.2 Examples Using Gaussian Flux Images

We illustrate the value of using an optimization model to obtain aimpoints by developing
two case studies that use Gaussian images. In our first case study, we consider three
univariate Gaussian images on a one-dimensional receiver surface. In this example, the
receiver spans the [0,1] interval, the upper limit on thermal flux is defined as

Bly)=4+y

for y €[0,1], and the Gaussian images have standard deviations of s; = 0.1, s, = 0.2, and
s3 = 0.4. In this setting, the decision maker’s goal is to select the aimpoint (i.e., center)
of each of the curves. For now, only the upper limit on flux and bounds of [0,1] for the
candidate aimpoints are considered; we do not consider lower limits on flux incident on
any measurement point, nor do we include the restrictions on flux gradients described in
equation (1d).

Figure 7 displays the optimal solution under these conditions, with positions set to 0.79,
0.37, and 0.43, respectively. Without the upper limit, all three curves would be centered
at 0.50 to maximize the total flux delivered to the interval; however, the limit pushes the
more focused image to the upper limit, while the two less-focused images are shifted to
the left to ensure that the flux limit is within the specified range.

Case 2: Two-Dimensional Gaussian Images on a Flat-Plate Receiver

Our second case study considers the optimized aimpoints for four Gaussian images to
a flat-plate receiver surface that is 25x25 meters. Relative to the south-facing receiver
surface, the heliostats are placed at the following locations:
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Figure 8: The optimal solution to an instance of model (1) in which four heliostats are
aimed at a 25m-by-25m flat-plate receiver. Green points denote aimpoints selected by one
of the four heliostats, and gray dots represent available aimpoints that were not selected.
The color map on the right denotes the flux (W/m?) incident to each measurement point on

the receiver.

1. 500 meters south and 500 meters west
2. 500 meters south and 250 meters west
3. 500 meters south and 250 meters east
4. 500 meters south and 500 meters east,

and the error level for each (single-point) heliostat is 5 milliradians.

Similar to the previous example, the objective of Case 2 is to obtain aimpoint selections
for these four heliostats that maximize the total power delivered to the receiver surface,
subject to an upper bound on incident flux that is the same for all measurement points
on the receiver. As in Case 1, we do not impose the lower bounds on incident flux in
constraint (1c), nor do we place any restrictions on the thermal flux gradient per con-
straint (1d), at any point on the receiver.

Figure 8 displays the optimal solution under these conditions; green dots represent se-
lected aimpoints, while gray dots represent aimpoints that were not selected for any of the
heliostats. The results show that even though the center aimpoint would yield the high-
est power delivery for each heliostat, the flux limits preclude a strategy in which multiple
images focus on the center of the receiver; moreover, in the optimal solution, none of the
heliostats are aimed at the center.

2.3 Solution Methods

Because solar fields may exceed 10,000 heliostats for commercial-scale plants, these
model instances can become computationally intractable with off-the-shelf solvers. To
that end, we employ two optimization methods to quickly obtain high-quality solutions to
the models that we develop in Section 2.2 using open-source solvers. In the first, we
present a spatial decomposition of the optimization model that subdivides the problem
into subproblems that we may solve in parallel. In the second, we implement an existing
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DE-EE00035930
Solar Field Layout and Aimpoint Strategy Optimization

Step 1: Subdivide solar
field into sections

Step 2: Optimize aimpoints
for subsections in parallel

Step 3: Combine
subsection solutions and
adjust as needed to obtain
full-field strategy

Figure 9: Flowchart describing the approach to solving large-scale layout and aimpoint
strategy optimization model instances. The method will allow for subproblems to be
solved in parallel, which will provide solutions more quickly than solving the large-scale
instance directly.

heuristic from the literature that creates groups of heliostats which share an aimpoint.

2.3.1 Spatial Decomposition

This section describes a spatial decomposition of the aimpoint strategy optimization
model. Figure 9 displays a brief overview of the methodology we adopt, which subdivides
the solar field into smaller sections that for which we optimize aimpoints in parallel, and
then combine the sections to obtain a solution for the entire solar field. The method allows
for solutions to be obtained more quickly than solving the large-scale model instances
directly. The approach we use to separate the larger optimization models that we solve in
parallel is similar to the temporal decomposition described in [33], but our decomposition
is spatial in nature.

