

Computational Fermi level engineering and doping-type conversion of Ga₂O₃ via three-step processing

Anuj Goyal, Andriy Zakutayev, Vladan Stevanović, Stephan Lany

NREL/PR-5K00-81059

National Renewable Energy Laboratory, Golden, CO, 80401 Colorado School of Mines, Golden, CO, 80401

Email: anuj.goyal@nrel.gov

Fermi Level Engineering of Mg-doped Ga₂O₃ with Hydrogen

- **Ga₂O₃ is intrinsically n-type** and using extrinsic dopants its n-type conductivity can easily be tuned^{1,2}
- However, **p-type doping faces obstacles**^{3,4}

Motivation:

- P-type doping of Mg:GaN with hydrogen⁵
- Potential application of Ga₂O₃ in devices^{1,6}

Key results:

- Type conversion $(N_A > N_D)$ of Mg-doped Ga₂O₃
- Fermi level pushed below mid gap
- Free electron density greatly suppressed

¹S. J. Pearton et al., *Appl. Phys. Rev.*, **2018**, **5**, 011301
 ²S. Lany, *APL Mater.*, **2018**, 6, 046103
 ³J. L. Lyons, *Semicond. Sci. Technol.*, **2018**, 33, 05LT02
 ⁴J. B. Varley et al., *J. Phys. Condens. Matter*, **2011**, 23, 334212
 ⁵S. Nakamura et al., *Jpn. J. Appl. Phys.*, **1992**, 31, 1258–1266
 ⁶S. B. Reese, A. Zakutayev et al., Joule **2019**, 3 903-907

Vertical Transistor

Three-Step Processing Applied to Mg-doped Ga₂O₃ with H

• Estimate thermodynamic conditions (*T*, *p*O₂, *p*H₂O) that maximizes net acceptor concentrations

Methodology: Thermodynamic Modeling Workflow

1. Relax atomic structure

Atomic and electronic structure relaxation using DFT

 β -Ga₂O₃

Ga1

01

Ga2

02

03

2. Calculate defect formation energy

Identify important intrinsic defects, dopants, impurities and defect-pairs

Methodology: Thermodynamic Modeling Workflow

2. Calculate defect formation energy

Identify important intrinsic defects, dopants, impurities and defect-pairs

3. Model thermodynamic properties

Defect and free carrier concentrations as function of T and pO_2 , pH_2O

(Courtesy: S. Lany)

Defect formation energy Defect concentration Electron/hole density Charge neutrality Self-consistent solution

 pO_2 dependence of μ_O (ideal gas) $\Delta H = \Delta H_{D,q} (\mu, \boldsymbol{E}_{F})$ $c_{D} \approx N_{site} \times \exp(-\Delta H/kT)$ $c_{e} = \int f_{FD} (\boldsymbol{E} - \boldsymbol{E}_{F}) g(\boldsymbol{E}) d\boldsymbol{E}$ $- c_{e} + c_{h} + \Sigma [q \cdot c(D^{q})] = 0$ $\Delta H(\boldsymbol{E}_{F}) \longrightarrow c_{D}(\Delta H) \longrightarrow \boldsymbol{E}_{F}$

$$\begin{split} \Delta \mu_{\rm O}(\textbf{T}, \textbf{P}_0) &= \frac{1}{2} \left[H_0 + \Delta H(\textbf{T}) \right] - \frac{1}{2} \textbf{T} \cdot \left[S_0 + \Delta S(\textbf{T}) \right] \\ \Delta \mu_{\rm O}(\textbf{T}, \textbf{P}) &= \Delta \mu_{\rm O}(\textbf{T}, \textbf{P}_0) + \frac{1}{2} k \operatorname{Tln}(\textbf{P}/\textbf{P}_0) \end{split}$$

O, H chemical potentials outcome of $H_2 + \frac{1}{2}O_2 \leftrightarrow H_2O$ gas equilibrium

