

2021 Virtual MRS Spring Meeting

Ab Initio Study of Atomic and Electronic Structure of Promising Ba₄XMn₃O₁₂ (X = Nb, Ce, Pr) Oxides for Solar Thermochemical Hydrogen Production

Anuj Goyal and Stephan Lany National Renewable Energy Laboratory, Golden, CO 80401

Ba₄CeMn₃O₁₂ aka BCM for STCH

Typical conditions for Solar Thermochemical Hydrogen (STCH)

 $M_{\chi}O \rightarrow M_{\chi}O_{1-\delta} + \frac{\delta}{2}O_{2} \quad \text{(reduction)}$ $T \leq 1400 \,^{\circ}\text{C}, \, pO_{2} \geq 10^{-3} \text{ atm}$ $M_{\chi}O_{1-\delta} + \, \delta \text{H}_{2}O \rightarrow M_{\chi}O + \, \delta \text{H}_{2} \quad \text{(oxidation)}$ $T \geq 850 \,^{\circ}\text{C}, \, p\text{H}_{2}O = 1 \text{ atm}, \, p\text{H}_{2} \geq 10^{-1} \text{ atm}$

12R-Ba₄CeMn₃O₁₂ (BCM)

12R BCM perfectly ordered phase²

¹D. R. Barcellos et al., Energy Environ. Sci. 11, 3256 (2018); ²A. F. Fuentes et al., J. Sol. State Chem. 177, 714 (2004)

Ba₄CeMn₃O₁₂ aka BCM and Other Oxides for STCH

Typical conditions for Solar Thermochemical Hydrogen (STCH)

 $M_x O \rightarrow M_x O_{1-\delta} + \frac{\delta}{2} O_2$ (reduction) $T \le 1400 \text{ °C}$, $pO_2 \ge 10^{-3}$ atm $M_x O_{1-\delta} + \delta H_2 O \rightarrow M_x O + \delta H_2$ (oxidation) $T \ge 850 \text{ °C}$, $pH_2O = 1 \text{ atm}$, $pH_2 \ge 10^{-1} \text{ atm}$

Ba₄NbMn₃O₁₂ (BNM) and **Ba₄PrMn₃O₁₂ (BPM)** are structurally identical compositional variants to **BCM** that also splits H_2O

(Figure courtesy A. H. McDaniel)

 $12R-Ba_4CeMn_3O_{12}$ (BCM)

12R BCM perfectly ordered phase²

¹D. R. Barcellos et al., Energy Environ. Sci. 11, 3256 (2018); ²A. F. Fuentes et al., J. Sol. State Chem. 177, 714 (2004)

12R-BCM Atomic Structure

12R Ba₄CeMn₃O₁₂ (BCM)

12R-BCM consists of two unique Mn, Ba, O sites and single Ce site

Mn⁴⁺: 3d³ 4s⁰ ← Spin? Ce⁴⁺: 4f⁰ 5d⁰ 6s⁰

Both Mn and Ce are bonded to six neighboring O atoms

Experimental CIF cell cannot be used for electronic structure calculations as the magnetic structure is not known

12R-BCM Ground State Magnetic Structure

Anti-ferro magnetic 12R Ba₄CeMn₃O₁₂ (BCM)

Magnetic configuration (spin arrangement) of Mn⁴⁺ ions are assigned via Monte-Carlo Sampling

12R-BCM Atomic and AFM Magnetic Structure

Anti-ferro magnetic 12R Ba₄CeMn₃O₁₂ (BCM)

12R-BCM consists of two unique Mn, Ba, O sites and single Ce site

12R-BCM atomic + magnetic structure (generated by S. Lany) available in Data Hub DOI: <u>10.17025/1532370</u>

Generated structure can be used for DFT based electronic structure and defect calculations

Calculated Density of States (DOS) for 12R-BCM

| 7

- Near band edges (VBM and CBM) contributions to DOS dominate from O-p, Mn-d and Ce-f
- Overall DOS similar across different levels of theory