In what follows, we first define the decomposed optimization model, which is equivalent
to the model in Section 2.2. We then present a reformulation of the model that allows
the problem to separate naturally by field; this is done by adding a restriction on the
allowable flux limits by section in a manner that allows the section-specific solutions to
provide a feasible aimpoint strategy. Our notation uses uppercase letters for parameters,
lowercase letters for variables, and subscripts to denote elements of a set which, in turn,
is represented by an uppercase, calligraphic letter.

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.



New Sets and Indices

h e Hy: heliostats in field section f
New Parameters Units
B upper limit on thermal flux incident to measurement [W/m?]

point m from field section f

D

mm’ f

upper limit on difference in flux incident to measure- [W/m?]

ment points m and m’ from field section f

New Decision Variables

Units

Xmf total thermal flux incident to measurement point m from [W/m?]
field section f

Decomposed Formulation

Z* = max

subject to

Discussion

DPILHEE

meM feF

Xmi =Y Y Cuha:Yras YMeM,feF
heH; acAp

> Yna<1, VheM;, feF

acAp

mef S ZBmf, vm S M

feF feF

> Xmt = Xt ) < Dpprss VM € My, me M
feF feF
Xmt >0, VYme M, feF

yha€{0,1}, VhEH, aeAh.

Model 2 is equivalent to model 1, but utilizes the cloned flux decision variables in each field
section, as well as the flux and gradient bound parameters that have been redefined to
be section-specific. Except for the summations on both sides of constraints (2d) and (2e),
model (2) separates the model naturally by field section. In the following, we present a
reformulation that is more restrictive, but allows a full separation of the model by field

section.
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Separable Aimpoint Strategy Optimization Model Formulation

Z* = max Z Z Sm - Xmf (3a)

X,y

meM feF

subjectto  Xmr= > > Cpna-Yray YMEM, fEF (3b)

heH; acAp

Y VYna<1, VYheH, feF (3c)
acAp
Xmf < Bmf, VYme M, feF (3d)
Xmt — Xp1) < Doty VM € M, me M, feF (3e)
Xmt >0, Yme M, fe F (3f)
Yna € {0,1}, Vae An, he Hy, fEF. (39)

Discussion

Model (3) is analogous to model (2), but separates the section-specific flux and gradient
limits in constraints (3d) and (3e) for each field section. This is a restriction on the original
problem, which only places a single limit for the entire field in each of the two constraints.
We select field section-specific flux limits that are proportional to the field’s productivity:

hZH /Z Cm’haC
B, =B, . —tmeM ,Yme M,feF (4)
m " Z Z Cm’hac
heH m' em
hZH ”Z Cm”hac
Dmm’f= Dmm/' EzfmZEMC " h ) Vm/ eMm,meM,fe]:, (5)
m" ha°

heH m" em

in which a° is the central aimpoint. Equations (4) and (5) proportionally scale the flux and
gradients, respectively, by the ratio of the flux contribution sum for the heliostats within a
given solar field section divided by the total flux contribution of the entire field, assuming
all heliostats are aimed at the center of the receiver. With these new limits imposed for
each field section, the model naturally separates by section, and so each section may be
solved separately and in parallel.

2.3.2 Heuristic Grouping Method

We adopted a modification to the aimpoint strategy optimization model that reduces solu-
tion time significantly with limited impact on solution quality. Specifically, we pre-specify a
group size, then subdivide each solar field into groups, and impose a condition that each
group of heliostats must be directed to the same aimpoint on the receiver. Let g € G be
the set of heliostat groups, and let h € H be the collection of heliostats in the solar field,
as in the mathematical formulation of the aimpoint strategy optimization model discussed
in previous reporting. Finally, let %4 C H be the collection of heliostats in group g, g € G.
Then, we include the following set of constraints in the aimpoint strategy optimization
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model: , ,
Yha=Yya YacA, (hhh)cHyxHg gEG: h<h, (6)

where yp, is a binary variable that is 1 when heliostat h is directed at aimpoint a, and
zero otherwise. Constraint (6) requires that all heliostats in a group focus on the same
aimpoint index a. By implementing constraint (6), the revised model is equivalent to one
that only has |G| x |.A| aimpoint selection decision variables; i.e., the model size is reduced
by a factor equal to the group size. Computational experiments indicate that the model
solution times are reduced significantly when combined with the decomposition method
described in the previous quarter; we present these experiments below in Section 2.3.3.

