

COLOSSAL GRAINS FOR A NEW STRUCTURAL PARADIGM IN THIN-FILM PHOTOVOLTAICS

Eric Colegrove*, Helio Moutinho, and David Albin - *National Renewable Energy Laboratory*

Marco Nardone - *Bowling Green State University*

 \sim

ACCGE-22 22nd American Conference on Crystal Growth and Epitaxy 20th US Workshop on Organometall **Vapor Phase Epitaxy**

The Premise

- Grain boundaries in polycrystalline PV absorbers are locations of high defect densities and thus high recombination
	- Passivation strategies exist $(CdCl₂)$ to mitigate these effects to some extent but has yet to eliminate it entirely
- Single crystals have shown promise for enabling reduced absorber compensation and recombination but are still far too expensive for large scale PV applications (specifically for III-V and II-VI absorbers)
- Large enough grains and/or templates coupled with fast/cheap epitaxy can enable the best of both worlds

 \rightarrow our new results suggest that these possibilities may be closer than expected

Commercial Success – Headroom to Improve

CdTe accounted for 40% of utility-scale PV installations in the US and 8% of PV globally in 2020 & is projected to install 25 GW in the next few years

550 MW CdTe solar farm in the Mojave desert Photo: First Solar

Efficiency >25% should be possible

Typical CdSeTe Absorber Processing

Higher Performance PV \rightarrow Single Crystals

Silicon: large grain multior single crystal

M. Woodhouse, et al., *NREL* (2018)

III-V: Single crystal (epi)

2016: CdTe Single Crystals

Better doping $(^{2}10^{16}$ cm⁻³)

Better lifetime (10-100ns)

Better interface

No CdCl₂ **(less compensation?)**

Burst, et al., *Nature Energy* (2016)

crystals \$250/cm2 \sim 2.5m²/module \rightarrow >\$6M/module

How can II-VI PV technology move toward single crystal performance without the associated costs???

Different Approaches – Similar Goal

Fast Epitaxy in low-cost CSS

E. Colegrove, et al., *Scientific Reports* (2020)

Large Area Epitaxy in CSS

E. Colegrove, et al., *Scientific Reports* (2020)

Epitaxy maintained over very large areas with high growth rates

CSS has been scaled to 2 ft x 4 ft

High-quality epitaxy possible

… still have the problem of templates.

What size grains to we need?

CdCl₂, Grain Size, Se, and Lifetime

M. Amarasinghe, et al., *Applied Physics Letters* (2021)

Lifetime and grain size typically improved through CdCl₂

6-10 μ m grains is the best we can do with typical CdCl₂

Se alloying also significantly improves lifetime \ldots still requires CdCl₂

Cl-free Grain Size vs Lifetime

Long carrier lifetimes in large-grain **(2016)**polycrystalline CdTe without CdCl₂

Cite as: Appl. Phys. Lett. 108, 263903 (2016); https://doi.org/10.1063/1.4954904 Submitted: 06 May 2016 . Accepted: 15 June 2016 . Published Online: 27 June 2016

S. A. Jensen, J. M. Burst, J. N. Duenow, H. L. Guthrey, J. Moseley, H. R. Moutinho, S. W. Johnston ... A. Kanevce, M. M. Al-Jassim, and W. K. Metzger

Long lifetime possible with large grains without $CdCl₂$

No CdCl₂ modeling

If we want to eliminate CdCl₂ grains on the order of 500 μ m are necessary

Colossal Grain Growth (CGG)

D. S. Albin, et al., *Journal of Physics: Energy* (2021)

Evaporated CdSe_{0.1}Te_{0.9} films annealed at **500-600C exhibit explosive recrystallization** \rightarrow CGG

Film thickness and composition maintained

Grain sizes from 100μm to >500μm possible with film <5μm thick

Extreme CGG Provides Propagation Insights

CREST – Loughborough University

2 mm

Limitations and Challenges related to CGG

Epitaxy maintained at high rates by CSS

Source flux must exceed re-evaporation (sticking coefficients, adatom mobility, etc.)

Controlled by:

- **Temperatures**
- Background pressures
- **Chemistry**
- Template crystallinity (lattice parameters/orientation)

poly template and the contract of the contract contract contract contract of the contract contra for CdTe on $CdSe_{0.1}Te_{0.9}$

IPF Z

 (111)

IPF Z

 (111)

 (101)

NREL | 22 E. Colegrove, et al., *Scientific Reports* (2020) D.S. Albin, et al., *Journal of Physics: Energy* (2021)

VTD is much more dynamic

VTD is much more dynamic

Early deposition results in come epitaxy, but this breaks down in the dynamic process

Current status of As doping

Series 6 (440W) vs. Series 6 CuRe (465W) **Expected Energy Density Improvement**⁽¹⁾

https://s2.q4cdn.com/646275317/files/First-Solar-Investor-Overview-(May-2021)-vF.pdf

As doping has enabled thin film CdSeTe devices with supplier stability **production lines being converted to CuRe ("Cu Replacement")**

 \sim 21% devices with 10¹⁶ cm⁻³ absorber hole density, but Voc deficit still present

W. K. Metzger, et al., *Nature Energy* (2019) **junction interface issues are the most likely cause**

As incorporation and diffusion

- As accumulates at deposition surface followed by lower, uniform, incorporation
- After CdCl₂ treatment, As redistributes, diffusing into Se rich region and accumulating at the oxide interface

CGG and diffusion

- As accumulates at deposition surface followed by lower, uniform, incorporation
- After CdCl₂ treatment, As diffuses more uniformly through CdTe, but **does not penetrate CGG CdSeTe**

Conclusions

• CGG coupled with fast epitaxy may enable II-VI PV technology to transition from a micro-crystalline structural paradigm into a multicrystalline regime without the need for $CdCl₂$

• Current limitations of CGG and low intra-grain material quality need to be addressed to realize a direct impact on PV performance

M. Amarasinghe, et al., *Spring MRS 2021*

NREL

Eric Colegrove Joel Duenow (Mahisha Amarasinghe) (Xin Zheng) David Albin Matt Reese Helio Moutinho (John Moseley) (Wyatt Metzger)

Bowling Green State University

Marco Nardone

CREST-Loughborough University

Thomas A. M. Fiducia Ali Abbas John M. Walls

Thank You!

www.nrel.gov

NREL/PR-5K00-80918

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