K. Biswas and S. Lany *PRB*, **2009**, 115206 S. Lany J. *Chem. Phys.*, **2018**, 071101

Growth at O-poor and H-rich Conditions

Typical thin-film growth conditions:

Typical Like-Process	Temp. (°C)	range <i>p</i> O ₂ (atm)	max <i>p</i> H ₂ O (atm) ^{1,2}
PVD	600 - 800	10 ⁻¹³ – 10 ⁻⁵	10 ⁻⁵
CVD	800 - 1100	10 ⁻¹⁸ - 10 ⁰	10 ⁰

Under H-rich conditions ($pH_2O = 10^{-5}$ atm) Mg solubility less sensitive to pO_2

¹Upper limit of ballistic particle transfer across chamber in PVD process such as MBE or PLD ²In APCVD if H_2O is used as oxygen precursor for Ga_2O_3 growth

Mg conc. under Growth

Growth Step: Beyond Mg Equilibrium Solubility

- Beyond equilibrium Mg solubility feasible in thinfilm growth^{1,2} and under atmospheric pressure chemical vapor (APCVD) process³
- Even higher Mg solubility possible under hydrogen plasma source⁴

 $pH_2O = 10^{-5}$ atm, Mg = 1%

¹G. B. Gonzalez et al., J. Am. Ceram. Soc. 95, 2012, 809-815
²M. H. Wong et al., Appl. Phys. Lett. 2018, 113 102103
³T. Terasako et al., Phys. Status Solidi C 12, 2015, 985-988
⁴L. Tian et al., Surface & Coatings Tech. 347, 2018, 181-190

Lower growth T and H-rich conditions required to maximize $[Mg - 2V_o]$ defect concentration

Equilibrium Anneal at O-rich and H-poor Conditions

- Allow for O vacancies and H to equilibrate
- Conditions analogous to Mg:GaN^{1,2} (N-rich/H-poor)
- O-rich: pO₂ = 1 atm
- H-poor^{*}: $pH_2O = 10^{-8}$ atm

*Choice of pH_2O :

- Research grade gas typically contains 1 ppm $pH_2O = 10^{-6}$ atm
- Gases can be further purified (gas chromatography)
- Impurity level 10 ppb possible = 10⁻⁸ atm

Optimal annealing temperature that maximizes net acceptors for Mg-doping level

¹S. Nakamura et al., *Jpn. J. Appl. Phys.*, **1992**, 31, 1258–1266 ²S. Nakamura et al., *Jpn. J. Appl. Phys.*, **1992**, 31, L139–L142

Non-Equilibrium Anneal at Fixed V_o Concentration

Growth

Non-equilibrium Anneal

Kyrtsos et al. Phys. Rev. B, **2017**, 95, 245202
M. H. Wong et al., *Appl. Phys. Lett.* **2018**, 113 102103
H. Peelaers et al. *APL Mater.* **2019**, 7, 2022519

Minimum pH_2O needed during growth for conversion ($N_A > N_D$)

NREL | 9

Quench From the Preceding Annealing Step

- Quenched from the preceding anneal step at $pO_2 = 1$ atm, $pH_2O = 10^{-8}$ atm
- Freeze defect concentrations and allow for Fermi level, electrons and holes to equilibrate

Fermi level has stronger dependence on operating temperature and $[n_e]$ greatly suppressed

Three-step Processing of Mg-doped Ga₂O₃ with H

Growth:

- Lower growth *T* is better
- H-rich pH₂O > 10⁻⁷ atm needed to enable type conversion (N_A>N_D)

Equilibrium Anneal:

• Optimal anneal temperature to maximize net acceptors ~ 10⁷-10¹¹ cm⁻³

Non-equilibrium Anneal:

 If achievable, result in higher net acceptors ~10¹⁰ - 10¹⁴ cm⁻³ than equilibrium annealing

Quench:

- E_F below mid gap value
- Electron concentrations can be greatly suppressed

Thank you!