2.3.3 Case Study

The following case study measures the energy delivered to the receiver over the course
of a representative collection of hours using the software tool we develop in this project,
and compares the annual energy delivery to what is achieved when using the aimpoint
strategy from SolarPILOT. We employ the following method to compare the two strategies
when provided a solar field and receiver characteristics as input:

1. Let t € T be the collection of representative time periods in the year for an annual
analysis.

2. For each period h € H, let p; be the thermal power delivered to the receiver from
the aimpoint optimization model that we develop.

3. For each hour h € H, let g; be the thermal power delivered to the receiver from So-
larPILOT’s default aimpoint strategy. SolarPILOT does not consider flux limitations;
therefore, we employ the following corrective action as needed.

(a) Check for flux violations on the receiver at each measurement point. If no flux
violations exist, return p, and terminate. Otherwise, let rm be the measurement
point of maximum flux violation.

(b) Let h be the heliostat index that contributes the greatest flux to measurement
point rf1. Defocus heliostat A. Return to step (3a).

4. Calculate the factor of improvement:

> (P — 1)

teT

>aq

teT

Z =

We employ two case studies to demonstrate the value of our solution method. In the first,
we utilize a 50-MW, flat-plate receiver, and in the second, we employ a 250-MW, cylindrical
receiver. Both cases use Daggett, CA, as the candidate location and use SolarPILOT to
generate the solar field layout with a design point of 950 W/m? DNI. Figure 10 depicts the
solar field layout for each study; each color denotes a unique field section for which we
obtain optimized aimpoints separately and in parallel, using the decomposition technique
described in previous quarterly reports. We employ 8 sections for the 50-MW case and
16 sections for the 250-MW case, leveraging the 8 threads available on the laptop on
which we conduct these case studies. The grouping heuristic was implemented with a
group size of 4, and heliostats were grouped together by index in SolarPILOT, which is
analogous to grouping them together according to distance from the receiver.
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Figure 10: Layouts for the two case studies we employ to compare performance of our
model vs. SolarPILOT. The layout on the left is paired with a 50-MW, flat-plate receiver, and
the layout on the right is paired with a 250-MW, cylindrical receiver. Horizontal and vertical
axis values correspond to distance from the center of the receiver, in meters. Each unique

color denotes a field section that we solve separately (and in parallel) to obtain aimpoint
strategies quickly, using the decomposition approach described in previous reports.
SolarPILOT was used for flux map and layout generation in both cases.

The case studies utilize a collection of 28 time periods throughout the year that correspond
to those used in SolarPILOT to estimate the annual performance of the solar field; Table 2
summarizes the time of year and DNI in each period. An open-source solver, CoinCBC,
was used to obtain aimpoints with a termination criterion of either 300 seconds runtime
or a gap of 0.5% between the best possible solution and the best solution found per sub-
problem; solution times averaged less than 5 seconds for the 50-MW case and less than
100 seconds for the 250-MW case, and the 300-second limit was never met for any of the
time periods in either case. Figure 11 displays the thermal power delivered to the receiver
in both cases; the blue lines denote power delivered using our own tool, and the orange
lines denote power delivered using SolarPILOT’s aimpoint strategy. The results show that
our tool, Heliostat Aimpoint and Layout Optimization Software (HALOS) [32], outperforms
the SolarPILOT aimpoint strategy in every period, and delivers an average of 6.6% and
6.1% more thermal energy to the receiver for the 50-MW and 250-MW cases, respec-
tively. Notable outliers in this case are periods 9 and 21, in which HALOS outperforms
SolarPILOT significantly; because no defocusing occurs during these periods, one likely
explanation is that SolarPILOT’s aiming strategy exhibits greater spillage in these hours
due to (i) SolarPILOT’s tendency to spread aimpoints evenly on the receiver surface, and
(i) the increased image distortion during the early-morning hours. When the outlier in
hour 21 is removed, relative improvement in energy delivery remains above 5% for each
case.