Calculated Density of States (DOS) for 12R-BCM

- Mn and Ce is octahedrally bonded to O
- Strong hybridization between Mn-3d and O-2p creates bonding states (below VBM) and antibonding states (above CBM)
- Empty Ce-4f states localized above CBM

Molecular Orbital Diagram Derived from DOS

- Crystal field **splitting of Mn-3***d* into t_{2g} & e_g orbitals
- Empty Ce-4f states localized above CBM
- Strong hybridization between Mn-3d and O-2p creates bonding states (below VBM) and antibonding states (above CBM)

12R-BCM: Metal Bands Contribution to O-p DOS

12R-BCM: Metal Bands Contribution to O-p DOS

Comparing Measured XAS O-K edge with O-p DOS Calculations

DOS and molecular orbital picture can help develop qualitative understanding of EELS and XAS spectrums

12R-BNM: Charge and Magnetic Structure

Using DFT explored 120 configurations; differ in Mn charge (Mn⁴⁺, Mn³⁺) and spin configurations (AFM,FM)

Structure will be made available on datahub

*Nguyen et al. Mater. Res. Express 6 056108 (2019)

Туре	#	Mn1	Mn2	Mn3	Mn4	Mn5	Mn6
Anti-ferromagnetic	а	\downarrow	\uparrow	\downarrow	\uparrow	\downarrow	\uparrow
Ferri-magnetic	b	\downarrow	\uparrow	\downarrow	\downarrow	\uparrow	\downarrow
Anti-ferromagnetic	С	\uparrow	\uparrow	\downarrow	\downarrow	\downarrow	\uparrow
Anti-ferromagnetic	d	\uparrow	\uparrow	\uparrow	\downarrow	\downarrow	\downarrow

12R-BPM Magnetic Structure

12R Ba₄PrMn₃O₁₂ (BPM): $Pr^{4+}(4f^{1})$ and $Mn^{4+}(3d^{3})$

Energy sensitivity on the spin configuration

Pr and Mn magnetic configurations search performed on 40 and 80 atom supercells

Structure will be made available on datahub

A. F. Fuentes et al., J. Sol. State Chem. 177, 714 (2004)

Туре	#	Mn1	Mn2	Mn3	Mn4	Mn5	Mn6	Pr1	Pr2	Pr3	Pr4
							^	^		^	
Antiferromagnetic	а	\checkmark		\checkmark		\checkmark			\checkmark		\checkmark
Antiferromagnetic	b	\uparrow	\uparrow	\downarrow	\downarrow	\downarrow	\uparrow	\uparrow	\downarrow	\uparrow	\downarrow
Antiferromagnetic	С	\uparrow	\uparrow	\uparrow	\downarrow	\downarrow	\downarrow	\uparrow	\downarrow	\uparrow	\downarrow
Ferrimagnetic	d	\downarrow	\uparrow	\downarrow	\uparrow	\downarrow	\uparrow	\uparrow	\uparrow	\downarrow	\uparrow
Ferrimagnetic	е	\downarrow	1	\downarrow	\uparrow	\downarrow	\uparrow	\uparrow	\downarrow	\uparrow	\uparrow

Calculated (DFT+U) density of states (DOS) and the molecular orbital diagram for 12R-BNM and 12R-BPM

12R-BNM (O-*p* DOS)

- <1 eV from CBM, O-p and Mn-3d (e_g⁺) hybridized bands dominate
- >1 eV from CBM, O-p character in Mn-3d and Nb-4d bands

12R-BPM (O-*p* DOS)

- < 1 eV from CBM, O-p and Pr-4f hybridized bands dominates
- > 1eV from CBM, hybridization of O-p with Mn-3d bands

Ab Initio Study of Structure of Complex Oxides for STCH

- Theory helps characterize the magnetic structure of complex oxides
- These structures to be used to predict defect energies and thermodynamics under STCH conditions
- DOS and molecular orbital picture can help provide qualitative understanding of experimental x-ray absorption spectrum

Spin Spin Ce-f eg anti-bonding t_2 CBM VBM VBM

Questions and feedback: anuj.goyal@nrel.gov

Thank you!

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Hydrogen and Fuel Cell Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

NREL/PR-5K00-81060