Figure 12 shows the aimpoints selected for one of the time periods in the case study. We
note that the cylindrical receiver restricts aimpoint selection to a vertical column on the
receiver for each heliostat, with the horizontal position centered on the receiver surface
to maximize intercept efficiency. The results do not display a specific pattern for the
aimpoint strategy, but most aimpoints are at or near the center of the receiver to minimize
spillage. As DNI increases, more aimpoints spread to the outer edges of the receiver, and
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Table 2: Summary of Time Periods Used for Case Study

Period

[ e W W U W — G — O —
© O N O U DA WN = 0O ©0o N o~ wbdhd -~

ND DD DN DNDDNDDND NN DN
0 NOoO 0o~ WD = O

Day
Feb 2
Feb 2
Feb 2
Feb 2
May 4
May 4
May 4
May 4
Aug 3
Aug 3
Aug 3
Aug 3
Aug 3
Aug 3
Aug 3
Aug 3
Aug 3
Aug 3
Aug 3
Aug 3
Nov 3
Nov 3
Nov 3
Nov 3
Nov 3
Nov 3
Nov 3
Nov 3

Time
11am
12pm
2pm
3pm
11am
12pm
1pm
2pm
6am
7am
8am
9am
10am
11am
12pm
1pm
2pm
3pm
4pm
5pm
7am
8am
9am
10am
11am
12pm
1pm
3pm

DNI (W/n?)
587
840
674
631
887
777
680
664
634
841
814
823
865
947
970
813
919
861
671
716
651
821
789
785
511
805
784
537
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Figure 11: Thermal power delivery comparison by time period between our software tool

(HALOS) and SolarPILOT for two case studies in Daggett, CA, with SolarPILOT-generated

fields. The chart on the left corresponds to the 50-MW, flat-plate receiver, and the chart on
the right corresponds to the 250-MW, cylindrical receiver.
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Figure 12: Aimpoints selected by our optimization model for the 250-MW case study. The
layout on the left corresponds to the aimpoints selected, and the figure on the right
presents the mapping between each color on the left-hand figure and its vertical position
on the receiver.

defocusing starts to take place.

2.4 Layout Improvement Approach

SolarPILOT [27] includes two common options for solar field layouts, including the radial
stagger, a commonly deployed layout for tower systems. Several works have attempted
to improve on the radial stagger and an existing solar field, PS10 in Spain [6, 11, 28]. In
recent years, a biomimetic layout has been proposed by Noone et al. [23] and studied by
Zhang et al. [29] as an alternative to the radial stagger; however, the upside has been fairly
limited when attempting to improve the optical efficiency alone, as Noone et al. describe a
0.5% relative improvement in optical efficiency. Moreover, while the works above explore
the tradeoff between atmospheric attenuation and the impacts of blocking and shading to
obtain an optimal field density, to our knowledge, no works in the literature account for
utilization as a factor in the total efficiency of a heliostat. To that end, we have developed
a layout improvement method that takes as input an existing layout and improves it by
utilizing the aimpoint optimization model to find commonly defocused heliostats, and then
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reposition them in locations that may be less optically efficient, but would be utilized more
frequently, resulting in more energy delivered to the receiver.

Unlike our approach for aimpoint strategy optimization, which has been designed in a
general framework and implemented in an object-oriented manner to facilitate the future
implementation of alternative geometries, our layout improvement algorithm relies on spe-
cific features of SolarPILOT. Specifically, SolarPILOT first builds a radial stagger layout,
then removes less efficient heliostats from the layout until a specific target energy deliv-
ery is reached. We take advantage of this feature by storing the locations of removed
heliostats and their productivity, so that they may be recovered in our layout improvement
scheme. Figure 13 depicts an example of the output from our procedure, whose goal is
to improve the productivity of the layout by trading optical efficiency for utilization.

2XE)
"s:"‘."n o
LS S

Figure 13: An example solar field layout developed by SolarPILOT, with a proposed
moving of heliostats from the northern, less utilized side to the southern side, where
utilization increases at the cost of optical efficiency

2.4.1 Heuristic Improvement Algorithm

Let 6 and e be the thresholds of the fraction of heliostats defocused in a section to qualify
for heliostat removal and addition, respectively. Let p be the proportion of the defocused
heliostats in the worst-case time period to relocate from a section. An overview of our
procedure for layout improvement is as follows:

1. Build a radial stagger layout in SolarPILOT for a given location, and store the location
and productivity of each removed heliostat.

2. Use the aimpoint strategy optimization model to obtain aimpoints in a collection of
representative time periods for an annual assessment. Track heliostat utilization
(i.e., the number of defocused heliostats) in each time period.

3. If heliostat utilization is at most (1-8) in some sections and at least (1-¢) in others,
remove the p- 6 - |H| least efficient heliostats from each section with less than 100%
utilization, and add an equal number of heliostats to sections with (1-¢) utilization,
starting with the most productive heliostats that were removed.
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4. Repeat steps 2 and 3 until utilization is at least (1-06) in every field section.

2.4.2 Case Study

Similar to the case study we employed to demonstrate the performance improvements
versus SolarPILOT in Section 2.3.3, we develop a case study here to assess the perfor-
mance of our layout improvement method. Specifically, we employ the following method
after obtaining a solar field with a radial stagger and rejected heliostats as input from
SolarPILOT:

1. Let t € T be the collection of representative time periods in the year for an annual
analysis.

2. For each period h € H, let g; be the thermal power delivered to the receiver from the
aimpoint optimization model that we develop and the field generated by SolarPILOT
without any modifications.

3. Using the method described in Section 2.4, move heliostats from less-utilized sec-
tions to fully (or nearly fully) utilized sections, using 6 = € = 0.005.

4. For each hour h € H, let p; be the thermal power delivered to the receiver from the
aimpoint optimization model using the revised layout.

5. Calculate the factor of improvement:

> (Pt — qr)

teT

>a

teT

We use a 250-MW, cylindrical receiver in Daggett, CA, for our case study, with a design
point of 850 W/m?; the design point is reduced from the value of 950 W/m? used in the
other case studies to allow SolarPILOT to oversize the field slightly. Our heuristic used
groups of 4 heliostats each.

Figure 14 displays the original and revised layouts to the left and right, respectively, with
red dots denoting replaced heliostats and blue dots representing new heliostats; the ma-
jority of heliostats were removed from the southern sections of the field and redistributed
to the western and northern sections. In total, our layout improvement algorithm relo-
cated 60 heliostats, or about 2% of the field, resulting in an increase in energy production
of 0.25%, a level of improvement similar to that described in [23]. We expect that results
would improve if the field is oversized; this is an opportunity for future work.

2.5 Software Development

This section describes the software we implement to encompass the models and solu-
tions developed in earlier sections that will allow the CSP research community and in-
dustry partners to gain awareness of, and interest in, the solutions we developed in this
project. Specifically, we describe the software framework for the package we develop
to obtain optimized solar field layouts and aimpoints when provided a receiver, location,
and heliostat characteristics as input. Additionally, we describe the Python API we devel-
oped for SolarPILOT, which both allow us to directly access its mature, high-fidelity flux
characterization methods within the optimization package, as well as increase the abil-
ity of SolarPILOT users to directly access the myriad open-source software libraries that
enable data analysis and visualization in the Python community.
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Figure 14: Original (left) and improved (right) layouts, the latter of which was obtained
using the layout improvement scheme described in Section 2.4.1. Red dots denote
replaced heliostats, and blue dots denote newly added heliostats when compared to the
original design from SolarPILOT.

2.5.1 Optimization Software Package

We developed a Python-based software package that encompasses the entire
procedure—from the reading of inputs and building of the receiver object, to the
creation and solution of the optimization model, and then finally, output analysis. We
created a private GitHub repository under the name Heliostat Aimpoint and Layout Opti-
mization Software (HALOS) [32] to retain the code in a version-controlled environment;
the source code is available at https://www.github.com/NREL/HALOS.

The software is implemented in the open-source Python programming language, which
we have chosen for several reasons, including:

1. Python is an open-source language, which will allow us to make our software pack-
age open-source without additional licensing restrictions;

2. Pyomo [16], the modeling language we use to implement the models in Section 2.2,
is written in Python, which allows us to seamlessly process inputs, obtain an aim-
point strategy, and generate outputs for analysis in the same language;

3. Python includes libraries that can generate high-quality visuals for output analysis,
such as Plotly; and,

4. Several existing software packages, such as the System Advisor Model developed
at NREL [25], include a Python API that will allow us to call other software packages
directly to obtain flux profiles.

Because SolarPILOT [27] was developed at NREL and is considered a standard in solar
power tower performance characterization, we have modeled the software architecture of
our library to contain modules analogous to the objects in SolarPILOT. Table 3 includes
a listing of each module in our library to date, plus a short description of the objects and
methods contained within, and a reference to an analogous SolarPILOT object.

The scope of our project is limited to the development of a decision tool that obtains an
optimized layout and aimpoint strategies for the solar field, whereas SolarPILOT performs
much more detailed characterization of the system, and so we do not include all the
SolarPILOT objects that are not addressed in our library; rather, we access those methods
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https://www.github.com/NREL/HALOS

HALOS SolarPILOT Notes

flux_model ambient calls methods from geometry, flux_.method, mirror_model,
and field to generate inputs for the optimization model;
we currently read in weather data as a member of the
flux_model object

geometry receiver generates different receiver geometries, including the lo-
cation and normal vector of each measurement point on
the receiver

flux_-method  fluxsim calculator of flux at a measurement point given heliostat
location and aim point

mirror_model heliostat contains shape and error characteristics for a heliostat

field SolarField contains coordinates for candidate heliostat locations

optimize optimize contains the optimization model in Pyomo

plotting NA used for plotting results; SolarPILOT handles this through

its own user interface

Table 3: Description of Modules in the HALOS Library, Including a Reference to
Analogous Objects in SolarPILOT

directly through the SolarPILOT Python API that we developed and describe below in
Section 2.5.3.

Populating HALOS Instances With SolarPILOT

With weather, solar field and receiver characteristics serving as input, HALOS may obtain
flux maps from SolarPILOT to serve as input to the optimization models described in 2.2.
SolarPILOT may also be used to generate a solar field if heliostat coordinates are not
available. HALOS interacts with SolarPILOT via the Python API that we summarize below
in Section 2.5.3 and describe in detail in [14]. The connection is one-way; i.e., SolarPILOT
currently cannot call HALOS to obtain an aimpoint strategy at this time. Developing this
connection may be considered for future work.

2.5.2 Flux Calculations Within HALOS

HALOS may also be used to directly create the flux maps that serve as input to the
aimpoint strategy optimization model. Figure 15 displays a collection of the base and
derived objects currently in the tool. This hierarchical structure allows for a potential
user to add new receiver geometries, mirror models, or other new features into our tool
as a standalone object and then use our tool to obtain optimized layouts and aimpoint
strategies. Currently, only Gaussian flux maps are available within HALOS for cylindrical
and flat-plate receivers.

2.5.3 SolarPILOT Python Interface

SolarPILOT is an open-source, C++ software tool that generates and characterizes power
tower CSP systems. SolarPILOT can simulate receiver flux distributions using two meth-
ods: (i) a Hermite expansion technique (analytical) and (ii) a ray-tracing technique called
SolTrace. The Hermite method enables SolarPILOT to accurately simulate large heliostat
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Figure 15: Flowchart describing the structure of our tool when used to generate flux maps
internally. The structure allows users to create new features, such as a new receiver
geometry, and then use the tool to obtain optimized layouts and aimpoint strategies.

fields in a quick and computationally efficient manner, while SolTrace provides a robust,
Monte-Carlo-based, ray-tracing method that allows for the cross-comparison of results
and the analysis of more complex geometries.

SolarPILOT is a well-known and frequently used software in the CSP research community
to simulate power tower systems. Previously, SolarPILOT users were limited to interact-
ing with the software through either the graphical user interface (GUI) or a Language Kit
(LK) application programming interface (API), shown in Figure 16 on the left. The GUI
provides an interactive visual method for users to update variables and explore results;
however, creating multiple cases and performing large parametric analysis can be cum-
bersome and time consuming. The LK-API overcomes these challenges by providing the
ability to create scripts that execute SolarPILOT’s computational methods. However, LK is
a domain-specific language that requires SolarPILOT’s GUI to operate in the background,
has a limited documentation and user support network, and has very limited capabilities
for data analysis and visualization. Users can utilize SolarPILOT’s computational meth-
ods through the System Advisor Model (SAM), which enables receiver fluid flow path
calculations; however, this interface is even more restrictive than the above two methods.

To address these issue and increase accessibility, we have developed and tested a So-
larPILOT Python API, which we hereafter refer to as Co-Pylot (shown in Figure 16 on
the right with the new API link highlighted in red). For Co-Pylot’s development, we cre-
ated new C++ source code to export SolarPILOT’s functions from its dynamic-link library
(DLL). In addition to being accessed by Python through the Co-Pylot API, these exported
functions may be accessed by other scripting languages, e.g., MATLAB®, by creating an
API within the specific language to handle data type conversions. While we did not create

25

www.nrel.gov/publications



Co-Pylot
Python

e

MATLAB®

Other
Languages

Figure 16: A diagram presenting user interfaces for SolarPILOT’s dynamic-link library
(DLL)

SolarPILOT
'GUI

these links within this project, the development of these APIs would be straightforward
with the existing C++ source code, and could be developed in future projects.

Co-Pylot enables users access to all of SolarPILOT’s functionality through a Python script-
ing interface, which is the most popular programming language for data science and ana-
lytics. Co-Pylot’s functionality includes:

e Creating and destroying an instance of SolarPILOT that includes a callback func-
tionality to propagate messages from SolarPILOT back to Python users

e Getting and setting variables within SolarPILOT including importing custom land
boundaries for field layout

e Creating receiver and heliostat objects for analysis of fields with multiple receivers
and/or heliostat templates

e Generating, assigning, and modifying heliostat field layouts including the ability to
set individual heliostat locations, aimpoints, soiling, and reflectivity

e Simulating heliostat field performance

e Returning SolarPILOT detailed results for individual heliostat performance, aggre-
gated field performance, and receiver solar flux distribution

e Saving the python created SolarPILOT instance to either a .csv file with all variable
values or a SolarPILOT .spt file that can be read by SolarPILOT’s GUI.

In addition to Co-Pylot’s functionality with SolarPILOT, Python users have access to the
more than 100,000 open-source libraries to develop, analyze, optimize, and visualize CSP
tower research utilizing SolarPILOT’s computation engines. Co-Pylot’s functionality is
limited to working with the standalone SolarPILOT library, and does not currently allow for
interfacing with the System Advisor Model [12] or its other submodels. More details on
the API are described in [14].

3 Conclusions and Future Work

This work detailed in this report outlines the outcomes that we have achieved in develop-
ing a software package that obtains optimized aimpoint strategies and uses the resulting
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utilization metrics to improve solar field layouts.
Specifically, we have:

1. Developed a mixed-integer linear programming model that obtains optimized aim-
point strategies for CSP tower plants

2. Implemented a high-quality approximation of the high-resolution images developed
by packages like SolarPILOT to reduce the computing time required to generate
instances of our model

3. Improved solution times for model instance via a spatial decomposition approach
that subdivides large-scale plants into sections, for which optimized aimpoint strate-
gies may be obtained separately and in parallel

4. Demonstrated significant improvement in annual energy delivered to the receiver
using our aimpoint optimization software, when compared to SolarPILOT’s aiming
strategies, in multiple case studies

5. Identified a novel metric for layout improvement that weights heliostat production by
its utilization

6. Created an algorithm that uses utilization statistics by section to relocate heliostats
in the solar field, increasing overall energy production

7. Implemented the optimization methods in a publicly available software package

8. Developed a Python API for SolarPILOT to expand the package’s accessibility to
both our software package and open-source data analysis tools.

Recommendations for future work include expanding the collection of geometries that
can be generated in HALOS, additional analysis of aimpoint strategies under different
operating conditions (e.g., partial cloud cover), extension of the optimization model to
alter existing aimpoints in response to receiver hotspots, active transition of the software
to the public domain, and further refinement and documentation of the software package
to enhance functionality and usability.

The following manuscripts were produced as part of the efforts described in this report:

e Hamilton, W., Wagner, M., and Zolan, A. (2021). Demonstrating SolarPILOT’s
Python API Through Optimal Aimpoint Strategy Use Case. Proceedings of ASME
15th International Conference on Energy Sustainability (ES2021), Accepted.

e Zolan, A., Hamilton, W., Liagat, K., and Wagner, M. (2021). A Spatial Decomposition
Approach to Optimizing Aimpoint Strategies for Commercial-Scale Concentrating
Solar Power Tower Plants. In preparation.

e Zolan, A. and Wagner, M. (2021). A Utilization-weighted Efficiency Metric for Solar
Field Layout Improvement. In preparation.

The source code for HALOS is available at https://www.github.com/NREL/HALOS.
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